2018-2019学年初中数学有理数、整式的加减、一元一次方程和几何初步期末考试测试题

合集下载

七年级数学期末复习教案(有理数、整式、一元一次方程、几何图形)

七年级数学期末复习教案(有理数、整式、一元一次方程、几何图形)
6.
a 我们来定义一种运算: c 2 b =ad-bc.例如 d 4
3 = 2× 5 5
x -3×4=-2;再如 1
2 =3x-2,按照这种定义,当x为何值 3 ) 3 C.x= 2 1 D. x = 2
x-1 2 x-1 -4 = ( 时, 2 1 1 x 2 2
位长度至N点,点N表示的数是(
A.6 B.-2 C.-6 D.6或-2 [答案] D
)
七年级数学有理数
典型例题
6.-22,(-1)2,(-1)3的大小顺序是( )
A.-22<(-1)2<(-1)3
B.-22<(-1)3<(-1)2 C.(-1)3<-22<(-1)2 D.(-1)2<(-1)3<-22 [答案] B
典型易错题复习
典型例题
4.一个多项式加上 ab-3b2等于b2-2ab+a2,则这个多项式
为(
)
A.4b2-3ab+a2 B.-4b2+3ab-a2 C.4b2+3ab-a2 D.a2-4b2-3ab [答案] A
七年级数学整式
典型例题
5.
1 已知式子A=2x2+3xy+2y-1,B=x2-xy+x- . 2 (1)当x=y=-2时,求A-2B的值; (2)若A-2B的值与x的取值无关,求y的值.
七年级数学整式
典型例题
2.若A是一个三次多项式,B是一个二次多项式,则A-B一定是( )
A.三次多项式或单项式
B.四次多项 C.七次多项式
D.四次七项式
[答案] A
七年级数学整式
典型例题
2 多项式- a2b+3a2-1是________次________项式. 3
Hale Waihona Puke 3.[答案] 三三

人教版初中数学章节目录(新版)

人教版初中数学章节目录(新版)
20.3 课题学习 体质健康测试中的数据分析
21.1 一元二次方程 21.2 解一元二次方程 21.3 实际问题与一元二次方程 22.1 二次函数的图像与性质 22.2 二次函数与一元二次方程 22.3 实际问题与二次函数 23.1 图形的旋转 23.2 中心对称 23.3 课题学习 图案设计 24.1 圆的有关性质 24.2 点和圆、直线和圆的位置关系 24.3 正多边形和圆 24.4 弧长和扇形面积 25.1 随机事件与概率 25.2 用列举法求概率 25.3 用频率估计概率 26.1 反比例函数 26.2 实际问题与反比例函数 27.1 图形的相似 27.2 相似三角形 27.3 位似 28.1 锐角三角函数 28.2 解直角三角形及其应用 29.1 投影 29.2 三视图
第十二章 全等三角形 第十三章 轴对称
八年级 数学 (上 册)
第十三ห้องสมุดไป่ตู้ 轴对称
第十四章 整式的乘除与因式分解
第十五章 分式
八年级 数学 (下 册)
第十六章 二次根式 第十七章 勾股定理 第十八章 平行四边形 第十九章 一次函数
第二十章 数据的分析
第二十一章 一元二次方程
九年级 数学 (上 册)
第二十二章 二次函数 第二十三章 旋转 第二十四章 圆
第二十五章 概率初步
第二十六章 反比例函数
九年级 数学
(下册)
第二十七章 相似 第二十八章 锐角三角函数
第二十九章 投影与视图
九年级 数学
(下册)
第二十九章 投影与视图
人教版初中数学目录
1.1 正数和负数 1.2 有理数 1.3 有理数的加减法 1.4 有理数的乘除法 1.5 有理数的乘方 2.1 整式 2.2 整式的加减 3.1 从算式到方程 3.2 解一元一次方程(一)----合并同类项与移项 3.3 解一元一次方程(二)----去括号与去分母 3.4 实际问题与一元一次方程 4.1 几何图形 4.2 直线、射线、线段 4.3 角 4.4 课题学习 设计制作长方体 形状的包装纸盒 5.1 相交线 5.2 平行线及其判定 5.3 平行线的性质 5.4 平移 6.1 平方根 6.2 立方根 6.3 实数 7.1 平面直角坐标系 7.2 坐标方法的简单应用 8.1 二元一次方程组 8.2 消元----解二元一次方程组 8.3 实际问题与二元一次方程组 8.4 三元一次方程组的解法 9.1 不等式 9.2 一元一次不等式 9.3 一元一次不等式组 10.1 统计调查 10.2 直方图 10.3 课题学习 从数据谈节水 11.1 与三角形有关的线段 11.2 与三角形有关的角 11.3 多边形及其内角和 12.1 全等三角形 12.2 全等三角形的判定 12.3 角的平分线的性质 13.1 轴对称 13.2 轴对称图形 13.3 等腰三角形

