线性代数Ⅰ—行列式
线性代数初步-行列式(1)

第4章 线性代数初步第3讲行列式(1)主讲教师 |本节内容01 行列式的起源02 排列03 行列式的定义04 行列式的性质求解二元一次方程组引入记号称为二阶行列式ᵆ1记因此方程组的唯一解中的两个分子也可以写成则方程组的唯一解可以表示成=ᵄ1ᵄ22−ᵄ12ᵄ2,=ᵄ11ᵄ2−ᵄ1ᵄ21本节内容01 行列式的起源02 排列03 行列式的定义04 行列式的性质Ὅ定义4.9ᵈ!Ὅ定义4.10在一个排列中,如果一个较大的数排在一个较小的数之前,则称这两个数构成一个逆序。
Ὅ定义4.11逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。
把一个排列中某两个数的位置互换,而其余的数不动,就得到一个新的排列,这种变换称为一个对换。
Ὅ定理4.3对换改变排列的奇偶性。
即经过一次对换,奇排列变成偶排列,偶排列变成奇排列。
Ὅ定理4.3本节内容01 行列式的起源02 排列03 行列式的定义04 行列式的性质Ὅ定义4.12因此=detᵃὍ例1利用行列式的定义,计算下列三阶行列式的值解形式不同:方阵用圆括号,行列式用两竖线结果不同:方阵是一个数表,行列式是一个数值Ὅ例2计算下三角形行列式解因此,主对角元的乘积同样的,上三角形行列式也等于主对角元的乘积。
ᵃ=ᵄ11ᵄ22⋯ᵄᵅᵅ本节内容01 行列式的起源02 排列03 行列式的定义04 行列式的性质Ὅ定义4.13Ὅ性质4.1Ὅ例3=ᵄ11ᵄ22⋯ᵄᵅᵅ.Ὅ性质4.2Ὅ推论若行列式的某一行的元素全为零,则行列式的值是零。
Ὅ性质4.3若行列式的某一行元素均是两数之和,则该行列式可拆成两个行列式之和。
Ὅ性质4.4交换行列式的两行,行列式变号,即Ἲ推论1若行列式中有两行相同,则行列式的值为零。
证明:但是,从性质4.4可知,对换行列式的两行会变号故ᵃ=−ᵃᵃ=0Ἲ推论2若行列式中有两行对应元素成比例,则行列式的值为零。
证明:Ὅ性质4.5利用行列式性质计算行列式Ὅ例4计算解=48.Ὅ 例5解计算行列式的第1行乘以-1加到下面各行,得ᵃ学海无涯,祝你成功!。
线性代数-行列式(完整版)

思考练习(排列的逆序数详解)
方法1 在排列x1x2…xn中,任取两数xs和xt(s<t), 则它们必在排列x1x2…xn或xnxn-1…x1中构成逆序, 且只能在其中的一个排列中构成逆序.又在排列
x1x2…xn中取两数的方法共有
C 2 n! n(n 1)
n 2!(n 2)!
2
故排列 x1x2…xn 与 xnxn-1…x1 中逆序之和为
k经s+1次相邻对换成为 …kj i1…is … j经s次相邻对换成为 …ki1…is j … 即经2s+1次相邻对换后(3) 成为 (4). 相邻对换改变排列的奇偶
性20 ,奇数次这样的对换后排列的奇偶性改变.
||
定理1.2. n个数码共有n!个排列,其中奇偶排列各占 一 半, 各 为n! . 2
32
例2
2
3
设 D
,
31
(1)当 为何值时, D 0,
(2)当 为何值时 D 0.
解 2 3 0 0,或 3
2
D
2
31
例3 求二阶行列式
a 1 b2
(2)三阶行列式
记号
a11 a12 a13 a21 a22 a23 称为三阶行列式. a31 a32 a33
是所有取自不同行、不同列n个元素的乘积 a1 j1a2 j2 anjn 并冠以符号 (1)N ( j1 j2 jn ) 的项的和.
((决ii)i)定行a1每j标1a一2按j2项自的然an符j顺n 是号序取;排自列不,同列行标、排不列同的列奇的偶n性个元N(素j1的j2 乘j积n ) ; (iii) 表示对所有的 j1 j2 jn 构成的n!个排列求和.
