11八年级全等三角形教案1
人教版数学八年级上册第11章 《全等三角形》教学设计

人教版数学八年级上册第11章《全等三角形》教学设计一. 教材分析人教版数学八年级上册第11章《全等三角形》是学生在掌握了三角形的基本概念、性质和判定方法的基础上,进一步学习全等三角形的性质和判定方法。
本章内容在全等三角形的性质和判定方法方面,既是对学生已有知识的巩固,又是为学生后面学习几何证明和解决实际问题打下基础。
本章主要包括全等三角形的性质、全等三角形的判定方法、全等三角形的应用等内容。
二. 学情分析学生在学习本章之前,已经掌握了三角形的基本概念、性质和判定方法,具备了一定的逻辑思维能力和空间想象能力。
但全等三角形的概念和性质较为抽象,对于部分学生来说,理解和运用可能会存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导,帮助学生理解和掌握全等三角形的性质和判定方法。
三. 教学目标1.理解全等三角形的概念和性质,掌握全等三角形的判定方法。
2.能够运用全等三角形的性质和判定方法解决简单的几何问题。
3.培养学生的逻辑思维能力和空间想象能力,提高学生解决实际问题的能力。
四. 教学重难点1.全等三角形的概念和性质的理解。
2.全等三角形的判定方法的掌握和运用。
3.几何证明中全等三角形的运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论,自主探索全等三角形的性质和判定方法。
2.运用几何画板等教学工具,直观展示全等三角形的变换过程,帮助学生理解和掌握全等三角形的性质和判定方法。
3.通过例题分析和练习,巩固学生对全等三角形的理解和运用。
4.分组合作学习,培养学生团队合作精神和沟通能力。
六. 教学准备1.教学课件和教学素材。
2.几何画板等教学工具。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过回顾三角形的基本概念、性质和判定方法,引导学生思考:如果两个三角形的三边分别相等,这两个三角形是否全等?从而引入全等三角形的概念。
2.呈现(15分钟)利用几何画板展示两个全等的三角形,让学生观察和思考:全等三角形的对应边和对应角是否相等?引导学生总结出全等三角形的性质。
(精)人教版数学八年级上册《全等三角形》全单元教案

第十二章《全等三角形》单元备课一、教学分析1、内容分析:本章主要内容是学习全等三角形的概念、性质以及判定方法,应用全等三角形的性质和判定探索角平分线的性质,能够应用全等三等三角形的性质和判定以及角平分线的性质解决简单的几何总是,初步掌握推理证明的方法。
2、教材分析:学生已经学过线段、角、相交线、平行线、有关三角形的一些知识,通过本章的学习可以丰富和加深学生对已学图形的认识,同时为学习其它图形打好基础,教材力求创设与生活场景相近的、有趣的问题情境引入,使学生经历了从现实生活探索并抽象出几何模型,并应用几何模型解决实际问题的过程,在内容上重点探索三角形全等的判定方法经及应用,至于角平分线的改天换地的两上互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆定理的概念,通过结合具体问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培养学生的推理能力。
二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素。
2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式。
3.利用尺规作图作一个角等于已知角、作一个角的角平分线。
4、经历角平分线的性质和判定方法的探究过程,灵活应用角平分线的性质和判定解决问题.三、本章教学建议(一)注重探索结论(二)注重推理能力的培养1.注意减缓坡度,循序渐进。
2.在不同的阶段,安排不同的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。
3.注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。
(三)注重联系实际三、几个值得关注的问题(一)关于内容之间的联系(二)关于证明一般情况下,证明一个几何中的命题有以下步骤:(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用数学符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程。
初二全等三角形教案

初二全等三角形教案一、教学目标在学习本课前,学生需掌握以下基础知识: 1. 三角形的定义及分类; 2. 三角形内角和公式; 3. 三角形相似的基本判定; 4. 三角形全等的定义。
学完本课后,学生应能够: 1. 掌握全等三角形的定义;2. 理解全等三角形的基本性质;3. 熟练掌握全等三角形的判定方法; 4. 能够应用全等三角形的性质解决实际问题。
二、教学重点与难点重点1.全等三角形的定义;2.全等三角形的性质及应用。
难点全等三角形的判定方法。
三、教学内容与方法1. 教学内容1.1 全等三角形的定义全等三角形定义:如果两个三角形的三个对应的角度相等,而且这两个三角形的对应的边的长度也相等,那么这两个三角形就是全等的。
1.2 全等三角形的性质全等三角形的性质: 1. 对应边相等; 2. 对应角度相等;3. 可以互相重合。
1.3 全等三角形的判定方法全等三角形的判定方法: 1. SSS 判定法(边边边):如果两个三角形的三边分别相等,则这两个三角形全等; 2. SAS 判定法(边角边):如果两个三角形的一个角和两边分别与另一个三角形的一个角和两边相等,则这两个三角形全等;3. ASA 判定法(角边角):如果两个三角形的一个角和两边分别与另一个三角形的一个角和两边相等,则这两个三角形全等;4. RHS 判定法(斜边直角边):如果两个三角形的一个直角和两边分别与另一个三角形的一个直角和两边相等,则这两个三角形全等。
1.4 全等三角形的应用全等三角形的应用:用全等三角形来解决实际问题,如测量不可直接测量的物体的高度等。
2. 教学方法本课采用以下教学方法: 1. 说教结合演示; 2. 师生互动; 3. 练习巩固。
四、教学具体步骤1. 教学前准备1.制定教学计划;2.整理教学资料;3.准备教具和黑板白板笔等。
2. 教学过程2.1 导入新课:从学生已经学过的知识出发,帮助学生回忆三角形定义及分类以及三角形的内角和公式。
人教版八年级上册数学教学设计《12.1 全等三角形》

人教版八年级上册数学教学设计《12.1 全等三角形》一. 教材分析《12.1 全等三角形》是人教版八年级上册数学的一个重要章节,主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法等。
本章通过全等三角形的学习,培养学生对几何图形的认识和理解,提高学生的空间想象力,为后续几何学习打下基础。
二. 学情分析八年级的学生已经掌握了三角形的基本知识,对三角形的性质和判定方法有一定的了解。
但全等三角形作为三角形的一个重要分支,其概念和性质较为抽象,学生理解和掌握全等三角形的难度较大。
因此,在教学过程中,要注重引导学生从实际问题中抽象出全等三角形的概念,并通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。
2.培养学生对几何图形的认识和理解,提高学生的空间想象力。
3.培养学生运用全等三角形的知识解决实际问题的能力。
四. 教学重难点1.全等三角形的概念及其性质。
2.全等三角形的判定方法。
3.全等三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出全等三角形的概念。
2.通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
3.运用多媒体辅助教学,提高学生的空间想象力。
4.采用小组合作学习的方式,培养学生的团队合作精神。
六. 教学准备1.准备相关教学课件和教学素材。
2.设计具有代表性的例题和练习题。
3.准备全等三角形的模型或图片,用于直观展示。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考:如何判断两个三角形是否完全相同?从而引出全等三角形的概念。