2018-2019学年初中数学有理数、整式的加减、一元一次方程和几何初步期中考试测试题

2018-2019学年初中数学有理数、整式的加减、一元一次方程和几何初步期中考试测试题

2018-2019学年初中数学有理数、整式的加减、一元一次方程和几何初步期中考试测试题数学 2018.7本试卷共5页,120分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共10小题,每小题3分,共30分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.M=4x2-5x+11,N=3x2-5x+10,则M与N的大小关系是( )A.M>N B.M=N C.M<N D.无法确定2.如图所示的三角形数阵叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n行有n个数,且两端的数均为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( )A.B.C.D.3.下列说法正确的是( )A.a是代数式,1不是代数式B.-的系数-,次数是4C.xy的系数是0D.a,b两数差的平方与a,b两数的积的4倍的和表示为(a-b)2+4ab4.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“害”字一面的相对面上的字是( )A.了B.我C.的D.国5.下列各式中,不是同类项的是( )A.2ab2与-3b2a B.2πx2与x2C.-m2n2与5n2m2D.-与6yz2 6.如果电梯上升5层记为+5,那么电梯下降2层应记为( )A.+2B.-2C.+5D.-57.将一些完全相同的正三角形按如图所示规律摆放,第一个图形有1个正三角形,第二个图形有5个正三角形,第三个图形有12个正三角形,…,按此规律排列下去,第六个图形中正三角形的个数是()A.35B.41C.45D.518.8的倒数是()A.﹣8B.8C.D.﹣9.若2x a-1y2与-3x6y2b是同类项,则a、b的值分别为( )A.a=7,b=1B.a=7,b=3C.a=3,b=1D.a=1,b=3 10.计算-5+2的结果是( )A.-3B.-1C.1D.3二、填空题共10小题,每小题3分,共30分。