大一线性代数行列式知识点

大一线性代数行列式知识点线性代数是大学数学课程中的重要内容之一,而线性代数中的行列式更是一个关键的概念。
行列式具有广泛的应用,在矩阵运算、方程求解、向量空间等方面都发挥着重要的作用。
本文将介绍一些大一学生常见的线性代数行列式知识点,包括行列式的定义、性质以及计算方法。
一、行列式的定义行列式可以看作是一个方阵的一个具体的实数值。
对于一个n阶方阵A,行列式的定义如下:det(A)=∑(−1)^σP(a1,σ(1))a2,σ(2)...an,σ(n)其中,det(A)表示方阵A的行列式,σ表示一个置换,P表示这个置换的奇偶性,a1, a2, ..., an表示A的元素。
二、行列式的性质行列式具有许多重要的性质,下面将介绍其中一些常见的性质。
1. 方阵的行列式等于其转置矩阵的行列式。
这意味着行列式的值不受行、列次序的影响,只取决于方阵中元素的值。
2. 互换某两行(列)的位置,行列式的值变号。
这个性质说明了方阵中交换两行(列)的位置对行列式的值有影响。
3. 方阵中某行(列)的元素都乘以一个数k,行列式的值乘以k。
这个性质说明了方阵某行(列)的元素乘以一个数k对行列式的值有影响。
4. 方阵中某行(列)的元素表示为两个数之和,可以将行列式分成两项之和。
这个性质可以用于简化行列式的计算。
三、行列式的计算方法计算行列式的值是线性代数中的重要技能之一,下面将介绍两种常见的计算行列式的方法。
1. 代数余子式法代数余子式法是一种逐步缩小行列式规模的计算方法。
具体步骤如下:- 选定方阵A的第一行(列);- 对于第一行(列)的每个元素aij,计算其代数余子式Mij;- 根据公式det(A) = ∑((-1)^(i+j))aijMij,计算行列式的值。
2. 拉普拉斯展开法拉普拉斯展开法是一种从行或列展开的计算方法。
具体步骤如下:- 选定方阵A的第一行(列);- 对于每个选定的元素aij,计算其余子式Aij;- 根据公式det(A) = ∑((-1)^(i+j))aijAij,计算行列式的值。
线性代数讲义-01行列式

第一章 行列式第一节 行列式的定义.一 排列的逆序数将数n ,,2,1 按照某个顺序排成一行, 称为一个n 阶排列. 记作n p p p 21. 共有!n 种不同的n 阶排列.按照从小到大的顺序称为标准顺序. 而排列n 12称为标准排列.定义1.1 如果在一个排列中, 某两个数的先后顺序与标准顺序相反, 则称有一个逆序. 这个排列的逆序的总数称为该排列的逆序数.在n 阶排列中, 标准排列的逆序数最小, 等于0. 而排列1)1( -n n 的逆序数最大, 等于2/)1(-n n .定义1.2 如果一个排列的逆序数是奇数(偶数), 则称其为奇排列(偶排列).例如, 共有6个三阶排列, 其中123, 231, 312是偶排列, 而132, 213, 321是奇排列.定义 1.3 在排列中, 将任意两个数对调, 其余数不动, 这种产生新排列的过程称为对换. 将两个相邻的数对换, 称为相邻对换.定理1.1 一个排列中的任意两个数对换, 排列改变其奇偶性.证 如果这两个数相邻, 进行对换时, 只改变这两个数的先后顺序. 因此, 逆序数或者增加1, 或者减少1. 即进行相邻对换时, 奇偶性改变.考虑排列n k i i i p p p p p ++11, 其中1>k . 为完成i p 与k i p +的对换, 其余数不动,可按照下面方式进行. 先将i p 与1+i p 对换, 再将i p 与2+i p 对换, 继续进行, 直至i p 与k i p +相邻. 在这个过程中, i p 逐渐向后移动, 而其他数的先后顺序不变. 如此共进行1-k 次对换, 得到排列n k i i i p p p p p ++11. 然后将k i p +与i p 对换, 再将k i p +与1-+k i p 对换, 继续进行, 直至k i p +向前移动到1+i p 的左边为止. 此时恰好得到排列n i i k i p p p p p 11++.如此又进行k 次相邻对换. 总计进行12-k 次相邻对换, 因此, 必然改变奇偶性.如果用定义计算一个排列的逆序数, 需要观察任意一对数的先后顺序, 比较繁琐. 考虑n ,,2,1 的一个排列n p p p 21, 任取一个数i p , 如果有i t 个比i p 大的数排在i p 的前面, 则称i t 是i p 的逆序数. 所有数的逆序数的和就是排列的逆序数.例1.1 求排列32514的逆序数.解 按照上面的方法, 得逆序数为513010=++++.例1.2 设1>n , 求证: 在n 阶排列中, 奇排列与偶排列各占一半.证 将一个奇排列中的数1与2对换, 产生一个偶排列. 反之, 将一个偶排列中的数1与2对换, 产生一个奇排列. 如此建立奇排列与偶排列之间的一一对应. 因此, 在n 阶排列中, 奇排列与偶排列的个数相等.二 行列式定义以前学过二阶与三阶行列式:2112221122211211a a a a a a a a -=;333231232221131211a a a a a a a a a 322113312312332211a a a a a a a a a ++=312213332112322311a a a a a a a a a ---. 为了将他们推广, 首先研究三阶行列式的结构. 行列式中的数ij a 称为它的元素. 其中元素321,,i i i a a a 组成行列式的第i 行, 元素j j j a a a 321,,组成行列式的第j 列, 元素332211,,a a a 组成行列式的主对角线. 每个元素有两个下标. 第一个是行标i , 表示该元素属于第i 行. 第二个是列标j , 表示该元素属于第j 列.在形式上, 三阶行列式是一个数表. 而实质是其元素的一个多项式. 这个多项式由六项组成, 每项包含三个元素的乘积. 这三个元素分别属于不同的行, 不同的列. 现在每一项中元素的行标组成标准排列, 则其列标恰组成所有的三阶排列. 而且, 如果列标排列是奇排列, 则前面是负号. 如果列标排列是偶排列, 则前面是正号. 于是, 可以将三阶行列式写作333231232221131211a a a a a a a a a ∑-=321321)1(p p p t a a a , 其中t 是列标排列321p p p 的逆序数, 求和遍及所有三阶排列.按照三阶行列式的结构进行推广, 得到n 阶行列式的定义. 定义1.4 称111212122212n n n n nna a a a a a a a a∑-=n np p p t a a a 2121)1(为n 阶行列式, 其中t 是列标排列n p p p 21的逆序数, 而求和遍及所有n 阶排列.常将行列式简记作D . 