2.呈现(10分钟)介绍全等三角形的定义、性质和判定方法。
通过PPT展示全等三角形的图形,让学生直观地感受全等三角形的特征。
同时,给出全等三角形的判定方法,如SSS、SAS、ASA、AAS等。
八年级数学上册11全等三角形教案版

《全等三角形》能够完全重合的两个图形称为全等形.中风景与水中的倒影两张照片形状、大小相同吗?放在ABCDE FA CB FED仔细观察,再用全等符号表示下列两组全等三角形,并说出它们的对应边和对应角.图1图21、若△AOC ≌△BOD ,AC= ∠A =ABOC2、若△ABD ≌△ACE ,BD =,∠BDA =A CD E八年级上学期期末数学试卷一、选择题(每题只有一个答案正确) 1.已知方程组03mx y x ny +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则2m n +的值为( )A .1B .2C .3D .0【答案】C【分析】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值,再计算2m n +的值即可.【详解】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩可得21m n =⎧⎨=-⎩,则222(1)3m n +=⨯+-=. 故选C. 【点睛】本题考查方程组的解,解题的关键是将将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值.2.已知实数a 、b 满足等式x=a 2+b 2+20,y=a(2b -a),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y【答案】D【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系. 【详解】解:22222202()x y a b ab a a b a -=++-+=-++20,2()0a b -≥,20a ≥,200>,0x y ∴->,x y ∴>,故选:D . 【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.3.如图,点B 在AE 上,且12∠=∠,若要使ABC ∆≌ABD ∆,可补充的条件不能是( )A .C D ∠=∠B .AE 平分CAD ∠C .BC BD =D .AC AD =【答案】D【分析】根据全等三角形的判定方法即可依次判断. 【详解】A 、∵12∠=∠,C D ∠=∠, ∴∠CAB =∠DAB , 又AB=AB ,根据AAS 即可推出ABC ∆≌ABD ∆,正确,故本选项错误; B 、AE 平分CAD ∠, ∴∠CAB =∠DAB , 又AB=AB ,12∠=∠根据AAS 即可推出ABC ∆≌ABD ∆,正确,故本选项错误; C 、∵∠1=∠2,1+∠ABC =180︒,∠2+∠ABD =180︒, ∴∠ABC =∠ABD , 又BC BD =、AB=AB ,根据SAS 即可推出ABC ∆≌ABD ∆,正确,故本选项错误;D 、根据AC AD =和AB=AB ,∠ABC =∠ABD 不能推出ABC ∆≌ABD ∆,错误,故本选项正确; 故选:D . 【点睛】本题考查了全等三角形的判定,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .4.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)- C .(4,3)- D .()3,4-【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案. 详解:由题意,得 x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.5.如果解关于x的分式方程233x ax x---=5时出现了增根,那么a的值是()A.﹣6 B.﹣3 C.6 D.3【答案】A【解析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可.【详解】解:去分母得:2x+a=5x﹣15,由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:6+a=0,解得:a=﹣6,故选A.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6.在平面直角坐标系中,点(2,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点的横坐标为正,纵坐标为负,∴该点在第四象限.故选:D.【点睛】本题考查平面直角坐标系的知识;用到的知识点为:横坐标为正,纵坐标为负的点在第四象限.7.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.2,3,4 D.2,4,8【答案】C【分析】根据三角形的三边关系进行分析判断.【详解】根据三角形任意两边的和大于第三边,得A 中,1+2=3,不能组成三角形;B 中,2+2<4,不能组成三角形;C 中,3+2>4,能够组成三角形;D 中,2+4<8,不能组成三角形. 故选:C . 【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形任意两边的和大于第三边. 8.运用乘法公式计算(x+3)2的结果是( ) A .x 2+9 B .x 2–6x+9 C .x 2+6x+9 D .x 2+3x+9【答案】C【解析】试题分析:运用完全平方公式可得(x +3)2=x 2+2×3x +32=x 2+6x +1.故答案选C 考点:完全平方公式. 9.若关于x 的分式方程1233m xx x-=---有增根,则实数m 的值是( ) A .2 B .2-C .1D .0【答案】A【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【详解】去分母得:m=x-1-2x+6, 由分式方程有增根,得到x-3=0,即x=3, 把x=3代入整式方程得:m=2, 故选:A . 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10.下列给出的三条线段的长,能组成直角三角形的是( ) A .1,2,3 B .234,, C .579,, D .345,,【答案】D【分析】三角形三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形. 【详解】A 、因为12+22≠32,所以三条线段不能组成直角三角形;B 、因为22+32≠42,所以三条线段不能组成直角三角形;C 、因为52+72≠92,所以三条线段不能组成直角三角形;D 、因为32+42=52,所以三条线段能组成直角三角形. 故选:D . 【点睛】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形. 二、填空题11.分式211m m -+的值为0,则m =__________.【答案】1【分析】分式为0,则分子为0,且分母不为0,列写关于m 的方程求得.【详解】∵分式211m m -+的值为0∴21m -=0,且m+1≠0 解得:m=1 故答案为:1 【点睛】本题考查分式为0的情况,需要注意,在求解过程中,必须还要考虑分母不为0. 12.若关于x 的方程2233x mx x -=+--有解,则m 的取值范围是______. 【答案】m≠1【分析】把分式方程化简后得4x m =-,根据关于x 的方程2233x mx x -=+--有解,则方程的根使得分式方程有意义,即3x ≠,则43m -≠,答案可解. 【详解】解:2233x mx x -=+-- 方程两边同时乘(3x -)得:()223x m x -=+-, 解得:4x m =-, ∵关于x 的方程2233x mx x -=+--有解, ∴30x -≠,即3x ≠, ∴43m -≠ ,即1m ≠,故答案为:1m ≠.【点睛】本题考查了分式方程的解,解题的关键是注意分母不为0这个条件.13.计算 ()2013π-⎛⎫- ⎪⎝⎭+-=_____. 【答案】10【分析】根据零指数幂的意义以及负整数幂的意义即可求出答案.