2018~2019学年初一数学期末考试试卷答案

2018~2019学年初一数学期末考试试卷答案

太原市2018-2019学年第二学期七年级期末考试数学试题参考答案及评分标建议二、填空题(每小题3分,共15分)11. 2 12. 答案不唯一,如 13.3 14.8 15.A. 40 B.α三、解答题(共8个小题,共55分) 16.(本题12分) 解:(1)原式=9a 4b 2÷(-15ab 2) …………………………………………………….1分 =. ………………………………………………………………….3分(2)原式=3a 2-2a+3a-2 ……..…………………………………………………….2分 =3a 2+a-2. …………...……………………………………………………3分(3)原式=20192-(2019+1)×(2019-1) ………………………………………1分 =20192-(20192-1) …………………………………………………. 2分 =1. ………………...…………………………………………………….3分(4)原式=()()33x y z x y z +++-⎡⎤⎡⎤⎣⎦⎣⎦ ………………………………………. 1分 =(3x+y)2-z 2 ……………………………………………………………. 2分 =9x 2+6xy+y 2-z 2. ………………………………………………………. 3分 17.(本题5分)解:原式=x 2+4xy+4y 2-(4xy+5y 2-1) ............................................................. 2分 =x 2+4xy+4y 2-4xy-5y 2+1 ............................................................... 3分 =x 2-y 2+1. . (4)当x =-1,y =-2时, 原式=(-1)2-(-2)2+1=1-4+1=-2. …………………………………………………………………………….5分18.(本题5分)解:从纸箱中任意摸出一球共有50种结果,每种结果出现的可能性相同. ………….2分 某顾客获得餐费打折优惠的结果有3+5+12=20种. ……………………………… 3分所以他获得餐费打折优惠的概率为202=.505…………………………………..……...5分19.(本题4分) 解:如图:……………………………………………….3分结论:如图,△ECD 即为所求. ………………………………………………………….4分 【说明】作图方法不唯一,只要正确均可得分. 20.(本题6分)解:AC 与DF 的数量关系和位置关系分别为:AC=FD ,AC ∥FD.理由:∵AB ∥EF , ∴∠B=∠E. ……………………………………………………... 1分 ∵BD=CE ,∴BD+CD=CE+CD ,即BC=ED. …………………………….. . 2分 在△ABC 和△FED 中,⎪⎩⎪⎨⎧=∠=∠∠=∠ED BC E B F A ,, ∴△ABC ≌△FED (AAS ) . ……...3分∴AC=FD ,∠ACB=∠FDE , ……………………………………………………... 5分 ∴AC ∥FD. ………………………………………………………………………... 6分 21.(本题6分)解:(1)当地温度x ;蟋蟀1min 叫的次数y ;……………………………………………2分 【说明】如果学生只用用文字或只用字母描述变量的,也可得分.(2)当地温度x 每增加1℃,蟋蟀1min 叫的次数y 就增加7次;…………………….3分 (3)y =7x-21;……………………………………………………………………………...4分 (4)当y =105时,7x-21=105. …………………………………………………………...5分 解,得x =18.答:此时当地的温度为18℃. ………………………………………………………...6分 22.(本题7分)(1)理由:在△ABC 和△A ’B ’C ’中,⎪⎩⎪⎨⎧=∠=∠='''''C B BC B B B A AB ,, ∴△ABC ≌△A ’B ’C ’(SAS ) ………………………………………………………..1分∴AC=A ’C ’,∠BAC=∠B ’A ’C ’,∠ACB=∠A ’C ’B ’. ………………………………….. .2分 在△ACD 和△A ’C ’D ’中,⎪⎩⎪⎨⎧===''''''D A AD D C CD C A AC ,, ∴△ACD ≌△A ’C ’D ’(SSS ). ………………………………………………………..3分 ∴∠D=∠D ’,∠DAC=∠D ’A ’C ’,∠ACD=∠A ’C ’D ’,∴∠BAC+∠DAC=∠B ’A ’C ’+∠D ’A ’C ’,∠ACB+∠ACD=∠A ’C ’B ’+∠A ’C ’D ’,即∠BAD=∠B ’A ’D ’,∠BCD=∠B ’C ’D ’, ……………………………………………..4分 ∴四边形ABCD ≌四边形A ’B ’C ’D ’. ………………………………………………...5分 (2)A :不能; ……………………………………………………………………………… 7分 B :答案不唯一,如∠BAD=∠B ’A ’D ’,∠D=∠D ’或AD=A ’D ’,∠BAD=∠B ’A ’D ’. ……7分 23.(本题10分) 解:(1)CE =2AD. ………………………………………………………………………1分 理由:过点B 作BG ⊥l 于点G.∵∠ACB =90°, ∴∠1+∠2=90°. ∵AD ⊥l 于点D , ∴∠ADC =90°.∴∠1+∠3=90°. ∴∠2=∠3. ……………………………………………2分 在△ADC 和△CGB 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,23BC AC CGB ADC ,,∴△ADC ≌△CGB.∴AD =CG. …………………………………………………………………… 3分 ∵BC =BE ,BG ⊥CE , ∴CG =EG. ………………………………… 4分 ∴CE =2CG , ∴CE=2AD. …………………………………… 5分 (2)A 题:CP =AD+NH. ………………………………………………………… 6分 理由:过点B 作BG ⊥l 于点G. ∵∠ACB =90°, ∴∠1+∠2=90° ∵AD ⊥l 于点D , ∴∠ADC =90°. ∴∠1+∠3=90°. ∴∠2=∠3.在△ADC 和△CGB 中,,3=2,A D C C GB AC C B =⎧⎪⎨⎪=⎩∠∠∠∠,123456∴△ADC ≌△CGB.∴AD =CG. …………………………………………………7分 ∵∠BPN =90°, ∴∠4+∠5=90°. ∵NH ⊥l 于点H , ∴∠NHP =90°.∴∠5+∠6=90°. ∴∠4=∠6. …………………………………………… 8分 在△BPG 和△PNH 中,,4=6,B G P P H N B P N P =⎧⎪⎨⎪=⎩∠∠∠∠, ∴△BPG ≌△PNH ,∴PG =NH. ………………………………………………9分 ∵CP =CG+PG, ∴CP =AD+NH. ……………………………………10分 B :CD =2(NH-AD ). ………………………………………………… 6分 理由:过点B 作BG ⊥l 于点G. ∵∠ACB =90°, ∴∠ACD+∠BCG =90°. ∵AD ⊥l 于点D , ∴∠ADC =90°. ∴∠DAC+∠ACD =90°. ∴∠DAC =∠BCG.在△ADC 和△CGB 中,,ADC CGB DAC BCG AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△ADC ≌△CGB.∴AD =CG. …………………………………………………7分 ∵∠BPN =90°, ∴∠NPH+∠BPG =90°. ∵NH ⊥l 于点H ,∴∠NHP =90°. ∴∠NPH+∠HNP =90°.∴∠BPG =∠HNP. …………………………………………………8分 在△BPG 和△PNH 中,,BGP PHN BPG HNP BP NP ∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△BPG ≌△PNH ,∴PG =NH. ∵CP =PG- CG,∴CP =NH- AD. …………………………………………………9分 ∵点P 是CD 的中点,∴CD =2CP.∴CD =2(NH- AD ). …………………………………………………10分评分说明:以上各题的其他解法,请参照此标准评分.。