如果需要明确行列式的阶, 则将n 阶行列式记作n D .一个n 阶行列式有!n 项. 当1>n 时, 其中正项与负项各占一半.与三阶行列式类似,n 阶行列式也是其元素的多项式. 因此, 如果行列式的元素都是数, 则行列式也是数. 如果行列式的元素是某些字母的多项式, 则行列式也是这些字母的多项式.注意 一阶行列式||11a 与数的绝对值的符号相同, 但意义不同. 作为行列式2|2|-=-,而作为数的绝对值2|2|=-. 因此必须用文字严格区分这两种不同对象.例1.3 求四阶行列式中包含元素23a 的所有负项.解 在四阶排列中, 数3在第二个位置的共有6个. 其中的奇排列为1324, 2341与4312. 于是, 四阶行列式中包含元素23a 的负项为44322311a a a a -, 41342312a a a a -, 42312314a a a a -.当n 较大时, n 阶行列式中的项很难一一列举. 不过, 如果一个行列式的许多元素等于0, 则不等于0的项数将大大减少.例1.4 求证:行列式1112122200n n nna a a a a a nn a a a 2211=.证 为了得到非零项, 在第n 行中只能取nn a . 此后不能再取第n 列的其他元素. 因此,在第1-n 行只能取1,1--n n a . 继续这个讨论可得: 行列式只有一个正项nn a a a 2211.在这个行列式中, 主对角线下面的元素都等于0, 称为上三角行列式. 类似定义下三角行列式, 且有相同结果.例1.5 求证: 行列式12,1100000n n n a a a -11,212/)1()1(n n n n n a a a ---=.证 仿照例1.4的推理, 这个行列式也只有一个非零项. 当该项的行标组成标准排列时, 它的列标排列为1)1( -n n . 逆序数为2/)1(1)2()1(-=++-+-n n n n .例1.6 求证:行列式000000044434241343332312111=a a a a a a a a a a .证 因为行列式的每一项需要在前两行取不同列的元素, 所以行列式的每一项都至少包含一个等于0的元素. 因此该行列式等于0.前面将行列式中每项的行标组成标准排列, 由列标排列的逆序数决定符号. 现在考虑列标组成标准排列时的情形.定理 1.2 行列式111212122212n n n n nna a a a a a a a a∑-=n p p p s n a a a 2121)1(. 其中s 是行标排列n p p p 21的逆序数.证 行列式定义中的一般项为n np p p ta a a 2121)1(-. 对换它的两个元素, 该项中的元素乘积n np p p a a a 2121不变. 考虑该项前面的符号. 原来的符号是t)1(-, 其中t 是行标组成标准排列时, 列标排列的逆序数. 经过对换两个元素, 根据定理 1.1, 其行标排列与列标排列同时改变奇偶性. 然而, 行标排列与列标排列的逆序数之和不改变奇偶性. 继续这个过程, 使列标组成标准排列. 由于标准排列的逆序数等于0, 此时行标排列的奇偶性与原来列标排列的奇偶性相同. 即=-s)1(t)1(-.定理1.2说明行标排列与列标排列的地位是相同的. 从定理1.2的证明中还可以看到: 当行标排列与列标排列都不是标准排列时, 行列式的项的符号可以由行标排列与列标排列的逆序数之和的奇偶性决定.习题1-11. 求下列九阶排列的逆序数,从而确定其奇偶性. (1) 135792468; (2) 219786354.2. 选择i 与k 使下列九阶排列(1) 9561274k i 为偶排列; (2) 4897251k i 为奇排列.3. 求证: 用对换将奇(偶)排列变成标准排列的对换次数为奇(偶)数.4. 已知排列n p p p 21的逆序数为k ,求排列11n n p p p - 的逆序数.5. 在六阶行列式中, 确定下列项的符号.(1) 233146521465a a a a a a ; (2) 256651144332a a a a a a . 6. 计算下列行列式.(1) 613322131; (2) 0551111115----. 7. 计算下列行列式.(1)00000012,11,11,2222111,11211n n n n n n a a a a a a a a a a ----; (2)nn 0000100200100-.8. 求证: 0000000052514241323125242322211514131211=a a a a a a a a a a a a a a a a . 9. 设一个n 阶行列式至少有12+-n n 个元素等于0,求证:这个行列式等于0.第二节 行列式的性质用行列式定义计算一般的高阶行列式非常困难. 而计算三角行列式特别简单. 本节研究行列式的性质, 以寻找简单的计算方法.定义1.5 将行列式D 的行列互换, 而不改变行与列的先后顺序(第一行变成第一列, 第二行变成第二列等等), 所得到的行列式称为原行列式的转置, 记作D '.例如, 行列式613322131的转置是631123321. 性质1.1 行列式的转置与原行列式相等. 即D D ='.证 设行列式D 的元素为ij a , 转置D '的元素为ij b , 则有ji ij a b =. 根据定理1.2, 有D '∑-=n np p p t b b b 2121)1(D a a a n p p p t n =-=∑ 2121)1(.注意 在行列式中, 行与列的地位是相同的. 因此, 对行列式的行成立的命题, 对列也同样成立.性质1.2 交换行列式的两行(列), 行列式改变符号.证 交换D 的第h 行与第k 行产生的新行列式记作hk D . 设hk D 的元素为ij b , 则有kj hj a b =, hj kj a b =,n j ,,2,1 =, 而hk D 的其他行的元素与D 相同. 设n 阶行列式D 的一般项为n k h np kp hp p ta a a a 11)1(-, 其中t 是列标排列n k h p p p p 1的逆序数. 在hk D 的定义中与上面D 的一般项具有相同元素的项为11(1)h k n s p kp hp np b b b b -= 11(1)k h n s p hp kp np b b b b - ,其中s 是列标排列n h k p p p p 1的逆序数. 根据定理 1.1, 这两个排列的奇偶性不同, 因此相应的两项符号相反. 因为hk D 与D 的具有相同元素的项符号都相反, 所以D D hk -=. 推论1.1 如果行列式D 中有两行的元素对应相等, 则0=D .证 设行列式D 的第h 行与第k 行相同, 交换这两行产生的行列式记作hk D , 则D D hk =. 