【详解】解:原式=9+1=10,故答案为:10【点睛】本题考查的知识点是零指数幂以及负整指数幂,掌握零指数幂的意义以及负整数幂的意义是解此题的关键.14.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“_____”.【答案】HL【解析】分析: 需证△BCD 和△CBE 是直角三角形,可证△BCD ≌△CBE 的依据是HL.详解: ∵BE 、CD 是△ABC 的高,∴∠CDB=∠BEC=90°,在Rt △BCD 和Rt △CBE 中,BD=EC ,BC=CB ,∴Rt △BCD ≌Rt △CBE (HL ),故答案为HL.点睛: 本题考查全等三角形判定定理中的判定直角三角形全等的HL 定理.15.如图,ABC 中,一内角和一外角的平分线交于点,D 连结,24AD BDC ∠=︒,CAD ∠=_______________________.【答案】1°【分析】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,由BD平分∠ABC,可得∠ABD=∠CBD,DH=DF,同理CD平分∠ACE,∠ACD=∠DCF=,DG=DF,由∠ACE是△ABC的外角,可得2∠DCE=∠BAC+2∠DBC①,由∠DCE是△DBC的外角,可得∠DCE=∠CDB+∠DBC②,两者结合,得∠BAC=2∠CDB,则∠HAC=180º-∠BAC,在证AD平分∠HAC,即可求出∠CAD.【详解】过D作,DF⊥BE于F,DG⊥AC于G,DH⊥BA,交BA延长线于H,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC,DH=DF,∵CD平分∠ACE,∴∠ACD=∠DCF=12∠ACE,DG=DF,∵∠ACE是△ABC的外角,∴∠ACE=∠BAC+∠ABC,∴2∠DCE=∠BAC+2∠DBC①,∵∠DCE是△DBC的外角,∴∠DCE=∠CDB+∠DBC②,由①②得,∠BAC=2∠CDB=2×24º=48º,∴∠HAC=180º-∠BAC=180º-48º=132º,∵DH=DF,DG=DF,∴DH=DG,∵DG⊥AC,DH⊥BA,AD平分∠HAC,∠CAD=∠HAD=12∠HAC=12×132º=1º.故答案为:1.【点睛】本题考查角的求法,关键是掌握点D 为两角平分线交点,可知AD 为角平分线,利用好外角与内角的关系,找到∠BAC=2∠CDB 是解题关键.16.如图,AD 是△ABC 的中线,∠ADC=30°,把△ADC 沿着直线AD 翻折,点C 落在点E 的位置,如果BC=2,那么线段BE 的长度为 ____________【答案】3【分析】根据折叠的性质判定△EDC 是等边三角形,然后再利用Rt △BEC 求BE .【详解】解:连接EC ,AD 是ABC ∆的中线,且ADC ∆沿着直线AD 翻折,∴CD BD DE ==,BDE ∴是等腰三角形,DBE DEB ∴∠=∠30ADC ADE ∠=∠=︒∴60CDE ∠=︒,30DBE DEB ∴∠=∠=︒,EDC ∆为等边三角形,∴90BEC ∠=︒,在Rt BCE ∆中,2BC =,1EC =∴BE =【点睛】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等边三角形的性质求解.17.若()1,1A m n +-与点()-3,2B 关于y 轴对称,则()2019m n +的值是___________;【答案】1【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案. 【详解】由点()11A m n +-,与点()32B -,的坐标关于y 轴对称,得: 13m +=,12n -=,解得:2m =,1n =-,∴20192019()(21)1m n +=-=.故答案为:1.【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题18.星期四上午6点,王老师从学校出发,驾车到市里开会,8点准时到会场,中午12点钟回到学校,他在这一段时间内的行程()S km (即离开学校的距离)与时间()t h 的关系可用图中的折线表示,请根据图中提供的信息,解答下列问题:(1)开会地点离学校多远?(2)会议结束后王老师驾车返回学校的平均速度是多少?km h.【答案】(1)60km;(2)60/【分析】(1)根据函数图象,即可得到答案;(2)根据路程÷时间=速度,即可得到答案.【详解】(1)根据函数图象,可知:开会地点离学校60km;(2)根据图象,可知:会议结束后王老师驾车返回学校用了1个小时,km h.60÷1=60/km h.答:会议结束后王老师驾车返回学校的平均速度是60/【点睛】本题主要考查根据函数图象解决实际问题,理解函数图象上点的坐标的实际意义,是解题的关键.19.如图,是由三个等边三角形组成的图形,请仅用无刻度...的直尺按要求画图.(1)在图①中画出一个直角三角形,使得AB为三角形的一条边;(2)在图②中画出AD的垂直平分线.(1)(2)【答案】(1)答案见解析;(2)答案见解析【分析】(1)四边形ACED和四边形ABCD都是菱形,对角线AC⊥AE,根据AB∥CD,可证得AB⊥AE,问题可解;(2)四边形ABCD 是等腰梯形,是轴对称图形.对角线AC 和BD 关于对称轴对称,所以其交点F 必在对称轴上,又因为BE 的中点C 也在对称轴上,经过点F ,C 画直线问题可解.【详解】解:(1)如图①,连接AE ,则△ABE 即为所求作的直角三角形;(2)如图②,连接AE 、BD 交于点F ,过点C 、F 画直线CF ,则直线CF 即为AD 的垂直平分线.【点睛】本题考查作图-复杂作图,菱形的性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.先化简,再求代数式2121212x x x x x x +÷---++的值,其中232x =. 【答案】12x -+,3- 【分析】利用除法法则变形,约分后计算得到最简结果,把x 的值代入计算即可求出值. 【详解】2121212x x x x x x +÷---++ 21(1)122x x x x x -=⋅--++ 122x x x x -=-++ 12x =-+, 当32x =时, 原式362322==--+. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,ABC ∆是等边三角形,P 是ABC ∆的角平分线BD 上一点,PE AB ⊥于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .(1)若2BQ =,求PE 的长.(2)连接PF ,EF ,试判断EFP ∆的形状,并说明理由.【答案】(1)2PE =;(2)EFP ∆是直角三角形,理由见解析.【分析】(1)由ABC ∆是等边三角形,BP 是ABC ∠的平分线,得30EBP ∠=︒,结合90BEP ∠=︒,4BP =,即可得到答案;(2)由30ABP CBD ∠=∠=︒,90PEB ∠=︒得60BPE ∠=︒,由FQ 垂直平分线段BP ,得30FBQ FPQ ∠=∠=︒,进而即可得到结论.【详解】(1)∵ABC ∆是等边三角形,BP 是ABC ∠的平分线,∴30EBP PBC ∠=∠=︒,∵PE AB ⊥于点E ,∴90BEP ∠=︒, ∴12PE BP =, ∵QF 为线段BP 的垂直平分线,∴2224BP BQ ==⨯=, ∴1422PE =⨯=; (2)EFP ∆是直角三角形.理由如下:连接PF 、EF ,∵ABC ∆是等边三角形,BD 平分ABC ∠,∴60ABC ∠=︒,30ABP CBD ∠=∠=︒,∵PE AB ⊥,∴90PEB ∠=︒,∴60BPE ∠=︒,∵FQ 垂直平分线段BP ,∴FB FP =,∴30FBQ FPQ ∠=∠=︒,∴90EPF EPB BPF ∠=∠+∠=︒,∴EFP ∆是直角三角形.【点睛】本题主要考查等边三角形的性质定理,中垂线的性质定理以及直角三角形的判定与性质定理,掌握直角三角形中,30°角所对的直角边是斜边的一半,是解题的关键.22. (1)()020191812π-+- (2)35226x y x y -=-⎧⎨+=⎩【答案】(121;(2)12x y =⎧⎨=⎩ 【分析】(1)根据实数运算法则,逐一进行计算即可;(2)利用消元法求解即可.