人教版2018-2019学年七年级上册数学期末考试题及答案

人教版2018-2019学年七年级上册数学期末考试题及答案

2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,满分12分)1.(2分)设某数为m,则代数式表示()A.某数的3倍的平方减去5除以2B.某数平方的3倍与5的差的一半C.某数的3倍减5的一半D.某数与5的差的3倍除以22.(2分)如果将分式中的x和y都扩大到原来的3倍,那么分式的值()A.不变B.扩大到原来的9倍C.缩小到原来的D.扩大到原来的3倍3.(2分)()0的值是()A.0B.1C.D.以上都不是4.(2分)数学课上老师出了一道因式分解的思考题,题意是x2+2mx+16能在有理数的范围内因式分解,则整数m的值有几个.小军和小华为此争论不休,请你判断整数m的值有几个?()A.4B.5C.6D.85.(2分)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1B.2C.3D.46.(2分)如图,五角星绕着它的旋转中心旋转,使得△ABC与△DEF重合,那么旋转角的度数至少为()A.60°B.120°C.72°D.144°二、填空题(本大题共12小题,每小题2分,满分24分)7.(2分)计算:(a3)2=.8.(2分)已知单项式与单项式3a2b m﹣2是同类项,则m+n=.9.(2分)计算:(﹣12x2y3z+3xy2)÷(﹣3xy2)=.10.(2分)因式分解:2x2﹣18=.11.(2分)因式分解:9a2﹣12a+4=.12.(2分)在分式,,,,中,最简分式有个.13.(2分)方程如果有增根,那么增根一定是.14.(2分)将代数式3x﹣2y3化为只含有正整数指数幂的形式是.15.(2分)用科学记数法表示:﹣0.000321=.16.(2分)等边三角形有条对称轴.17.(2分)如图,三角形ABC三边的长分别为AB=m2﹣n2,AC=2mn,BC=m2+n2,其中m、n都是正整数.以AB、AC、BC为边分别向外画正方形,面积分别为S1、S2、S3,那么S1、S2、S3之间的数量关系为.18.(2分)如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为.(结果保留π)三、简答题(本大题共6小题,每小题6分,满分36分)19.(6分)计算:(m+3n)(3m﹣n)﹣2(m﹣n)2.20.(6分)计算:(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2).21.(6分)因式分解:x3+x2y﹣xy2﹣y3.22.(6分)分解因式:(x2﹣x)2+(x2﹣x)﹣6.23.(6分)解方程:.24.(6分)先化简,再求值:•(1+)÷,其中m=2019.四、画图题(本题满分6分)25.(6分)在图中网格上按要求画出图形,并回答问题:(1)如果将三角形ABC平移,使得点A平移到图中点D位置,点B、点C的对应点分别为点E、点F,请画出三角形DEF;(2)画出三角形ABC关于点D成中心对称的三角形A1B1C1;(3)三角形DEF与三角形A1B1C1(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O.五、解答题(本大题共3小题,第26、27各7分,28题8分,满分22分)26.(7分)依法纳税是每个公民应尽的义务.新税法规定:居民个人的综合所得,以每一纳税月收入减去费用5000元以及专项扣除、专项附加扣除和依法确定的其它扣除后的余额,为个人应纳税所得额.已知李先生某月的个人应纳税所得额比张先生的多1500元,个人所得税税率相同情况下,李先生的个人所得税税额为76.5元,而张先生的个人所得税税额为31.5元.求李先生和张先生应纳税所得额分别为多少元.(个人所得税税率=)27.(7分)阅读材料:已知,求的值解:由得,=3,则有x+=3,由此可得,=x2+=(x+)2﹣2=32﹣2=7;所以,.请理解上述材料后求:已知=a,用a的代数式表示的值.28.(8分)如图,已知一张长方形纸片,AB=CD=a,AD=BC=b(a<b<2a).将这张纸片沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G.(1)在图中确定点F、点E和点G的位置;(2)连接AE,则∠EAB=°;(3)用含有a、b的代数式表示线段DG的长.2018-2019学年上海市闵行区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,满分12分)1.【解答】解:∵设某数为m,代数式表示:某数平方的3倍与5的差的一半.