湘潭大学2014年上学期2010级《线性代数I》重修考试试卷答案

合集下载

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

完整word版线性代数考试题及答案解析

完整word版线性代数考试题及答案解析

WORD格式整理……_…_学年第一学期期末考试-20102009_…__…_试卷《线性代数》…__…__…_分钟完卷。

分,1201、本试卷共6页,五个大题,满分100答卷说明:_…_…__…号2、闭卷考试。

…学)线(_总分五三四一二_…__…题号_…__…_分数_…__…_…________________ :_____________ 总分人:评阅人…_名…姓…) 分分,共24一、单项选择题。

(每小题得分……)级封班(11?31_…__…111?3__?…行列式【】1._1?311…__…_3111?_…_业……专3021(B) (D)(A) (C) …__…__…???A?A32?3?A阶方阵,数2. 】设,为,则【_…__)_6?624?24 (D) (A) (C) (B) _密_系(n,BA,阶方阵,则下列式子一定正确的是【】3.已知为…__…__…_222B?2(A?B)AB?A?BAAB? (A) (B)_…_…__…_22B?A?B?B)(A?)(A BA?AB (D) (C)_…__…_…_?0??aA?A3A【】4.设,则为阶方阵, _…__……243aaaa (D) (A) ( B) (C)AB等价,则有 5.设矩阵与【】专业技术参考资料WORD格式整理R(A)?R(B)R(A)?R(B) (A) (B)R(A)?R(B)R(A)R(B)的大小不能确定 (C) 和 (D)n Ax?0Ax?0A r有非零解的系数矩阵【】6.设,则元齐次线性方程组的秩为的充分必要条件是r?nr?nr?n nr? (B) (C) (D) (A)a,a,,a(m?2) 向量组】【 7. 线性相关的充分必要条件是m21a,a,,a (A) 中至少有一个零向量m12a,a,,a (B) 中至少有两个向量成比例m12a,a,,a m?1(C) 个向量线性表示中每个向量都能由其余m21a,a,,a m?1(D) 个向量线性表示中至少有一个向量可由其余m21n A与对角阵相似的充分必要条件是阶方阵】8. 【nn)?R(A A个互不相同的特征值有(A) (B)n AA一定是对称阵个线性无关的特征向量 (D)(C)有) 分,共15二、填空题。

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

2014年10月04184自学考试线性代数试题(卷)与答案

2014年10月04184自学考试线性代数试题(卷)与答案

2014年10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。

说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。

一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设3阶行列式111232221131211a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】 A.1- B.0 C.1 D.2 2.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E , 则A =【 】 A.2- B.21-C.21D.23.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出4.设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为 【 】A.⎪⎪⎪⎭⎫ ⎝⎛-011B.⎪⎪⎪⎭⎫ ⎝⎛-101C.⎪⎪⎪⎭⎫ ⎝⎛201D.⎪⎪⎪⎭⎫⎝⎛2115.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】A.0B.1C.2D.3 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错误、不填均无分、 6.设1312)(--=x x f ,则方程0)(=x f 的根是7.设矩阵⎪⎪⎭⎫⎝⎛=0210A ,则*A = 8.设A 为3阶矩阵,21-=A ,则行列式1)2(-A = 9.设矩阵⎪⎪⎭⎫⎝⎛=4321B ,⎪⎪⎭⎫⎝⎛=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T)2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出的表示式为11.设向量组TT T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关,则数=k12.3元齐次线性方程组⎩⎨⎧=-=+003221x x x x 的基础解系中所含解向量的个数为13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A 15.设二次型212221212),(x tx x tx x x f ++=正定, 则实数t 的取值范围是三、计算题(本大题共7小题,每小题9分,共63分)16.计算4阶行列式3100131001310013=D 的值。