然而根据性质1.2, 又有D D hk -=. 于是0=D .性质1.3 用数k 乘以行列式的一行的每个元素,相当于用k 乘以原行列式. 即有111111j n i ij in n njnn a a a ka ka ka a a a111111j ni ij in n nj nna a a a a a k a a a =. 证 设n 阶行列式∑-=n i np ip p t a a aD 11)1(, 用数k 乘以其第i 行的每个元素产生的新行列式记作)(k D i , 根据定义, 有)(k D i ∑-=n i np ip p t a ka a )()1(11kD a a a k n i np ip p t =-=∑ 11)1(.这个性质可以看作提取行列式的一行(或一列)元素的公因数.推论1.2 如果行列式D 的某两行的元素对应成比例, 则0=D .证 设行列式第h 行的每个元素是第i 行的对应元素的k 倍, 提取第h 行元素的公因数k , 根据性质 1.3, 原行列式等于数k 乘以一个新行列式. 由于这个新行列式中有两行相同, 根据推论1.1, 有0=D .性质1.4 如果行列式的一行的每个元素都是两个数的和,则原行列式等于两个行列式的和. 即有1111111j n i i ij ij in in n njnna a abc b c b c a a a +++111111j n i ij in n nj nna a ab b b a a a =111111j n i ij in n nj nna a a c c c a a a +. 证 设n 阶行列式∑-=n i np ip p t a b aD 111)1(,∑-=n i np ip p t a c a D 112)1(,其中只有第i 行不同. 将两个行列式的第i 行求和, 其他行不变产生的新行列式记作)(+i D ,根据行列式定义, 有)(+i D ∑+-=n i i np ip ip p t a c b a )()1(11∑-=n i np ip p t a b a 11)1(∑-+n i np ip p t a c a 11)1(21D D +=.可以将性质1.3看作行列式的数乘运算, 而将性质1.4看作行列式的加法. 行列式的加法与数乘都是对一行进行, 而不是对整个行列式. 此外, 性质 1.4可以推广为: 如果行列式的一行中所有元素都是k 个数的和, 则它等于k 个行列式的和.性质1.5 将行列式的某一行的每个元素加上另一行对应元素的k 倍, 行列式不变. 证 设n 阶行列式∑-=n h i np hp ip p ta a a aD 11)1(, 将第i 行的元素加上第h 行的对应元素的k 倍产生的新行列式记作)(k D ih , 根据性质1.4与推论1.2, 有)(k D ih ∑+-=n h h i np hp hp ip p t a a ka a a )()1(11∑-=n h i np hp ip p t a a a a 11)1(∑-+n h h np hp hp p t a a ka a )()1(11D a a a a n h i np hp ip p t =-=∑ 11)1(.例1.7 求证: 行列式h g i g ih e d f d fe b a c a cb +++++++++i h g f e dc b a 2=. 证 先用性质1.4将等式左边分成两个行列式, 再用性质1.5, 得h g i g i h e d f d f e b a c a c b +++++++++h g i g h e d f d e b a c a b ++++++=h g i g i e d f d fb ac a c +++++++ gi g hd fd e a c a b +++=hg gi e d d fb a ac ++++gihd fe a c b =hgie df b a c +ihgf e dc b a 2=. 例1.8 计算行列式4321651005311021.解 用性质1.5, 得43216510053110213300651015101021-=3300700015101021-=21700330015101021-=--=.注意 用性质将行列式变成三角行列式, 再用定义计算. 这种方法称为消元法.例1.9 计算行列式3111131111311113.解 先将下面各行加到第一行, 提取第一行的公因数6, 再用下面各行分别减去第一行. 得31111311113111133111131111316666=31111311113111116=4820000200002011116==.注意 如果行列式的列和(或行和)相等, 常使用上述技巧.例1.10 计算行列式yyx x-+-+1111111111111111.解 用第一列减第二列, 提取x ; 第三列减第四列, 提取y . 再用第二列, 第四列分别减第一列与第三列, 得yy x x -+-+1111111111111111yy y xx x --=110110101101y x xy--=111111010111011yx xy--=1000100001000122y x =.有时需要仔细观察行列式的结构, 才能找到最简捷的方法. 计算行列式时, 往往有多种方法. 应该考察各种路线, 从中选择最佳方案.习题1-21. 求证: bzay by ax bx az by ax bx az bzay bxaz bz ay by ax +++++++++yxzx z y z y x b a )(33+=. 2. 计算行列式efcfbfde cd bdae ac ab---. 3. 计算下列行列式.(1)2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d dc c c c b b b b a a a a ; (2) n222232222222221.4. 求t 的值, 使得行列式226332111=tt .5. 计算下列行列式(1)3214214314324321; (2)121212n n n x mx x x x m x x x x m---.6. 计算行列式01211111001na a a a, 其中021≠n a a a .7. 用两种方法计算行列式ab cc abbc a, 从而证明因式分解: ))((3222333bc ac ab c b a c b a abc c b a ---++++=-++.8. 计算行列式111212122212n nn n n na b a b a b a b a b a b a b a b a b ---------, 其中2>n .9. 计算行列式1231110000220000020011n n nn n------.10. 