【详解】(1)原式=122211-+-21(2)35226x y x y -=-⎧⎨+=⎩①② ②-①×2,得2y = 代入①,得1x =故方程组的解为12x y =⎧⎨=⎩【点睛】此题主要考查实数的运算以及二元一次方程组的求解,熟练掌握方法,即可解题.23.如图,已知A (-1,2),B (-3,1),C (-4,3).(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)作△ABC关于直线l1:y=-2(直线l1上各点的纵坐标都为-2)的对称图形△A2B2C2,写出点C关于直线l1的对称点C2的坐标.(3)作△ABC关于直线l2:x=1(直线l2上各点的横坐标都为1)的对称图形△A3B3C3,写出点C关于直线l2的对称点C3的坐标.(4)点P(m,n)为坐标平面内任意一点,直接写出:点P关于直线x=a(直线上各点的横坐标都为a)的对称点P1的坐标;点P关于直线y=b(直线上各点的纵坐标都为b)的对称点P2的坐标.【答案】(1)图见解析;C1的坐标为(-4,-3);(2)图见解析;C2的坐标为(-4,-7);(3)图见解析;C3的坐标为(6,3);(4)点P1的坐标为(2a-m,n);P2的坐标为(m,2b-n)【分析】(1)根据x轴为对称轴,利用轴对称的性质,即可得到△ABC关于x轴的对称图形△A1B1C1,进而得到点C关于x轴的对称点C1的坐标;(2)根据直线l1:y=-2为对称轴,利用轴对称的性质,即可得到△ABC关于直线l1:y=-2的对称图形△A2B2C2,进而得到点C关于直线l1的对称点C2的坐标.(3)根据直线l2:x=1为对称轴,利用轴对称的性质,即可得到△ABC关于直线l2:x=1的对称图形△A3B3C3,进而得到点C关于直线l2的对称点C3的坐标.(4)根据对称点到对称轴的距离相等,即可得到点P关于直线x=a的对称点P1的坐标;以及点P关于直线y=b的对称点P2的坐标.【详解】(1)如图所示,△A1B1C1即为所求,C1的坐标为(-4,-3);(2)如图所示,△A2B2C2即为所求,C2的坐标为(-4,-7);(3)如图所示,△A3B3C3即为所求,C3的坐标为(6,3);(4)点P(m,n)关于直线x=a的对称点P1的坐标为(2a-m,n);点P(m,n)关于直线y=b的对称点P2的坐标为(m,2b-n).【点睛】本题主要考查了利用轴对称变换进行作图以及轴对称性质的运用,几何图形都可看做是由点组成,画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,连接这些对称点,就得到原图形的轴对称图形.24.下面方格网的小方格是正方形,用无刻度直尺按要求作图:(1)在图1中作直角∠ABC;(2)在图2作AB的中垂线.【答案】(1)见解析;(2)见解析【分析】(1)根据垂直的定义,结合网格图形即可得到结论;(2)根据线段垂直平分线的性质,结合网格图形即可得到结论.【详解】解:(1)根据垂直的定义,结合网格图形找到点C,连接BC得到所求角,如图所示:∠ABC 即为所求;(2)根据线段垂直平分线的性质,结合网格图形,作出点E、F,连接EF,如图所示:直线EF即为所求.【点睛】本题考查了网格图形中作垂线和垂直平分线的图形的应用,掌握垂直的定义和垂直平分线的性质是解题的关键.∠=∠∠=∠.25.已知:如图,点E在直线DF上,点B在直线AC上,12,34∠=∠求证: A F【答案】见解析.【解析】先证明BD∥CE,得出同旁内角互补∠3+∠C=180°,再由已知得出∠4+∠C=180°,证出AC∥DF,即可得出结论.【详解】证明:∵∠1=∠2,∠2=∠DGF∴∠1=∠DGF∴BD∥CE∴∠3+∠C=180°又∵∠3=∠4∴∠4+∠C=180°∴AC∥DF∴∠A=∠F .【点睛】本题考查平行线的判定与性质、对顶角相等的性质;熟练掌握平行线的判定与性质是解决问题的关键,注意两者的区别.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知12∠=∠,添加一个条件,使得ABC ADC ∆≅∆,下列条件添加错误的是( )A .B D ∠=∠B .BC DC = C .AB AD = D .34∠=∠【答案】B 【分析】根据三角形全等的判定定理添加条件即可.【详解】若添加B D ∠=∠,则可根据“AAS”判定两三角形全等;若添加BC DC =,则有两组对应边相等,但相等的角不是夹角,不能判定两三角形全等; 若添加AB AD =,则可根据“SAS”判定两三角形全等;若添加34∠=∠,则可根据“ASA”判定两三角形全等;故选:B【点睛】本题考查的是判定两个三角形全等的条件,需要注意的是,当两边对应相等,但相等的角不是夹角时,是不能判定两个三角形全等的.2.下列运算正确的是:( )A .236x x x ⋅=B .22(1)1x x -=-C .()32622x x -=-D .826a a a ÷=【答案】D【分析】根据幂的运算法则和完全平方公式逐项计算可得出正确选项.【详解】解:A. 235x x x ,故错误; B. 22(1)21x x x -=-+,故错误;C. ()32628x x -=-,故错误;D. 826a a a ÷=,正确.故选:D【点睛】本题考查了幂的运算和完全平方公式,熟练掌握幂的运算法则是解题关键.3.如图,AC =AD ,BC =BD ,则有( )A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB【答案】A【分析】由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.【详解】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB是CD的垂直平分线.即AB垂直平分CD.故选A.【点睛】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.4.在-1,32-,0,2-四个数中,最小的数是()A.-1 B.32-C.0 D.2-【答案】B【分析】根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可判断.【详解】3 122 -<<-3210 2∴-<-<-<∴在-1,32-,0,2-四个数中,最小的数是32-.故选B.【点睛】本题考查了实数的大小比较,熟练掌握正数、0、负数的大小关系是解题的关键.5.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有( )A .1个B .2个C .3个D .4个 【答案】C【解析】①一个正数有两个平方根,它们互为相反数,和为0,故①正确;②立方根的概念:如果一个数的立方等于a ,那么这个数就叫做a 的立方根,故②正确;③无限不循环小数是无理数,无限循环小数是有理数,故③错误;④实数和数轴上的点一一对应,故④正确,所以正确的有3个,故选C .6.在给出的一组数0.3,7,3.14,39,227-, 2.13-中,是无理数的有( ) A .1个B .2个C .3个D .5个 【答案】B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】0.3,3.14, 2.13-是有限小数,是有理数; 227-,是分数,是有理数; 7,39是无理数,共2个,故选:B .【点睛】本题主要考查了无理数的定义.初中范围内学习的无理数有:含π的数等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.7.如图,点B 、F 、C 、E 在一条直线上,AB//ED ,AB DE =,要使ABC ≌DEF ,需要添加下列选项中的一个条件是( )A .BF EC =B .AC DF = C .B E ∠∠=D .BF FC =【答案】A 【分析】根据“SAS ”可添加BF=EC 使△ABC ≌△DEF .【详解】解:∵AB ∥ED ,AB=DE ,∴∠B=∠E ,∴当BF=EC 时,可得BC=EF ,可利用“SAS ”判断△ABC ≌△DEF .故选A .【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.