历年2014-2009全国自考线性代数试题及答案

历年2014-2009全国自考线性代数试题及答案

全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。

1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

历年自考线性代数试题真题及答案分析解答.docx

历年自考线性代数试题真题及答案分析解答.docx

全国 2010 年度 4 月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)1.已知 2 阶行列式a1a 2m , b1 b2 n ,则 b 1 b 2( B )b 1 b 2c 1 c 2 a 1 c 1 a 2 c 2A . m nB . n mC . m nD . (m n)b 1b 2b 1 b 2 b 1 b 2m nn m .a 1 c 1 a 2c 2 a 1a 2 c 1c 22.设 A , B , C 均为 n 阶方阵, AB BA , AC CA ,则 ABC ( D)A . ACBB . CABC . CBAD .BCAABC ( AB)C(BA)C B( AC ) B(CA)BCA .3.设 A 为 3 阶方阵, B 为 4 阶方阵,且 | A | 1 , | B | 2 ,则行列式 || B | A |之值为( A)A . 8B . 2C . 2D .8|| B | A | | 2A | ( 2) 3 | A |8 .a11a12a 13 ,a 113a 12a13, 1 0 0,1 0 0,则 B ( B)4.A a 21 a 22a 2321 3a 22a 23B aP 0 3 0 Q 3 1 0a 31a32a33a313a 32a330 0 1 0 0 1A . PAB .APC . QAD .AQa 11 a 12 a 13 1 0 0a 11 3a 12 a 13 B .AP a 21a 22 a 230 3 0 a 21 3a 22a 23a31a32a330 0 1a313a 32a335.已知 A 是一个 34 矩阵,下列命题中正确的是(C)A .若矩阵 A 中所有 3 阶子式都为 0,则秩 ( A )=2B .若 A 中存在 2 阶子式不为 0,则秩 ( A )=2C .若秩 ( A )=2 ,则 A 中所有 3 阶子式都为 0D .若秩 ( A )=2 ,则 A 中所有 2 阶子式都不为 06.下列命题中错误的是(C)..A.只含有 1 个零向量的向量组线性相关B.由 3 个 2 维向量组成的向量组线性相关C.由 1 个非零向量组成的向量组线性相关D. 2 个成比例的向量组成的向量组线性相关线性无关,1 , 2 , 3 , 线性相关,则(D)7.已知向量组1,2 , 3A. 1 必能由 2 , 3 ,线性表出B.2必能由 1 , 3 ,线性表出C. 3 必能由 1 , 2,线性表出D.必能由 1 , 2 , 3 线性表出注: 1 ,2,3是 1 ,2,3,的一个极大无关组.8.设A为m n矩阵,m n,则方程组Ax=0只有零解的充分必要条件是 A 的秩(D)A.小于m B.等于m C.小于n D.等于n 注:方程组 Ax=0有 n 个未知量.9.设A为可逆矩阵,则与A必有相同特征值的矩阵为(A)A.A T B.A2C.A1D.A| E A T | | (E A)T| |E A |,所以A与 A T有相同的特征值.10.二次型 f ( x1, x2, x3)x12x22x322x1 x2的正惯性指数为(C)A. 0B.1C. 2D.3f (x1 , x2 , x3 )( x1x2 ) 2x32y12y22,正惯性指数为2.二、填空题(本大题共10 小题,每小题 2 分,共 20 分)11.行列式20072008的值为 _____________.200920102007200820002000782.200920102000200091012.设矩阵A1 1 3, B20,则 A T B_____________.2010112022A T B1220.01361 113 .设(3,1,0,2) T,(3,1,1,4) T,若向量满足 2 3 ,则__________.32(9,3,3,12) T(6,2,0,4) T( 3,5,3,8)T.14.设A为n阶可逆矩阵,且| A |1,则 | | A1| _____________.n| A 1 |1n .| A |15.设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组 Ax=0的解,则| A |_____________.n 个方程、 n 个未知量的Ax=0有非零解,则| A |0.16.齐次线性方程组_____________.x1x2x30的基础解系所含解向量的个数为2x1x23x30A 1 11 1 11,基础解系所含解向量的个数为213031n r 3 21.17.