计算行列式aba ba b b a b a ba D n=2,其中未写出的元素都等于0.第三节 行列式的展开在本节中研究行列式按照一行或一列展开的公式, 从而可以将一个高阶行列式的计算转化为若干低阶行列式的计算.定义1.6 考虑n 阶行列式111212122212n n n n nna a a a a a a a a∑-=n np p p t a a a 2121)1(. 将行列式的元素ij a 所在的行与列删除(其余元素保持原来的相对位置), 得到的1-n 阶行列式称为元素ij a 的余子式, 记作ij M . 而称ij j i ij M A +-=)1(为元素ij a 的代数余子式.例如,行列式333231232221131211a a a a a a a a a 中元素12a 的余子式为2123123133aa M a a =, 而代数余子式为212312123133(1)a a A a a +=-.注意 左上角元素11a 的代数余子式11A 取正号, 其余正负相间. 特别, 主对角元素iia 的代数余子式ii A 全取正号.引理1.1 如果一个n 阶行列式D 的第i 行中只有ij a 不等于0, 则这个行列式等于ij a 与其代数余子式ij A 的乘积. 即ij ij A a D =.证 先考虑n j i ==的特殊情况. 根据定义, 为了产生非零项, 在行列式D 的第n 行只能取nn a . 于是, 有∑---=nn p n p p t a a a a D n 121)1(21)1( ∑---=121)1(21)1(n p n p p t nn a a a a ,其中t 是列标排列n p p p n 121- 的逆序数, 求和遍及1,,2,1-n 的所有排列121-n p p p . 然而排列n p p p n 121- 与排列121-n p p p 的逆序数相等, 因此, 上式右边的和式为nn p n p p tM a a an =-∑--121)1(21)1( nn nn n n A M =-=+)1(.于是, 有nn nn A a D =.现在考虑一般情况, 设行列式D 的第i 行中只有ij a 不等于0. 将D 的第i 行与第1+i 行交换, 再将所得行列式的第1+i 行与第2+i 行交换, 继续进行, 直到D 的第i 行移到最后一行, 而其他行的上下顺序不变. 在这个过程中, 共进行i n -次交换行. 用同样的方法, 将所得的行列式的第j 列逐步移到最后一列, 而其他列的左右顺序不变. 在这个过程中, 共进行j n -次交换列. 最后得到的行列式记作B , 则在B 的最后一行中只有最后一个元素ij a 不等于0, 而且ij a 在B 中的代数余子式就是ij a 在D 中的余子式ij M . 由前面证明的特殊情况, 有ij ij M a B =. 另一方面, 根据性质1.2, 有D B j n i n )()()1(-+--=, 即B D j i +-=)1(. 于是,有ij ij ij ij ji A a M a D =-=+)1(.定理1.3 对于n 阶行列式D , 有in in i i i i A a A a A a D +++= 2211; nj nj j j j j A a A a A a D +++= 2211.证 将行列式D 的第i 行的每个元素改写成n 个数的和, 其中由ij a 改写成的和中的第j 个加数等于ij a , 其他元素等于0. 用性质1.4的推广, 则D 等于n 个行列式的和. 在第j 个行列式的第i 行中, 只有属于第j 列的元素等于ij a , 其他元素等于0.对这n 个行列式分别用引理1.1, 得in in ij ij i i A a A a A a D ++++= 11.注意 用定理 1.3, 可以将一个n 阶行列式的计算转化为n 个1-n 阶行列式的计算. 不过, 当行列式的阶数较大时, 计算量仍然相当大. 除非在行列式中有很多元素等于0. 联合使用消元与按照一行(列)展开, 常能得到最简捷的计算路线.例1.11 计算行列式500134267002430.解 先按照第四行展开, 得50013426700243043032(1)5006241+=-321018006=-=-.有时用数学归纳法计算n 阶行列式是比较方便的. 不过此时需要行列式n D 与1-n D ,2-n D 之间的关系.例1.12 求证: 000100010000001n a b ab a b ab a b D a b ab a b+++=++b a b a n n --=++11. 证 计算可得ba b a b a D --=+=221, b a b a b ab a D --=++=33222. 设命题对于1-n 阶与2-n 阶行列式成立.考虑n 阶行列式, 按第一行展开, 得0001000100000001n a b ab a b ab a b D a bab a b +++=++00100()0001a baba b a b a b ab a b++=+++1000000001ab a b ab a bab a b+-++21)(---+=n n abD D b a b a b a n n --=++11.例1.13 求证: 123222212311111231111nn nn n n n nx x x x D x x x x x x x x ----=∏<-=ji i j x x )(. 解 当2=n 时, 有122x x D -=. 设命题对于1-n 阶行列式1-n D 成立. 考虑n 阶行列式n D , 从下边开始, 下面一行减去上面一行的1x 倍, 得123222212311111231111nn nn n n n nx x x x D x x x x x x x x ----=2131122133112222213311111100()()()0()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------=------232131122223111()()()n n n n n nx x x x x x x x x x x x ---=---111312)())((----=n n D x x x x x x ∏<-=ji i j x x )(.与前面的例题不同, 这里不是下面各行减去第一行, 而是下面一行减去其上面一行. 当然现在必须从第n 行开始, 逐行向上做.这个行列式称为范德蒙行列式. 易见, 当n x x x ,,,21 两两不同时, 范德蒙行列式不等于0. 这个性质产生了范德蒙行列式的许多应用.例1.14 求证: 211212212221212n n n n n na a a a a a a a a a D a a a a n a ++=+)1(!12∑=+=nk kka n .