故选:B.2.【解答】解:∵=,∴扩大到原来的3倍,故选:D.3.【解答】解:()0=1.故选:B.4.【解答】解:∵4×4=16,(﹣4)×(﹣4)=16,2×8=16,(﹣2)×(﹣8)=16,1×16=16,(﹣1)×(﹣16)=16,∴4+4=2m,﹣4+﹣4=2m,2+8=2m,﹣2﹣8=2m,1+16=2m,﹣1﹣16=2m,分别解得:m=4,﹣4,5,﹣5,8.5,﹣8.5;∴整数m的值有4个,故选:A.5.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.6.【解答】解:五角星的五个角可组成正五边形,而正五边形的中心角为=72°,所以五角星绕着它的旋转中心至少顺时针旋转2个72°,使得△ABC与△DEF重合.故选:D.二、填空题(本大题共12小题,每小题2分,满分24分)7.【解答】解:(a3)2=a6.故答案为:a6.8.【解答】解:∵单项式与单项式3a2b m﹣2是同类项,∴n+1=2,m﹣2=3,解得:n=1,m=5,m+n=5+1=6.故答案为:6.9.【解答】解:原式=4xyz﹣1故答案为:4xyz﹣1.10.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).11.【解答】解:9a2﹣12a+4=(3a﹣2)2.12.【解答】解:==,是最简分式,==m﹣n,==,==﹣1,所以最简分式只有1个,故答案为:1.13.【解答】解:去分母得m=1+2(x﹣1),整理得m=2x﹣1,∵方程有增根,∴x﹣1=0,即x=1,∴m=2×1﹣1=1,即m=1时,分式方程有增根,增根为x=1.故答案为x=1.14.【解答】解:3x﹣2y3=3××y3=,故答案为:.15.【解答】解:﹣0.000321=﹣3.21×10﹣4.故答案为:﹣3.21×10﹣4.16.【解答】解:等边三角形有3条对称轴.故答案为:3.17.【解答】解:∵AB=m2﹣n2,AC=2mn,BC=m2+n2,∴AB2+AC2=BC2,∴△ABC是直角三角形,设Rt△ABC的三边分别为a、b、c,∴S1=c2,S2=b2,S3=a2,∵△ABC是直角三角形,∴b2+c2=a2,即S1+S2=S3.故答案为:S1+S2=S3.18.【解答】解:∵△AOC≌△BOD∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=5π,故答案为5π.三、简答题(本大题共6小题,每小题6分,满分36分)19.【解答】解:原式=3m2+8mn﹣3n2﹣2(m2﹣2mn+n2)=3m2+8mn﹣3n2﹣2m2+4mn﹣2n2=m2+12mn﹣5n220.【解答】解:(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2).=.=.=.=.21.【解答】解:原式=(x3+x2y)﹣(xy2+y3)=x2(x+y)﹣y2(x+y)=(x+y)2(x﹣y).22.【解答】解:原式=(x2﹣x+3)(x2﹣x﹣2)=(x2﹣x+3)(x+1)(x﹣2).23.【解答】解:方程两边同乘以2(3x﹣1),得:﹣2+3x﹣1=3,解得:x=2,检验:x=2时,2(3x﹣1)≠0.所以x=2是原方程的解.24.【解答】解:原式=••=••=,当m=2019时,原式==.四、画图题(本题满分6分)25.【解答】解:(1)如图所示,△DEF即为所求.(2)如图所示,△A1B1C1即为所求;(3)如图所示,△DEF与△A1B1C1是关于点O成中心对称,故答案为:是.五、解答题(本大题共3小题,第26、27各7分,28题8分,满分22分)26.【解答】解:设张先生应纳税所得额为x元,则李先生应纳税所得额为(x+1500)元.依题意得,=,解得x=1050,经检验:x=1050是原方程的根且符合题意,当x=1050时,x+1500=2550(元),答:李先生和张先生的应纳税所得额分别为2550元、1050元.27.【解答】解:由=a,可得=,则有x+=﹣1,由此可得,=x2++1=﹣2+1=﹣1=﹣1=,所以,=.28.【解答】解:(1)点F、点E和点G的位置如图所示;(2)由折叠的性质得:∠DAE=∠EAB,∵四边形ABCD是矩形,∴∠BAD=∠DAE+∠EAB=90°,∴∠EAB=45°,故答案为:45;(3)由折叠的性质得:DG=EG,∵∠ABE=90°,∠EAB=45°,∴∠AEB=45°,∴BE=AB=a,∴CE=b﹣a,设CG=x,则DG=EG=a﹣x,在Rt△CEG中,CG2+CE2=EG2,即x2+(b﹣a)2=(a﹣x)2,解得:x=,∴DG=a﹣x=a﹣=a﹣b+.。