如图,若圆盘的半径为2,中间有一边长为1的正方形,向圆盘内随机投掷一枚飞镖,则飞镖落在中间正方形内的概率是( )A .1πB .2πC .12πD .14π【答案】D【分析】根据几何概率的公式,分别求解出圆形的面积和正方形的面积即可.【详解】由题:4S π=圆,1S =正方形∴()14P π=落在正方形内, 故选:D .【点睛】本题考查几何概率的计算,准确计算各部分面积是解题关键.9.下列计算正确的是( )A .5151+22=5B 51+51-=2 C .515122⨯=1 D .515122⨯=3﹣5【答案】C【分析】利用二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A 、5151255+-+==,所以A 选项错误; B 、5151212+--==,所以B 选项错误; C 、51515114+--==,所以C 选项正确; D 、5151512535--+--==,所以D 选项错误. 故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.如图,在△ABC 中,点 D 是边 BC 上的点(与 B 、C 两点不重合),过点 D 作 DE ∥AC ,DF ∥AB ,分别交 AB 、AC 于 E 、F 两点,下列说法正确的是( )A .若 AD 平分∠BAC ,则四边形 AEDF 是菱形B .若 BD =CD ,则四边形 AEDF 是菱形C .若 AD 垂直平分 BC ,则四边形 AEDF 是矩形D .若 AD ⊥BC ,则四边形 AEDF 是矩形【答案】A【分析】由矩形的判定和菱形的判定即可得出结论.【详解】解:A 选项:若AD 平分∠BAC ,则四边形AEDF 是菱形;正确;B 选项:若BD=CD ,则四边形AEDF 是平行四边形,不一定是菱形;错误;C 选项:若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;错误;D 选项:若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;错误;故选A .【点睛】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.二、填空题11.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______5 1【解析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴22215+∵A 点表示-1,∴E 5, 5【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.12.函数1x y +=x 的取值范围是 . 【答案】x 1≥-且x 2≠.【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使12x x +-在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠. 考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.13.等腰三角形的两边长分别为2和7,则它的周长是_____.【答案】16【分析】根据2和7可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【详解】当7为腰时,周长=7+7+2=16;当2为腰时,因为2+2<7,所以不能构成三角形.故答案为16【点睛】本题主要考查了三角形三边关系,也考查了等腰三角形的性质.关键是根据2,7,分别作为腰,由三边关系定理,分类讨论.14.因式分解:x 3﹣2x 2+x= .【答案】2(1)x x -【解析】试题分析:先提公因式x ,再用完全平方公式分解即可,所以32222(21)(1)x x x x x x x x ﹣+=-+=-.考点:因式分解.15.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长__________.【答案】89【分析】设NC x =,则8DN x ,由翻折的性质可知8EN DN x ==-,在Rt △ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可.【详解】解:如图所示,连接AN ,设NC x =,则8DN x ,由翻折的性质可知:8EN DN x ==-,在Rt ENC 中,有222EN EC NC =+,()22284x x -=+,解得:3x =,即5DNcm .在Rt 三角形ADN 中, 22228589AN AD ND , 由翻折的性质可知89FNAN .【点睛】 本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x 的方程是解题的关键.16.如图,有一种动画程序,屏幕上正方形ABCD 是黑色区域(含正方形边界),其中四个顶点的坐标分别为(1,1)A 、(2,1)B 、(2,2)C 、(1,2)D ,用信号枪沿直线2y x b =+发射信号,当信号遇到黑色区域时,区域便由黑变白,则能使黑色区域变白的b 的取值范围为_________.【答案】-3≤b≤1【分析】求出直线y=2x+b 分别经过B,D 点时,b 的值,即可求出所求的范围.【详解】由题意可知当直线y=2x+b 经过B (2,1)时b 的值最小,即2×2+b=1,b=-3; 当直线y=2x+b 过C (1,2)时,b 最大即2=2×1+b ,b=1, ∴能够使黑色区域变白的b 的取值范围为-3≤b≤1.【点睛】根据所给一次函数的图像的特点,找到边界点即为解此类题的常用方法.17.在Rt ABC ∆中,Rt C ∠=∠,1BC =,2AC =,则AB =________.5【分析】根据勾股定理直接求出AB 长即可.【详解】∵∠C=90°,BC=1,AC=2,∴22BC +AC =5,5【点睛】本题是对勾股定理的考查,熟练掌握勾股定理是解决本题的关键.三、解答题18.计算题:(写出解题步骤,直接写答案不得分)(1)-22+2(1)-+|2-2|(2)81+327-÷32+(-1)2020 【答案】(1)12--;(2)293. 【分析】(1)分别按照有理数的乘方,算术平方根以及绝对值的化简方法计算,并合并;(2)分别按照求算术平方根,求立方根乘方及有理数的除法等运算即可.【详解】(1)-22+2(1)-+|2-2|=4122-++-=12--;(2)81+327-÷32+(-1)2020 =9-3÷9+1=293. 【点睛】本题考查了实数的混合运算,牢记相关计算法则,并熟练运用,是解题的关键.19.如图,在某一禁毒基地的建设中,准备再一个长为()65a b +米,宽为()5b a -米的长方形草坪上修建两条宽为a 米的通道.(1)求剩余草坪的面积是多少平方米?(2)若1a =,3b =,求剩余草坪的面积是多少平方米?【答案】(1)22101525a ab b -++;(2)1.【分析】(1)根据题意和图形,可以用代数式表示出剩余草坪的面积;(2)将1a =,3b =代入(1)中的结果,即可解答本题.【详解】(1)剩余草坪的面积是:22(65)(5)(55)(52)(101525)a b a b a a a b b a a ab b +---=+-=-++平方米;(2)当1,3a b ==时,22101525a ab b -++221011513253=-⨯+⨯⨯+⨯=1,即1,3a b ==时,剩余草坪的面积是1平方米.【点睛】本题主要考查整式的混合运算,根据题意列出代数式是解题关键.20.分解因式:(1)22288m mn n -+-(2)22(1)(1)a x b x -+-(3)22222()4m n m n +-【答案】(1)22(2)m n --;(2)(1)()()x a b a b -+-;(3)22()()m n m n +-【分析】(1)先提取公因式-2,再利用完全平方公式分解即可得答案;(2)先提取公因式(x-1),再利用平方差公式分解即可得答案;(3)先利用平方差公式分解,再利用完全平方公式分解即可得答案.【详解】(1)原式=()22244m mn n --+22(2)m n =--(2)原式=22(1)(1)a x b x ---()22(1)x a b =--(1)()()x a b a b =-+-(3)原式=()2222(2)m n mn +-()()222222m n mn m n mn =+++-22()()m n m n =+-本题考查利用提取公因式及公式法因式分解,分解因式一般步骤:一提(提公因式),二套(套用平方差公式或完全平方公式),三分(分组分解法或十字相乘法),四查(检查分解是否彻底).熟练掌握完全平方公式及平方差公式是解题关键.21.计算:1)2++-②4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩【答案】①3;②23xy=⎧⎨=⎩【分析】①根据二次根式的混合运算法则计算;②利用加减消元法求解.1)2++-=()312+-+=322+=3;②整理得:453212x yx y①②-=⎧⎨+=⎩,①×2+②得:11x=22,解得:x=2,代入①中,解得:y=3,∴方程组的解为:23xy=⎧⎨=⎩.【点睛】本题考查了二次根式的混合运算以及二元一次方程组,解题的关键是掌握运算法则和加减消元法.22.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=。