解 当1=n , 2111a D +=. 设命题对于1-n 阶行列式1-n D 成立. 考虑n 阶行列式n D , 按照最后一行分成两个行列式的和, 得21121221222121200n n n n n na a a a a a a a a a D a a a a n a ++=+++21121221221200n na a a a a a a a a a n++= 211212212221212n nn n na a a a a a a a a a a a a a a +++21121122122121112112(1)n n n n n a a a a a a a a a a na a a a n a -----++=-+110002nn na a a a +=21)!1(nn a n nD -+-211[(1)!(1)]n k k a n n k -==-+∑2(1)!n n a +-)1(!12∑=+=nk k ka n .推论 1.3 行列式的任意一行(列)的元素与另一行的元素的代数余子式的乘积之和等于零. 即当j i ≠时, 有02211=+++nj ni j i j i A a A a A a ; 02211=+++jn in j i j i A a A a A a .证 只证第一个等式. 反向用定理1,3, 则nj ni j i j i A a A a A a +++ 2211等于一个n 阶行列式. 这个行列式的第i 行与第j 行相同, 根据推论1.1, 该行列式等于0.习题1-31. 计算行列式11312111311021---=D 的第二行所有元素的余子式与代数余子式.2. 计算行列式0000000000000000n x y x y x D x y yx =.3. 求证: 11211000010000000001n nn n x x x D xa a a a a +----=-n n n n a x a x a x a ++++=--1110 .4. 求证: 210001210001200100021012n D n ==+.5. 设常数c b a ,,两两不等, 解方程01111)(33332222==x c b a x c b a x c b a x f .6. 求证: 12322221231231111nn n n n n nn n n nnx x x x D x x x x x x x x ----=∑∏=<-=nk k ij j i x x x 1)(.7. 求证: 1231111111111111111n na a D a a ++=++⎪⎪⎭⎫⎝⎛+=∑=ni i n aa a a 12111 , 其中 021≠n a a a .补充材料一 拉普拉斯展开前面是行列式按一行或一列展开. 这个结果可以推广为按若干行展开.行列式中任意k 行与k 列交叉处的元素, 按照原来相对位置组成的k 阶行列式称为原行列式的一个k 阶子式k D . 删除这k 行与k 列得到的k n -阶行列式k M 称为k 阶子式k D 的余子式, 而=k A ∑-+hh h j i )()1(k M 称为k D 代数余子式. 其中h h j i ,是k D 所在的行标与列标. 命题 设||A 是n 阶行列式, 任意取其中的k 行,n k <<0, 则行列式等于这k 行中所有k 阶子式与其代数余子式的乘积之和.证明略.注意 这个命题称为行列式的拉普拉斯展开. 展开时有kn C 项, 每项是一个k 阶子式与其代数余子式的乘积.例1 求证:行列式aba ba b b a b a b a D n=2n n b a b a )()(-+=.证 按照第一行与第n 2行展开, 得)1(2222)(--=n n D b a D . 用这个递推式即可得到所需结果.例2 求证:nnk n nkn nk k k k k k kk k k a a a a a a a a a a a a1,1,11,1.11,111110000++++++kk k k a a a a 1111=nnk n n k k k a a a a 1,,11,1++++ 证 按照前k 行展开.注意 由于右上角的元素都等于0,左下角的元素对行列式没有贡献. 当然, 如果左下角的元素都等于0, 也有类似结果.。
线性代数-行列式PPT课件

矩阵的秩和行列式
矩阵的秩和行列式之间也存在关系。矩阵的 秩等于其行向量或列向量生成的子空间的维 数,而行向量或列向量生成的子空间的维数 又等于该矩阵的阶数与非零特征值的个数之 和减去一,而一个矩阵的非零特征值的个数 又等于该矩阵的行列式的值。
05
特殊行列式介绍
二阶行列式
定义
二阶行列式表示为2x2的矩 阵,其计算公式为a11*a22a12*a21。
对于任何n阶方阵A,其行列式|A|和转置行列式|A^T|相等,即|A^T| = |A|。
行列式的乘法规则
总结词
行列式的乘法规则
详细描述
行列式的乘法规则是两个矩阵的行列式相乘等于它们对应元素相乘后的行列式。即,如果矩阵A和B分别是m×n 和n×p矩阵,那么它们的行列式相乘|AB| = |A||B|。
向量和向量的外积
行列式可以用来描述向量的外积,即两个向量的叉积。叉积 的结果是一个向量,其方向垂直于作为叉积运算输入的两个 向量,大小等于这两个向量的模的乘积与它们之间夹角的正 弦的乘积。
在线性方程组中的应用
解线性方程组
行列式可以用来判断线性方程组是否有 解,以及解的个数。如果一个线性方程 组的系数矩阵的行列式不为零,则该线 性方程组有唯一解;如果系数矩阵的行 列式为零,则该线性方程组可能无解、 有唯一解或有无穷多解。
线性代数-行列式ppt课件
• 引言 • 行列式的计算方法 • 行列式的性质 • 行列式的应用 • 特殊行列式介绍 • 行列式的计算技巧
01
引言
主题简介
01
行列式是线性代数中的基本概念 之一,用于描述矩阵的某些性质 和运算规则。
02
行列式在数学、物理、工程等领 域有广泛的应用,是解决实际问 题的重要工具。
线性代数第一章行列式课件

a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设
《线性代数》1-3n阶行列式的定义

05 矩阵与行列式关系探讨
矩阵概念回顾
矩阵定义
由数字组成的矩形阵列, 通常用大写字母表示,如 A、B、C等。
矩阵维度
矩阵的行数和列数,决定 了矩阵的规模。
矩阵元素
矩阵中的每个数字,用带 下标的字母表示,如 $a_{ij}$表示第i行第j列的 元素。
矩阵与行列式之间联系与区别
联系
行列式可以看作是一种特殊的矩阵,即方阵。对于n阶方阵,其行列式值可以通 过矩阵元素计算得出。
二阶行列式常用于解决二 元一次方程组等问题。
三阶行列式(3x3)计算步骤