设n阶可逆矩阵A的一个特征值是 3 ,则矩阵1 A21必有一个特3征值为 _________.,则1A2有特征值1( 3) 2 3 ,1A21A 有特征值3有特征值1.333318.设矩阵A 1222x0 的特征值为 4,1, 2 ,则数 x _____________.200由 1 x 0 4 1 2 ,得 x 2.a 1 / 2019.已知A 1/ 2b0是正交矩阵,则 a b _____________.001由第 1、2 列正交,即它们的内积1( a b) 0 ,得 a b0.20.二次型 f ( x1, x2, x3)4x1x22x1 x36x2 x3的矩阵是_____________.02120 3 .130三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)21.计算行列式Da b ca2 b 2 c 2的值.a a3b b3c c3解: Da b c a b c111 a 2b2 c 2 a 2 b 2c2abc a b c a a 3 b b3 c c3 a 3 b 3c3 a 2b2 c 2abc( b a)( c a)11abc(b a)(c a)(c b) .b ac a22.已知矩阵B(2,1,3), C(1,2,3) ,求(1) A B T C ;(2) A2.解:(1)A B T C 22461 (1,2,3)123;33692(2)注意到CB T(1,2,3) 113 ,所以3246A2(B T C)( B T C)B T (CB T ) C13B T C 13A13123.36923.设向量组1(2,1,3,1) T , 2(1,2,0,1) T ,3( 1,1,3,0) T , 4 (1,1,1,1)T,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量.211111011101解: A ( 1, 2, 3121112110110, 4 )0313*******3110121110111 110111011011011001100110,向量组的秩为3,1,2,4000200010001000100000000是一个极大无关组,31 2.24.已知矩阵A 1231401 2 ,B25.(1)求A1;( 2)解矩阵方程AX B.00113解:(1)( A, E )123100120103 012010010012 0010010010011001211210 1 0 0 12, A 10 12;001001001(2)X A1B 12114490 1 2 2 50 11.001131325.问a为何值时,线性方程组x12x23x342x2ax3 2 有惟一解?有无穷多2x12x23x36解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).123412341234解:( A, b)02 a 202a202a2.2236023200 a 3 012341204 a3时,r ( A, b)r ( A) 3 ,有惟一解,此时 ( A, b)02a202020010001010021002x1202020101, x2 1 ;00100010x3012 3 4 a 3 时, r ( A,b) r ( A)2 n ,有无穷多解,此时 ( A,b)02 3 20 0 01 0 02 1 0 0 2 x 12 230 2 3 2 0 1 3 / 2 1 , x 2 1,通解为 1k 3 / 2 ,其中 k 为x 30 0 0 00 0 02 01x 3x 3任意常数.2 0 026.设矩阵 A 03 a 的三个特征值分别为1,2,5 ,求正的常数 a 的值及0 a 3可逆矩阵 P ,使 P 1 AP1 0 00 2 0 .0 0 52 0 03 a解:由 | A |0 3 a 22 (9a 2) 1 2 5 ,得 a24 , a2 .a 3 0 a32 0E A0 3 2 .23对于 11,解 ( E A) x 0 :10 0 1 0 0 x 1 0 0E A0 2 2 0 1 1 , x 2x 3 ,取 p 1 1 ;220 0 0x 3x 31对于 22 ,解 ( E A) x 0 :0 0 0 1 0 x 1 x 1 1E A 012 0 0 1 , x 20 ,取 p 2 0 ;210 0 0x 3 0对于 35 ,解 ( E A)x 0:30 0 1 0 0 x 1 00 E A0 2 2 0 1 1 , x 2 x 3 ,取 p 31 .220 0x 3 x 311 0,则 P 是可逆矩阵,使 P 1AP 1 0 0令 P ( p 1 , p 2 , p 3 )10 1 0 2 0 . 10 10 0 5四、证明题(本题 6 分)27.设 A ,B , AB 均为 n 阶正交矩阵,证明 ( AB) 1 A 1B 1 .证:A ,B ,A B 均为 n 阶正交阵, 则 A T A 1 ,B TB 1 ,( A B)T( AB) 1 ,所以( A B) 1 ( A B) T A T B TA 1B 1.