八年级数学 第十一章 第1节 全等三角形 人教新课标版

初二数学第十一章第1节全等三角形人教新课标版一、学习目标:1. 通过实例理解全等图形的概念和特征,并能找出全等图形。
2. 能叙述全等三角形的定义及相关概念,并能找出两个全等三角形的对应边和对应角。
3. 掌握全等三角形的性质,会利用全等三角形的性质进行简单的推理和计算,解决一些实际问题。
二、重点、难点:重点是全等三角形的概念,难点是全等三角形的对应顶点要对应写,对应关系要明确。
三、考点分析:本讲所涉及的考点是全等三角形的概念与全等三角形的性质。
在这里,全等三角形的概念属于了解范畴,而全等三角形的性质属于掌握范畴,对其性质还要求会运用。
这两个知识点不会单独出大题,只会以小题的形式出现,或在大题中用到。
所以,大家只要在掌握各概念性质的基础上弄清对应关系即可。
1. 全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。
(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点。
重合的边叫做对应边。
重合的角叫做对应角。
(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12. 全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等。
知识点一:全等三角形的基本概念例1. 下列说法正确的有()①用一张底片冲洗出来的10张一寸照片是全等图形②我国国旗上的4颗小五角星是全等图形③所有的正方形是全等图形④全等图形的面积一定相等A. 1个B. 2个C. 3个D. 4个思路分析:1)题意分析:本题主要考查全等图形定义中对“能够完全重合”的理解。
2)解题思路:根据全等图形的定义:“能够完全重合的两个图形叫做全等图形。
”来判断题目中每一句话中所谈到的图形是否能完全重合。
解答过程:用一张底片冲洗出来的10张一寸照片的形状和大小完全相同,它们是全等图形,所以①正确;我国国旗上的四颗小五角星的形状和大小也完全相同,它们也是全等图形;所以②正确;所有的正方形只是形状相同,但大小不一定相同,所以它们不是全等图形,故③不正确;全等图形的形状和大小完全相同,所以面积一定相等,所以④正确。
初二数学全等三角形教案(五篇)

初二数学全等三角形教案〔五篇〕初二数学全等三角形教案篇一1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
一。
挖掘“隐含条件〞判全等如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)1.如图AB=CD,AC=BD,那么△ABC≌△DCB吗?说说理由。
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD2.如图点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,CD=5cm,那么∠CD的度数与BE的长。
3.如图假设OB=OD,∠A=∠C,假设AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD 二。
添条件判全等1.如图,AD平分∠BAC,要使△ABD≌△ACD,根据“SAS〞需要添加条件;根据“ASA〞需要添加条件;根据“AAS〞需要添加条件。
2.AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是。
三。
熟练转化“间接条件〞判全等1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?3.“三月三,放风筝〞,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。
稳固练习:如图,在中,,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,那么∠A的度数。
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D1.(2022攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为全等三角形是△≌△2.如图,AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE3.如图,AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L 的垂线,垂足分别为M、N(1)你能找到一对三角形的全等吗?并说明。
八年级《全等三角形》教学设计

八年级《全等三角形》教学设计> <table cellspacing='0' cellpadding='0' width='693'><tbody><trclass='firstRow'><td style='BORDER-BOTTOM: windowtext 1px solid; BORDER-LEFT: windowtext 1px solid; PADDING-BOTTOM: 0px; BACKGROUND-COLOR: transparent; PADDING-LEFT: 7px; PADDING-RIGHT: 7px; BORDER-TOP: windowtext 1px solid; BORDER-RIGHT: windowtext 1px solid; PADDING-TOP: 0px' valign='top' width='177'>>教学环节</td><td style='BORDER-BOTTOM: windowtext 1px solid; BORDER-LEFT: #ece9d8; PADDING-BOTTOM: 0px; BACKGROUND-COLOR: transparent; PADDING-LEFT: 7px; PADDING-RIGHT: 7px; BORDER-TOP: windowtext 1px solid; BORDER-RIGHT: windowtext 1px solid; PADDING-TOP: 0px' valign='top' width='144'>>教师活动</td><td style='BORDER-BOTTOM: windowtext 1px solid; BORDER-LEFT: #ece9d8; PADDING-BOTTOM: 0px; BACKGROUND-COLOR: transparent; PADDING-LEFT: 7px; PADDING-RIGHT: 7px; BORDER-TOP: windowtext 1px solid; BORDER-RIGHT: windowtext 1px solid; PADDING-TOP: 0px' valign='top' width='96'>>学生活动</td><td style='BORDER-BOTTOM: windowtext 1px solid; BORDER-LEFT: #ece9d8; PADDING-BOTTOM: 0px; BACKGROUND-COLOR: transparent; PADDING-LEFT: 