选择第一行的元素,分别与 其对应的代数余子式相乘后
相加;
确定三阶行列式的形式,即 一个3x3的矩阵;
01
按照“+ - +”的符号规律依
次计算各项;
02
03
得到的结果即为三阶行列式 的值;
04
05
三阶行列式在计算向量混合 积、判断矩阵可逆性等方面
拉普拉斯定理
在n阶行列式中,任意取定k行(列),由这k行(列)的元素所构成的一切k阶 子式与它们的代数余子式的乘积的和等于行列式D的值
说明
拉普拉斯定理是按行展开定理的推广,它将n阶行列式的计算转化为k阶子式的 计算,降低了计算复杂度
拉普拉斯定理证明过程
构造法证明
通过构造一个特殊的矩阵,利用矩阵 的乘法和行列式的性质来证明拉普拉 斯定理
克拉默法则
克拉默法则是一种利用行列式 求解线性方程组的方法;
对于n元线性方程组,如果系数 行列式D不等于0,则方程组有唯
一解;
唯一解可以通过各未知数对应 的系数行列式的代数余子式与D 的比值求得;
克拉默法则在计算量较大时可 能不太适用,但其具有理论意 义和实用价值。
线性代数-行列式(完整版)

01
对于二元一次方程组,可以直接应用克拉默法则求解
未知数。
02
对于三元一次方程组,需要先判断系数矩阵的行列式
是否为零,若不为零,则可以使用克拉默法则求解。
03
对于更高元次的线性方程组,克拉默法则同样适用,
但计算量会随着元次的增加而急剧增大。
矩阵可逆性判别方法
01
一个方阵可逆的充分必要条件是其行列式不等于零。
行列式基本性质
行列式中如果有两行(或两列)元素成比例,则此行列式等于零。
若行列式的某一行(或某一列)的元素都是两数之和,例如第i行的元素都是两数之 和:$a_{ij}=b_{ij}+c_{ij}$,则此行列式等于两个行列式之和,这两个行列式的第i行 分别为$b_{ij}$和$c_{ij}$,其余各行与原行列式的相应的行相同。
对于一个n阶方阵A,其行列式记作|A|或det(A), 是一个数值。
行列式的值可以通过对矩阵元素进行特定的运算 得到,该运算满足一定的性质。
行列式基本性质
行列式与它的转置行列式相等。
交换行列式的两行(或两列),行列式变号。 行列式的某一行(或某一列)中所有的元素都乘以同一数k,等于用数k乘 此行列式。
克拉默法则介绍
克拉默法则(Cramer's Rule)是线性 代数中一个关于求解线性方程组的定理。
该法则适用于具有相同数量方程的方程组, 且系数矩阵的行列式不为零的情况。
克拉默法则通过计算系数矩阵的行 列式以及将系数矩阵的某一列替换 为常数项列后得到的新矩阵的行列 式,来求解方程组的解。
克拉默法则在方程组求解中应用
应用领域
范德蒙德行列式在多项式插值、数值分析等领域有广 泛应用。
范德蒙德行列式在多项式拟合中应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对角行列式
ann
11
a11 (3) a21 an 1,1 an1
a12 a22 an 1, 2 0
a1,n 1 a2,n 1 0 0
பைடு நூலகம்
a1n 0 0 = (1) 0
n ( n 1) 2
a1n a2,n 1 an1
(4)
1 1 x1 x2 2 x12 x2 n x1n 1 x2 1
n-1阶行列式 可化为 ……
n-2阶行列式
最终可用二阶、三阶行列式表示任意阶行列式。 注意:对角线法不适合四阶及四阶以上行列式的计算。 实际上,n阶行列式 展开式也有以下特点:
(1) 有n!项的代数和 Dn (2) 每项都取自n个不同列不同行,为n个元素乘积 (3) 每项前的符号一半为“+”,一半为“-”
6
推论: 推论:n阶行列式某一行(列)元素与另一行(列)对应元素代 数余子式乘积之和为0
ai1 A j1 + ai 2 A j 2 + + ain A jn = 0
或 例:
a1i A1 j + a2i A2 j + + ani A jn = 0
1 1 1 2 2 2
1
i ≠ j i, j = 1,2, , n
(1)
a11 0 0 a12 a1n a22 a2 n 0 0 ann 0 0 = a11a22 ann = a11a22 ann
上三角行列式
(2)
a11 a21 an1
a22
下三角行列式
an 2 ann a11 0 0 0 0
特例:
0 0 = a11a22 ann a22
(C) 3个
18
a
1 2
1
(十) 设三阶行列式
2
4 b ≠ 0 b
,则[
] (D) a≠
1 2
(A) b ≠ 0
1 (B) 1 a≠ 2
1 b =(C) a = 或 0 2 1 + a1 1 1 1 1 + a2 1 1 1 1 + a3
a1
b≠0
且
(十一) 三阶行列式 D = 3 (A) (1 + a )(1 + a )(1 + a ) 1 2 3 (C) ( 1 + 1 + 1 )a a a 1 2 3 a1 a2 a3
∴x 4 系数为 2, x3 (四) (D)
的系数为 -1
其它各列都加到行列式第一列去,然后提取第一列公因数得
1 a2 a3 a4 + x r r 4 1 a2 a3 + x a4 r2 r1 D = ∑ ai + x 3 1 1 a2 + x a3 a4 i =1 1 a2 a3 a4 r4 r1 4 = ∑ ai + x x 3 = 0 i =1 1 0 0 0 a2 0 x 0 a3 a4 + x x x 4 ∑ ai + x 0 x i =1 0 x
2 (五) 方程 2 D= 3 4 2 x 3 4 2 3 x 4 2 3 =0 4 x
∑
i =1
i
的解是[ (B) 2,3,4
2a1 2a2 2a3 b1 + c1 b2 + c2 b3 + c3
] (C) 0,1,2
3c1 3c2 = [ 3c3
(A) 1,2,3 3,4,5
a1 a (六) 已知 2 a3 b1 b2 b3 c1 c2 = m c3
其它答案 (六) C (十) C (十四) C (七) B (十一) B (十五) B (八) C (十二) A (九) A (十三) D
(A) 0
2 3 0 1
3 2 1 1
4 A41 + 3 A42 + 2 A43
=[
] (D) –5 系数为[ (D) 1, 2 ]
(B) 1
(C) 5
(三) 设
2x 1 D ( x) = 3 (A) –2, 1 1
x x 2 1
1 2 则 3 中 和 4 1 1 D (x) x x x 1 1(B) –1, 2 x (C) –1, -2
c j ci
9
例:
a b 0 0 d a d e b e c 0 =? f c f
1 1 1 2 1 1 2 1 0 3 2 2 1 1 1 0
1 2 3 2 3 4 =? 4 6 8
2 1
3 2
4 3
ka kb kc = ?