2018-2019学年人教版七年级(上)期末数学试卷(含答案)

2018-2019学年人教版七年级(上)期末数学试卷(含答案)

2018-2019 学年七年级(上)期末数学试卷一、选择题(本大题共10 小题,每小题3 分,共30 分)1.(3 分)2 的绝对值是()A.2 B.﹣2 C.2 或﹣2 D.2 或2.(3 分)化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.(3 分)下列方程是一元一次方程的是()A.3x+1=5x B.3x2+1=3x C.2y2+y=3 D.6x﹣3y=1004.(3 分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C 中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,05.(3 分)下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b6.(3 分)一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+287.(3 分)下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角D.互余的两个角不可能相等8.(3 分)已知a﹣2b 的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.29.(3 分)已知线段AB=10cm,在直线AB 上有一点C,且线段BC=4cm,点M 是线段AC 的中点,则AM 的长为()A.3cm B.7cm C.6cm D.3cm 和7cm10.(3 分)如图,当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成 3 个角;当过O点画不重合的4 条射线时,共组成6 个角;….根据以上规律,当过O 点画不重合的10 条射线时,共组成()个角.A.28 B.36 C.45 D.55二、填空题(本大题共5 小题,每小题3 分,共15 分,把答案写在题中横线上)11.(3 分)A 看B 的方向是北偏东21°,那么B 看A 的方向是.12.(3 分)已知14x6y2与﹣31x3m y2是同类项,则12m﹣24= .13.(3 分)对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x 的值为.14.(3 分)如图,∠AOB=30°,∠BOC=70°,OE 是∠AOC 的平分线,则∠BOE 的度数为.15.(3 分)有m 辆客车及n 个人,若每辆客车乘40 人,则还有10 人不能上车;若每辆客车乘43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2 ;③= ;④= ;⑤43m=n+2.其中正确的是(只填序号).三、解答题(本大题共7 小题,共55 分,解答应写出证明过程或演算步骤)16.(6 分)计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)217.(7 分)(1)化简:3a3﹣(3a2+b2﹣5b)+a2﹣5b+b2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣18.(8 分)解方程:(1)3(x﹣1)+2(x+1)=﹣6(2)=1+19.(6 分)列方程解应用题某文具店一支铅笔的售价为1.2 元,一支圆珠笔的售价为2 元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60 支,卖得87 元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?20.(8 分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)填空:与∠AOE 互补的角是;(2)若∠AOD=36°,求∠DOE 的度数;(3)当∠AOD=x°时,请直接写出∠DOE 的度数.21.(8 分)阅读思考我们知道,在数轴上|a|表示数a 所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b 表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q 两点表示的数分别是﹣1 和2,那么P,Q 两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A 在数轴上对应的数为a,点 B 对应的数为b,且a、b 满足|a+3|+(b ﹣2)2=0(1)求线段AB 的长;(2)如图,点C 在数轴上对应的数为x,且x 是方程2x+1=x﹣8 的解,①求线段BC 的长;②在数轴上是否存在点P 使PA+PB=BC?若存在,直接写出点P 对应的数:若不存在,说明理由.22.(12 分)我国出租车的收费标准因地而异,甲市规定:起步价为6 元,3 千米之后每千米1.4 元:;乙市规定:起步价8 元,3 千米之后每千米1.2 元.(1)分别求出在甲市乘出租车2 千米,5 千米应付的车费;(2)在甲、乙两市乘出租车x (x>3)千米时应付的车费各是多少元(用含有x 的式子表示);(3)若某乘客需在甲、乙两市乘出租车15 千米,请你算一算在哪个城市乘出租车便宜?(4)如果李先生在甲、乙两市乘出租车所付的车费相等,试算出李先生乘出租车多少干米,参考答案与试题解析一、选择题(本大题共10 小题,每小题3 分,共30 分)1.(3 分)2 的绝对值是()A.2 B.﹣2 C.2 或﹣2 D.2 或【分析】根据正数的绝对值是它本身,可得答案.【解答】解:2 的绝对值是2.故选:A.【点评】本题考查了绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0.2.(3 分)化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n【分析】利用分配律把括号内的 2 乘到括号内,然后利用去括号法则求解.【解答】解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.【点评】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.3.(3 分)下列方程是一元一次方程的是()A.3x+1=5x B.3x2+1=3x C.2y2+y=3 D.6x﹣3y=100【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、是一元一次方程,故此选项正确;B、不是一元一次方程,故此选项错误;C、不是一元一次方程,故此选项错误;D、不是一元一次方程,故此选项错误;故选:A.【点评】此题主要考查了一元一次方程定义,关键是理解一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.4.(3 分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C 中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,0【分析】使得它们折成正方体后相对的面上两个数互为相反数,则 A 与﹣1,B 与3;C 与0 互为相反数.【解答】解:根据以上分析:填入正方形A,B,C 中的三个数依次是1,﹣3,0.故选:A.【点评】本题主要考查人们的空间想象能力,请不要忘记正方体展开时的各种情形.5.