7px; PADDING-RIGHT: 7px; BORDER-TOP: windowtext 1px solid; BORDER-RIGHT: windowtext 1px solid; PADDING-TOP: 0px' valign='top' width='108'>>设计意图</td><td style='BORDER-BOTTOM: windowtext 1px solid; BORDER-LEFT: #ece9d8; PADDING-BOTTOM: 0px; BACKGROUND-COLOR: transparent; PADDING-LEFT: 7px; PADDING-RIGHT: 7px; BORDER-TOP: windowtext 1px solid; BORDER-RIGHT: windowtext 1px solid; PADDING-TOP: 0px' valign='top' width='167'>>媒体使用及意图描述>(交互式白板使用功能)</td></tr><tr style='HEIGHT: 50px'><tdstyle='BORDER-BOTTOM: windowtext 1px solid; BORDER-LEFT: windowtext 1px solid; PADDING-BOTTOM: 0px; BACKGROUND-COLOR: transparent; PADDING-LEFT: 7px; PADDING-RIGHT: 7px; BORDER-TOP: #ece9d8; BORDER-RIGHT: windowtext 1px solid; PADDING-TOP: 0px' height='50' valign='top' width='177'>>创设情境,导入新课>1.>观察下列图案(电>脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?你能再举出生活中的一些实际例子?>>2.>按照>课件的要求,将一块三角形样板在纸板上,画下图形,照图形裁下纸板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1 全等三角形 总第 课时 执教时间 教学目标: 知识与技能:知道什么是全等形、全等三角形及全等三角形的对应元素; 过程与方法:知道全等三角形的性质,能用符号正确地表示两个三角形全等;能熟练找出两个全等三角形的对应角、对应边 情感态度价值观:提高学生对几何图形美的认识. 教学重点:全等三角形的性质. 教学难点:找全等三角形的对应边、对应角. 教学过程: Ⅰ.提出问题,创设情境 1、问题:你能发现这两个三角形有什么美妙的关系吗? C 11CAB A 1这两个三角形是完全重合的. 2.学生自己动手(同桌两名同学配合) 取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 3.获取概念 让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号. 形状与大小都完全相同的两个图形就是全等形. 要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同. 概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求. Ⅱ.导入新课 利用投影片演示 将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180° 得到△DBC ;将△ABC 旋转180°得△AED . 甲D C AB F E 乙D C A B 议一议:各图中的两个三角形全等吗? 不难得出 △ABC ≌△DEF ,△ABC ≌△DBC ,△ABC ≌△AED . 复备栏目是我们通过运动的方法寻求全等的一种策略.出发找等量关系)的对应角相等.[例1]如图,△OCA≌△OBD,C和B,A和D •说出这两个三角形中相等的边和角.问题:△OCA≌△OBD,合,•思考通过怎样变换可以使两三角形重合?将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,•所以C和B∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;翻转、旋转的方法.[例2]如图,已知△ABE≌△ACD,∠ADE=∠•指出其他的对应边和对应角.△ABE和△ACD从复杂的图形中分离出来.用方法有:(1也是对应边.(2是对应角.解:对应角为∠BAE和∠CAD.对应边为AB与AC、AE与AD、BE与CD [例3]已知如图△ABC≌△ADE,试找出对应边、应角.(由学生讨论完成)借鉴例2的方法,可以发现∠A=∠A,•在两个三角形中∠A的对边分别是BC和DE,所以BC和边.而AB与AE显然不重合,所以AB•与AD 剩下的AC与AE自然是一组对应边了.对应角可得∠B与∠D是对应角,∠ACB与∠以说对应边为AB与AD、AC与AE、BC与DE 与∠A、∠B与∠D、∠ACB与∠AED.做法二:沿A与BC、DE交点O的连线将△ABC 后,它正好和△ADEAC与AE、BC与DE.对应角为∠A与∠A、∠B 与∠AED.复备栏目复备栏目Ⅲ.课堂练习课本练习1.课本习题14.1复习巩固1.Ⅳ.课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,•并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.Ⅴ.作业课本习题1、复习巩固2、综合运用3.课后作业板书设计§11.2 三角形全等的条件11.2.1 三角形全等的条件(一) 总第 课时执教时间教学目标知识与技能:三角形全等的“边边边”的条件.过程与方法:了解三角形的稳定性.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 情感态度价值观:提高学生对几何图形美的认识 教学重点:三角形全等的条件.教学难点:寻求三角形全等的条件. 教学过程Ⅰ.创设情境,引入新课出示投影片,回忆前面研究过的全等三角形.已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.C 'B 'A 'C B A图中相等的边是:AB=A ′B 、BC=B ′C ′、AC=A ′C . 相等的角是:∠A=∠A ′、∠B=∠B ′、∠C=∠C ′.展示课作前准备的三角形纸片,提出问题:你能画一个三角形 与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出 一个三角形使它的边、角分别和已知的三角形纸片的对应边、对 应角相等.这样作出的三角形一定与已知的三角形纸片全等). 这是利用了全等三角形的定义来作图.那么是否一定需要六 个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题. Ⅱ.导入新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做. ①三角形一内角为30°,一条边为3cm . ②三角形两内角分别为30°和50°.③三角形两条边分别为4cm 、6cm .学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:1.只给定一条边时:只给定一个角时:复备栏目2.给出的两个条件可能是:一边一内角、两内角、两边.①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒ ③6cm4cm4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等. 给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形 全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画 出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行 比较,它们全等吗? 1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm . 2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A ′B ′C ′,使AB=A ′B ′、AC=A ′C ′、BC=B ′C ′.将△A ′B ′C ′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”.用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .[师生共析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等.生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定复备栏目性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.Ⅲ.随堂练习如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样得到这个条件?2.课本P94练习.Ⅳ.课时小结本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.Ⅴ.作业1.习题复习巩固1、2.习题综合运用9.课后作业:《课堂感悟与探究》2).板书设计教学后记:复备栏目FDCBEA11.2.1 三角形全等的条件(二)总第课时复备栏目执教时间教学目标知识与技能:三角形全等的“边角边”的条件.过程与方法:经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程..掌握三角形全等的“SAS”条件,了解三角形的稳定性..能运用“SAS”证明简单的三角形全等问题.情感态度价值观:提高学生对几何图形美的认识教学重点:三角形全等的条件.教学难点:寻求三角形全等的条件.教学过程一、创设情境,复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:△ABD≌△ACE,AB与AC是对应边;图(2)中:△ABC≌△AED,AD与AC是对应边.4.三角形全等的判定Ⅰ的内容是什么?二、导入新课1.三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD,OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.复备栏目2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?3.边角边公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)三、例题与练习1.填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).2、例1 已知:AD∥BC,AD=CB(图3).求证:△ADC≌△CBA.问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌△CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF=CE或)?怎样证明呢?例2 已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.四、小结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.五、作业:1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.复备栏目课后作业:<<课堂感悟与探究>>板书设计:教学后记:11.2.3 三角形全等的条件(三) 总第 课时 执教时间 教学目标 知识与技能:三角形全等的条件:角边角、角角边. 过程与方法:三角形全等条件小结..掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题. 情感态度价值观:提高学生对几何图形美的认识 教学重点:已知两角一边的三角形全等探究. 教学难点:灵活运用三角形全等条件证明. 教学过程 Ⅰ.提出问题,创设情境 1.复习:(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边. (2)到目前为止,可以作为判别两三角形全等的方法有几种? 各是什么? 三种:①定义;②SSS ;③SAS . 2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢? Ⅱ.导入新课 问题1:三角形中已知两角一边有几种可能? 1.两角和它们的夹边. 2.两角和其中一角的对边. 问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm ,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律? 将所得三角形重叠在一起,发现完全重合这说明这些三角形全等. 提炼规律: 两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC ,•能不能作一个△A ′B ′C ′,使∠A=∠A ′、∠B=∠B ′、AB=A ′B ′呢? ①先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长. ②画线段A ′B ′,使A ′B ′=AB . ③分别以A ′、B ′为顶点,A ′B ′为一边作∠DA ′B ′、∠EB ′A ,使∠D ′AB=∠CAB ,∠EB ′A ′=∠CBA . ④射线A ′D 与B ′E 交于一点,记为C ′即可得到△A ′B ′C ′. 将△A ′B ′C ′与△ABC 重叠,发现两三角形全等. C'A 'B 'D C A E复备栏目两角和它们的夹边对应相等的两三角形全等(可以简写成 “角边角”或“ASA ”).思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA ”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 探究问题4:如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF , △ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?D CABF证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180° ∠A=∠D ,∠B=∠E ∴∠A+∠B=∠D+∠E ∴∠C=∠F在△ABC 和△DEF 中B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA ).两个角和其中一角的对边对应相等的两个三角形全等 (可以简写成“角角边”或“AAS ”).[例]如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C . 求证:AD=AE .[分析]AD 和AE 分别在△ADC 和△AEB 中,所以要证 AD=AE ,只需证明△ADC ≌△AEB 即可. 证明:在△ADC 和△AEB 中A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩所以△ADC ≌△AEB (ASA ) 所以AD=AE . Ⅲ.随堂练习(一)课本P99练习1、2. (二)补充练习图中的两个三角形全等吗?请说明理由50︒50︒45︒45︒DCAB (1)29︒29︒DC A B(2)EⅣ.课时小结复备栏目D CABE至此,我们有五种判定三角形全等的方法:复备栏目1.全等三角形的定义2.判定定理:边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.Ⅴ.作业1.课本习题5、6、14题.课后作业:<<课堂感悟与探究>>11.2.3 三角形全等的条件---直角三角形全等的判定(四)复备栏目总第课执教时间教学目标知识与技能:经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;过程与方法:掌握直角三角形全等的条件,并能运用其解决一些实际问题。