全国 2010 年 7 月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)1.设 3 阶方阵 A( 1 ,2 ,3 ),其中i( i 1,2,3 )为 A 的列向量,若| B | | ( 12 2 , 2 ,3 ) | 6 ,则 | A | ( C)| A | | ( 1 , 2 , 3 ) | | ( 12 2 , 2 ,3 ) | 6 .A . 12B . 6C .6D . 123 0 2 02.计算行列式2 10 5( A)0 0 2232 3A . 180B . 120C . 120D . 1803 0 2 0 3 0 22 10 5 03 0180 .2 10 5 33 ( 2) 300 0 2 3( 2)100 022232 33.若 A 为 3 阶方阵且 | A 1 | 2 ,则 | 2A |( C)A .1B .2C . 4D .82| A |1, | 2A | 23| A | 8 1 4 .224.设 1 , 2 ,3 , 4都是 3 维向量,则必有(B)A . 1, 2 ,3 ,4线性无关B . 1 , 2 , 3 ,4 线性相关C . 1 可由 2 , 3 ,4 线性表示D . 1 不可由 2 , 3 ,4 线性表示 5.若 A 为 6 阶方阵,齐次方程组 Ax =0 基础解系中解向量的个数为 2,则 r (A) (C)A. 2B.3C. 4D.5由 6 r ( A) 2 ,得 r ( A) 4.6.设A、B为同阶方阵,且r ( A)r ( B) ,则(C)A.A与B相似B.| A | | B |C.A与B等价D.A与B合同注: A 与 B 有相同的等价标准形.7.设A为 3 阶方阵,其特征值分别为2,1,0,则| A2E |( D)A. 0B.2C. 3D.24A2E 的特征值分别为4,3,2,所以| A 2E | 4 3 2 24.8.若A、B相似,则下列说法错误的是(B)..A.A与B等价B.A与B合同C.| A | | B |D.A与B有相同特征值注:只有正交相似才是合同的.9.若向量(1,2,1) 与(2,3, t) 正交,则t( D)A.2B.0C. 2D.4由内积 2 6t0,得 t4.10.设 3 阶实对称矩阵A的特征值分别为2,1,0 ,则(B)A.A正定B.A半正定C.A负定D.A半负定对应的规范型 2z12z220z320 ,是半正定的.二、填空题(本大题共10 小题,每小题 2 分,共 20 分)11.设A32211,则AB01, B______________.0102 4321653AB02110.1120022 4412.设A为 3 阶方阵,且| A | 3 ,则 | 3A 1 | ______________.| 3A 1 | 33 | A 1 | 33133 19 .| A |313.三元方程x1x2x3 1 的通解是______________.x1 1 x2x3111x2x2,通解是 0k11k2 0 .x3x300114.设( 1,2,2),则与反方向的单位向量是 ______________.11( 1,2,2) .||||315.设 A 为5阶方阵,且r ( A) 3 ,则线性空间W { x | Ax 0} 的维数是______________.W { x | Ax 0} 的维数等于 Ax0 基础解系所含向量的个数:n r 5 3 2 .16.| 5A 1 | 53153125 .| A | 2 (1/ 2)117.r ( AB) Ax 0若A、 B 为 5 阶方阵,且Ax0 只有零解,且 r ( B)3 ,则______________.只有零解,所以 A 可逆,从而r ( AB) r ( B) 3 .21018.实对称矩阵101所对应的二次型 f (x1 , x2 , x3 ) ______________.011f (x1 , x2 , x3 ) 2 x12x322x1 x2 2x 2 x3.19.设 3 元非齐次线性方程组Ax11b 有解12,2 2 ,且 r ( A) 2 ,33则Ax b 的通解是______________.1( 11112 ) 0是 Ax 0 的基础解系, Ax b 的通解是 2k 0 .203020.设12,则 A T的非零特征值是 ______________.31由T(1,2,3)2 14 ,可得 A2( T ) T14T14A,设A的非零特3征值是,则214,14 .三、计算题(本大题共 6 小题,每小题9 分,共 54 分)2000121.计算 5 阶行列式D 02000 00200.00020 10002解:连续3次按第2行展开,2001201020021D402088324 .202012102100220010014322.