a1 + 2 a2 + 3 a3 + 4 = ?
例:计算
10
几个特别的行列式
1 xn 2 xn = ∏ ( xi x j ) 1≤ j ≤i ≤ n n xn 1
范达蒙行列式
例: 1
1 1 2 5 7 4 25 49
12
例:
1
2 1
3 1
x 1 1 1
(1) D3 = 0
(2) D4 = 1 x 1 1
1 1 x 1 1 1 1 x
101 98 103
0
1 0 0 0
a2 (十五) b2 D= 2 c d2 (a + 1) 2 (b + 1) 2 (c + 1) 2 (d + 1) 2
2
(A)
(a + 2) 2 (b + 2) 2 (c + 2) 2 (d + 2) 2
(B) 0
(a + 3) 2 (b + 3) 2 =[ 2 (c + 3) (d + 3) 2
22
(五) (B) 第一行公因数 2
1 2 D=2 3 4 1 x 3 4 1 3 x 4 1 r2 2r1 3 r3 3r1 2 4 r4 4r1 x 1 1 1 1 0 x2 1 1 =0 0 0 x3 1 0 0 0 x4
得 2( x 2)( x 3)( x 4) = 0 x = 2, x = 3, x = 4 1 2 3
2
三阶行列式的特点: 三阶行列式的特点:
1. 有3!项的代数和 2. 每项三个元素乘积,且三元素来自不同的行不同的列 3. 正、负号项各占一半
三阶行列式的性质: 三阶行列式的性质:
三阶行列式D的值为任一行(列)元素和其对应代数余子 式乘积之和。
或 例
D = ai1 Ai1 + ai 2 Ai 2 + ai 3 Ai 3
D = a1 j A1 j + a2 j A2 j + a3 j A3 j
x 2 3 D= 3 x 1 2 1 x
i = 1,2,3
j = 1,2,3
3
2
n阶行列式定义 阶行列式定义
)个数 ij (= 1,2, , n a i
a12 a1n a11 A11 + a12 A12 + + a1n A1n
计算
1 0 D= 1 0
2 0 3 1 2
1 1
0
例:
2
1
0 1 5
求
A11 + 2 A12 + A13 + A14 = ?
1 2 D= 1 4 5
1 1 6
7
3 行列式性质
转置行列式: 转置行列式:将行列式D第i行元素变成第i列元素(i=1,2,…,n) ,所得行列式称为D的转置,记为 性质1: 性质 : 或
线性代数Ⅰ 行列式 线性代数Ⅰ—行列式
1
1 二阶、三阶行列式 二阶、
二阶行列式
a11 a21 a12 a22 表示行列式第i行、j列元素 aij a11a22 a12 a21
三阶行列式
a11 a12 a13 a21 a22 a23 a11a22 a33 + a12 a23 a31 + a13 a21a32 a31 a32 a33 a13 a22 a31 a11a23a32 a12 a21a33
0 2
0 0
(3)
0 Dn = 0 n
0 n 1 0 0
(4)设
xyz ≠ 0
,计算
1+ x 1
2 2+ y 2
3 3 3+ z
D3 = 1
13
(5) 1
2
3
n 1 0 0
n 0 0
1 1 0 0 2 2 0 0 0
n 1 1 n
a1 (6) 0 0 b4
0 a2 b3 0
1 5
16 9 49 25 64 27 343 125
15
例题和习题
0 0 0 λ1 (一) 行列式 0 0 λ2 0 λn 0 0 0
的值为[
n ( n 1)
] (D)
(A) 0
(B) λ λ1λ2 n
4 1 2 6
(C) (1) 2 λ1λ2 λn 则
λ1λ2 λn
1 (二) 设 4 A= 2 5
3 0 0 0
2 0 0 1
1 2 0 1 0 3 1 1 2
4 5 2 7 1
的值为[ (C) -102
] (D) 102
0 0 2
(B) -100
(十四) n 阶行列式D满足[
(A) D n (B) 主对角中元素全为0
]条,则 = 0 Dn 中0元素个数多于 n 个
(C) D中有一列元素是另外二列之和 (D) D中每个元素均为两数之和
D′
DT
D = D′ 性质2: 性质 :交换行列式两行(列)元素位置,行列式变号
性质3: 性质 :行列式某行元素全为0,则行列式为0 性质4: 性质 :行列式某两行(列)元素对应成比例(或对应 相等),行列式为0