(3 分)下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b【分析】根据等式的性质:等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立,可得答案.【解答】解:A、左边乘以,右边乘以,故A 错误;B、左边乘以2,右边乘以,故B 错误;C、左边加(2x+1),右边加1,故C 错误;D、两边都加2,故D 正确;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立.6.(3 分)一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+28【分析】根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.【解答】解:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选:B.【点评】考查列一元一次方程;根据售价的两种不同方式列出等量关系是解决本题的关键.7.(3 分)下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角D.互余的两个角不可能相等【分析】利用余角与补角定义,线段的性质,以及度分秒性质判断即可.【解答】解:A、38.15°=38.9′,故选项正确;B、两点之间,线段最短,故选项错误;C、有公共顶点的两条射线组成的图形叫做角,故选项错误;D、互余的两个角可能相等,故选项错误.故选:A.【点评】此题考查了余角和补角,线段的性质,以及度分秒的换算,熟练掌握各自的性质是解本题的关键.8.(3 分)已知a﹣2b 的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.2【分析】把a﹣2b=﹣2 代入(a﹣2b)2+2(a﹣2b),计算求值即可.【解答】解:把a﹣2b=﹣2 代入(a﹣2b)2+2(a﹣2b)得:(﹣2)2+2×(﹣2)=4﹣4=0故选:C.【点评】本题考查代数式求值,掌握代入求值的方法是解题的关键.9.(3 分)已知线段AB=10cm,在直线AB 上有一点C,且线段BC=4cm,点M 是线段AC 的中点,则AM 的长为()A.3cm B.7cm C.6cm D.3cm 和7cm【分析】应考虑到A、B、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论.【解答】解:①如图1 所示,当点C 在点A 与B 之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M 是线段AC 的中点,∴AM= AC=3cm,②当点 C 在点B 的右侧时,∵BC=4cm,∴AC=14cmM 是线段AC 的中点,∴AM=AC=7cm.综上所述,线段AM 的长为3cm 或7cm.故选:D.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.10.(3 分)如图,当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成 3 个角;当过O点画不重合的4 条射线时,共组成6 个角;….根据以上规律,当过O 点画不重合的10 条射线时,共组成()个角.A.28 B.36 C.45 D.55【分析】根据题意得出规律.若从点O 出发的n 条射线,可以组成角的个数是:,代入计算即可.【解答】解:当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成3 个角;当过O 点画不重合的 4 条射线时,共组成 6 个角;….根据以上规律,当过O 点画不重合的n 条射线时组成的角的个数是:,故当n=10 时,=45;故选:C.【点评】本题考查了角的概念,图形的变化类;根据题意得出规律公式是解决问题的关键.二、填空题(本大题共5 小题,每小题3 分,共15 分,把答案写在题中横线上)11.(3 分)A 看B 的方向是北偏东21°,那么B 看A 的方向是南偏西21°.【分析】首先根据从A 看B 的方向是北偏东21°正确作出A 和B 的示意图,然后根据方向角定义解答.【解答】解:从B 看A 的方向是南偏西21°.故答案是:南偏西21°.【点评】本题考查了方向角的定义,正确作出 A 和 B 的位置示意图也是关键.12.(3 分)已知14x6y2与﹣31x3m y2是同类项,则12m﹣24= 0 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵14x6y2与﹣31x3m y2是同类项,∴3m=6,∴12m=24,∴12m﹣24=0.故答案为:0.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.(3 分)对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x 的值为2017 .【分析】已知等式利用已知新定义化简,即可求出x 的值.【解答】解:已知等式利用题中新定义化简得:2(x﹣3)﹣x=2011,解得:x=2017,故答案为:2017【点评】此题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.14.(3 分)如图,∠AOB=30°,∠BOC=70°,OE 是∠AOC 的平分线,则∠BOE 的度数为20°.【分析】根据角的和差,可得∠AOC,根据角平分线的定义,可得∠AOE,根据角的和差,可得答案.【解答】解:∵∠AOB=30°,∠BOC=70°,∴∠AOC=∠AOB+∠BOC=30°+70°=100°,∵OE 平分∠AOC,∴∠AOE=∠COE=50°,∴∠BOE=∠AOE﹣∠AOB=50°﹣30°=20°.故答案为20°.【点评】本题考查了角的计算,利用角的和差得出∠AOC 的度数是解题关键,又利用了角平分线的定义.15.(3 分)有m 辆客车及n 个人,若每辆客车乘40 人,则还有10 人不能上车;若每辆客车乘43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2 ;③= ;④= ;⑤43m=n+2.其中正确的是①③⑤(只填序号).【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是40m+10=43m﹣2,①正确,②错误;根据客车数列方程,应该为=,③正确,④错误;根据总人数和客车数列方程得:43m=n+2.故答案为:①③⑤.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题(本大题共7 小题,共55 分,解答应写出证明过程或演算步骤)16.(6 分)计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2【分析】(1)直接利用度分秒转换法则计算得出答案;(2)直接利用化简各数,进而计算得出答案.【解答】解:(1)90°23′﹣36°12′=54°11′;(2)原式=﹣5×(﹣1)﹣4×4=﹣11.【点评】此题主要考查了度分秒转化换以及有理数的混合运算,正确化简各数是解题关键.17.(7 分)(1)化简:3a3﹣(3a2+b2﹣5b)+a2﹣5b+b2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣【分析】(1)直接利用去括号,进而合并同类项得出答案;(2)直接利用去括号,进而合并同类项,把已知代入得出答案.