设矩阵X满足方程010 X 00120 1 ,求X.002010120解:记 A200100143010, B001 , C20 1 ,则 AXB C ,0020101201 / 200100A 1010,B 100 1 ,001/ 201011431001134 402001420.2212001010223.求非齐次线性方程组x1x23x3 x4 1的通解.3x1x 23x34x44x15x29x38x 40113111*********解: ( A, b)31 3 440 4 6710467 1 1598004671000004 412 4 4 4 0 6 3510 3 / 2 3 / 45 / 40467 104 6 7101 3 / 27 / 4 1 / 4 ,000000000000000x153x33x4 5 / 4 3 / 2 3 / 4 424x2137x4,通解为 1 / 4k13 / 2k27 / 4,k1 ,k 2都是任意常数.4x342010x3x3001x4x424.求向量组1(1,2,1,4) ,2(9,100,10,4) ,3( 2,4,2,8) 的秩和一个极大无关组.192192192解:( 1T, 2T, 3T2100415020410)1021102019014481120801 92 1 02010010,向量组的秩为2,1,2是一个极大无关组.00000000000021225.已知A 5a3的一个特征向量(1,1, 1) T,求 a,b 及所对应的1b2特征值,并写出对应于这个特征值的全部特征向量.21211解:设是所对应的特征值,则 A,即 5a311,从1b211 1而 a 2,可得 a 3 , b 0 ,1;b 1对于1,解齐次方程组 ( E A) x0:2 12 3 1 2 1 0 1 1 0 1 E A53 3 5 2 3 5 2 3 0 2 21 0210 13 120 1 11 0 1 x 1 x 310 1 1 , x 2x 3 ,基础解系为 1 ,属于 1 的全部特征向量为0 0 0x 3x 311k1 , k 为任意非零实数.126.设 A2 1 1 21 21 a ,试确定 a 使 r ( A)2 .1 12 2解: A21 12 1 1 2 2 11 2 2 1 2 1 a2 11 20 3321 12 212 1a 03 3 a 21 12 20 3 3 2 , a0 时 r (A) 2 .0 00 a四、证明题(本大题共1 小题, 6 分)27.若 1 , 2 , 3 是 Axb ( b 0 )的线性无关解,证明21 ,3 1是对应齐次线性方程组Ax 0 的线性无关解.证:因为 1 ,2 ,3是 Ax b 的解,所以21, 31是 Ax 0 的解;设 k 1 ( 21 )k 2 ( 31 )0,即 ( k 1k 2 ) 1k 1 2k2 30 ,由 1 , 2 ,3线性k 1 k 2 0无关,得 k 1,只有零解 k 1 k 20 ,所以21 ,31线性无关.k 2 0全国 2011 年 1 月高等教育自学考试 线性代数(经管类)试题课程代码: 04184说明:本卷中, A -1 表示方阵 A 的逆矩阵, r ( A ) 表示矩阵 A 的秩,( , )表示向量 与 的内积, E 表示单位矩阵, | A | 表示方阵 A 的行列式 .一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)a 11a12a13=4,则行列式2a112a122a131. 设行列式a21 a 22a23 a 21 a 22 a 23=()a 31a32a333a313a323a332.设矩阵 A, B, C, X 为同阶方阵,且 A,B 可逆, AXB=C,则矩阵 X=()3. 已知A2+A- E=0,则矩阵A-1 =()+E+E4. 设 1 , 2 , 3 , 4 ,5 是四维向量,则()A.1, 2 , 3 , 4 ,5 一定线性无关B. 1 , 2 , 3 , 4 ,5 一定线性相关2 ,C. 5一定可以由 1 , 2 , 3 , 4 线性表示D.1一定可以3 ,4 , 5线性表出5. 设A是n阶方阵,若对任意的n 维向量 x 均满足 Ax=0,由则()=0=E(A)= n<r( A)<(n)6. 设A为n阶方阵,r ( A)< n,下列关于齐次线性方程组Ax=0的叙述正确的是()=0只有零解=0的基础解系含r ( A)个解向量=0的基础解系含n- r( A) 个解向量=0没有解7. 设 1 ,2 是非齐次线性方程组Ax=b的两个不同的解,则()A. 1 2 是Ax=b的解B.1 2 是Ax=b的解C. 31 2 2是Ax=b的解D. 2 1 3 2是Ax=b的解8. 设1,2,3为矩阵 A=39004 5的三个特征值,则1 2 3 = 002()9.设 P 为正交矩阵,向量,的内积为(,)=2,则(P , P)=()A. 12C. 3210. 二次型 f ( x1, x2, x3)=x12x22x32 2 x1 x22x1x3 2 x2 x3的秩为()二、填空题(本大题共10 小题,每小题 2 分,共 20 分)请在每小题的空格中填上正确答案。

(完整版)线性代数试题及答案

(完整版)线性代数试题及答案

线性代数习题和答案第一部分 选择题 (共 28 分)、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

C. 3D. 46.设两个向量组 α1,α2,⋯, αs 和β 1,β2,⋯, βs 均线性相关,则()A. 有不全为 0 的数λ 1,λ2,⋯,λs 使λ1α1+λ2α2+⋯+λs αs =0 和λ 1β 1+λ 2β 2+⋯λ s βs =0B. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ 1(α1+β1)+λ2(α2+β2)+⋯+λs ( α s + β s )=0C. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ1(α 1- β1)+λ2(α2- β2)+⋯+λs (αs - βs )=0D.有不全为 0的数λ 1,λ 2,⋯,λ s 和不全为 0的数μ 1,μ 2,⋯,μ s 使λ1α1+λ2α2+⋯+ λ s α s =0 和μ 1β1+μ2β2+⋯+μ s βs =07.设矩阵 A 的秩为 r ,则 A 中( )A. 所有 r- 1阶子式都不为 0B.所有 r- 1阶子式全为 0C.至少有一个 r 阶子式不等于 0D.所有 r 阶子式都不为 08. 设 Ax=b 是一非齐次线性方程组, η1,η2是其任意 2 个解,则下列结论错误的是( )A. m+n C. n- m a 11a 12a 13 a 11=m ,a 21a 22a 23 a 21a 11 a 12 a 13等于(2.设矩阵 A=0 ,则 A - 1 等于( 3A. 0 1 3C. 03.设矩阵 A=a 21 a 22 a 23B. - (m+n) D. m- nB.D.21 ,A *是 A 的伴随矩阵,则 A *中位于 41,2)的元素是(A. –6 C. 2 4.设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( A. A =0 C. A 0 时 B=C 5.已知 3×4 矩阵 A 的行向量组线性无关,则秩( A. 1B. 6 D. –2 ) B. B D. |A| 0 时 B=C C 时 A=0 A T )等于( )B. 21.设行列式 =n ,则行列式10.设 A 是一个 n (≥3)阶方阵,下列陈述中正确的是( )A. 如存在数λ和向量 α使 A α=λα,则α是 A 的属于特征值λ的特征向量B. 如存在数λ和非零向量 α,使(λE- A )α=0,则λ是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如λ 1,λ 2,λ 3是A 的 3个互不相同的特征值, α1,α2,α3依次是 A 的属于λ 1,λ2, λ3的特征向量,则 α 1,α 2, α 3有可能线性相关 11. 设λ 0是矩阵 A 的特征方程的 3重根, A 的属于λ 0的线性无关的特征向量的个数为 k ,则必有( )222(a 11A 21+a 12A 22+a 13A 23) +(a 21A 21+a 22A 22+a 23A 23) +(a 31A 21+a 32A 22+a 33A 23) =.18. 设向量( 2, -3, 5)与向量( -4, 6, a )线性相关,则 a= .19. 设A 是 3×4矩阵,其秩为 3,若η1,η2为非齐次线性方程组 Ax=b 的 2个不同的解,则它 的通解为 .20. 设 A 是 m ×n 矩阵, A 的秩为 r (<n ) ,则齐次线性方程组 Ax=0 的一个基础解系中含有解的个A. η1+η2 是 Ax=0 的一个解 C. η 1-η 2是 Ax=0 的一个解 9. 设 n 阶方阵 A 不可逆,则必有(A. 秩 (A )<n C.A=0 11B.η1+ η2是 Ax=b 的一个解22D. 2 η 1-η 2 是 Ax=b 的一个解 ) B. 秩 (A)=n- 1D. 方程组 Ax=0 只有零解A. k ≤ 3C. k=312. 设 A 是正交矩阵,则下列结论错误的是(A.| A| 2必为 1 C. A - 1=A T 13. 设 A 是实对称矩阵, C 是实可逆矩阵,A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同 14.下列矩阵中是正定矩阵的为()23 A.34 1 0 0C. 0 2 30 3 5第二部分B. k<3 D. k>3 )B.|A|必为 1D.A 的行(列)向量组是正交单位向量组 B=C T AC .则( ) 34 B. 26 1 1 1 D. 1 2 0102 非选择题(共 72 分)2 分,共 20 分)不写解答过程,将正确的答案写在每1 1 115. 3 569 25 361 111 2 316.设 A=B=.则 A+2B=1 111 2 417. 设 A =(a ij )3 × 3 , |A|=2 , A ij 表示 |A|中 元 素a ij 的 代 数 余 子 式 ( i,j=1,2,3 ) , 则数为.21. 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α- β)=22.设 3阶矩阵 A 的行列式 |A |=8,已知 A 有 2个特征值 -1和 4,则另一特征值为 .0 10 6223.设矩阵 A=1 3 3 ,已知 α = 1 是它的一个特征向量,则α 所对应的特征值2 10 82为24.设实二次型 f (x 1,x 2,x 3,x 4,x 5)的秩为 4,正惯性指数为 3,则其规范形为 三、计算题(本大题共 7 小题,每小题 6分,共 42分)26.试计算行列式4 2 327.设矩阵 A= 110, 求矩阵 B 使其满足矩阵方程AB=A+2B.12321 3 028.给定向量组α 1=1,3 α2=, α=, α10 2 2 =4.3419试判断 α 4 是否为 α 1, α2,α3 的线性组合;若是, 则求出组合系数。

《线性代数》期末考试题及详细答案(本科A、B试卷)

《线性代数》期末考试题及详细答案(本科A、B试卷)

XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。

每小题2分,共10分)。

1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。

2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。

1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 1 B 1
充分条件 充要条件
( B) ( D)
必要条件 既不充分也非必要条件
(第 1 页 共 4 页)
得分
三、 (共 10 分)
0
计算 4 阶行列式 D
1 1 2 1 2 1 0 1 2 0 1 0
1 1 1
解:
得分
四、 (共 12 分)
x1 x 2 3 x3 x 4 1 求解线性方程组 3 x1 x 2 3 x3 4 x 4 4 x 5x 9 x 8x 0 2 3 4 1
解:
(第 2 页 共 4 页)
得 分
五、 (共 12 分) 设向量组 1 , 2 , 3 , 4 线性相关,但其中任意三个向量线性无关,证明:存 在一组全不为零的数 1 , 2 , 3 , 4 ,使 1 1 2 2 3 3 4 4 0 .
A : | AB T | 3 2 B : | AB T | 6 C : | AB T | 32 D : | AB T | 2 3
4. 设 A , B 均为 n 阶方阵,则下列等式中成立的有(
C ).
1
C : AB BA A: A B A B B : AB BA D: A B 5. n 阶矩阵 A 的 n 个特征值互异是 A 与对角矩阵相似的( A )。 ( A) (C )
得分 1.排列
一、
填空题(每小题 3 分,共 15 分)
的逆序数是 __8__。 -16 . (3,6,15)。 含 因 子 .
a11 a 44
2.设 A 是 4 阶矩阵,且 A 1 ,则 2 A 1 = 4.设 5.在 四 阶 行 列 式 中
3.若 n 阶矩阵 A, B 满足 AB I , I 为 n 阶单位阵,则 A1 =_____B_____. , 则 ,
得分
八、 ( 共 12 分 )利用正交变换把下面的二次型化为标准形,并写出所作的
正交变换, f ( x1 , x 2 , x3 ) = 2 x1 x2 2 x1 x3 2 x2 x3 。
(第 4 页 共 4 页)
得 分
六、 (共 12 分) 求向量组 1 (1, 1, 1) , 2 (1, 2 , 0 ) , 3 (2 , 3 , 1 ) , 4 (3 , 5 ,1 ) 的秩 和一个极大无关组。
(第 3 页 共 4 页)
得分
七、 (共 12 分)
0 1 0 1 1 解矩阵方程 AX B X ,其中 A 1 1 1 , B 2 0 。 1 0 1 5 6



得分
二、选择题(每小题 3 分,共 15 分) C ).
C : | A | 0 D : | A | 0
1.矩阵 A 可逆的充要条件是(
A: A 0
B: A0
2.
下列 的子集是 的子空间的是( B )。 A: C: B: D:
3. 若矩阵行列式 | A | 3 , | B 2 ,那么( B ).
湘潭大学 2014 年上学期 20 10 级《线性代数》 重修考试试卷
适用年级专业 计算机等 考试方式 闭卷 考试时间
学院 学号
题 号 得 分 ……………………………………………………………………………………………………………… 一 二 三 四 五 六
120 分钟
专业 姓名

班级
八 总分 阅卷 教师
……………………………………………………………装…………………… 订……………………线…………………………………………………………………
制卷人签名: 制卷日期: 审核人签名: : 审核日期: …………………………………………………………………………………………………………………………………………………………………………………
相关文档
最新文档