【解答】解:(1)原式=3a3﹣3a2﹣b2+5b+a2﹣5b+b2=3a3﹣2a2;(2)原式=x﹣2x+2y2﹣x+y2=﹣2x+3y2,当x=2,y=﹣时,原式=﹣2×2+3×(﹣)2=﹣4+=﹣.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.18.(8 分)解方程:(1)3(x﹣1)+2(x+1)=﹣6(2)=1+【分析】根据一元一次方程的解法即可求出答案.【解答】(每小题(4 分),本题共8 分)解:(1)3x﹣3+2x+2=﹣65x﹣1=﹣65x=﹣5x=﹣1(2)3(x﹣1)=12+4(x+1)3x﹣3=12+4x+43x﹣3=16+4x3x﹣4x=19x=﹣19【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.19.(6 分)列方程解应用题某文具店一支铅笔的售价为1.2 元,一支圆珠笔的售价为2 元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60 支,卖得87 元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?【分析】设卖出铅笔x 支,则卖出圆珠笔(60﹣x)支,根据总价=单价×数量,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设卖出铅笔x 支,则卖出圆珠笔(60﹣x)支,根据题意得:1.2×0.8x+2×0.9(60﹣x)=87,解得:x=25,∴60﹣x=60﹣25=35.答:卖出铅笔25 支,卖出圆珠笔35 支.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.(8 分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)填空:与∠AOE 互补的角是∠BOE、∠COE ;(2)若∠AOD=36°,求∠DOE 的度数;(3)当∠AOD=x°时,请直接写出∠DOE 的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.【解答】解:(1)∵OE 平分∠BOC,∴∠BOE=∠COE;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE 互补的角是∠BOE、∠COE;故答案为∠BOE、∠COE;(2)∵OD、OE 分别平分∠AOC、∠BOC,∴∠COD=∠AOD=36°,∠COE=∠BOE= ∠BOC,∴∠AOC=2×36°=72°,∴∠BOC=180°﹣72°=108°,∴∠COE= ∠BOC=54°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=x°时,∠DOE=90°.【点评】本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.21.(8 分)阅读思考我们知道,在数轴上|a|表示数a 所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b 表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q 两点表示的数分别是﹣1 和2,那么P,Q 两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A 在数轴上对应的数为a,点 B 对应的数为b,且a、b 满足|a+3|+(b ﹣2)2=0(1)求线段AB 的长;(2)如图,点C 在数轴上对应的数为x,且x 是方程2x+1=x﹣8 的解,①求线段BC 的长;②在数轴上是否存在点P 使PA+PB=BC?若存在,直接写出点P 对应的数:若不存在,说明理由.【分析】(1)利用非负数的性质求出a 与b 的值,即可确定出AB 的长;(2)①求出方程的解得到x 的值,进而确定出BC 的长;②存在,求出P 点对应的数即可.【解答】解:(1)由题意得|a+3|+(b﹣2)2=0,所以a+3=0,b﹣2=0,解得,a=﹣3,b=2,所以AB=2﹣(﹣3)=5;(2)①2x+1=x﹣8,解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC 的长为8;②存在点P,当点P 对应的数是3.5 或﹣4.5 使PA+PB=BC.【点评】此题考查了实数与数轴,非负数的性质,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.22.(12 分)我国出租车的收费标准因地而异,甲市规定:起步价为6 元,3 千米之后每千米1.4 元:;乙市规定:起步价8 元,3 千米之后每千米1.2 元.(1)分别求出在甲市乘出租车2 千米,5 千米应付的车费;(2)在甲、乙两市乘出租车x (x>3)千米时应付的车费各是多少元(用含有x 的式子表示);(3)若某乘客需在甲、乙两市乘出租车15 千米,请你算一算在哪个城市乘出租车便宜?(4)如果李先生在甲、乙两市乘出租车所付的车费相等,试算出李先生乘出租车多少干米,【分析】(1)由2<3 可得出乘出租车 2 千米应付的车费,再根据应付费用=起步价+1.4×超出 3 千米部分,即可求出乘出租车 5 千米应付的车费;(2)根据两地的收费标准即可找出在甲、乙两市乘出租车x (x>3)千米时应付的车费;(3)将x=15 代入(2)的代数式中即可求出结论;(4)设李先生乘出租车x 千米时,李先生在甲,乙两市乘出租车所付的车费相等,根据(2)的结论,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:(1)∵2<3,∴乘出租车 2 千米应付6 元,乘出租车5 千米应付的车费为:6+1.4×(5﹣3)=8.8(元).答:在甲市乘出租车2 千米应付6 元车费,在甲市乘出租车5 千米应付8.8 元车费.(2)在甲市应付:6+1.4(x﹣3)=1.4x+1.8(元);在乙市应付:8+1.2(x﹣3)=1.2x+4.4(元).(3)由(2)得:在甲市坐出租车的车费为:1.4x+1.8=1.4×15+1.8=22.8 元,在乙市坐出租车的车费为:1.2x+4.4=1.2×15+4.4=22.4 元.∵22.8>19.4,∴在乙市乘出租车便宜.(4)设李先生乘出租车x 千米时,李先生在甲,乙两市乘出租车所付的车费相等,根据题意得:1.2x+4.4=1.4x+1.8,解得:x=13.答:李先生乘出租车13 千米时,所付车费相等.【点评】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据收费标准列式计算;(2)根据数量间的关系,列出代数式;(3)代入x=15 求值;(4)找准等量关系,正确列出一元一次方程.。

2018-2019学年度七年级下期末数学试卷及答案

2018-2019学年度七年级下期末数学试卷及答案

12AE D BC2018---2019学年度第二学期期末考试七年级数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 A .2x -> B . 3≤x C .32<≤-x D .32≤<-x 2. 下列计算中,正确的是A .3412()x x =B .236a a a ⋅=C .33(2)6a a =D .336a a a += 3. 已知a b <,下列不等式变形中正确的是A .22a b ->-B .22a b ->-C .22a b> D .3131a b +>+ 4. 下列各式由左边到右边的变形中,是因式分解的是A. 2632(3)3xy xz x y z ++=++B. 36)6)(6(2-=-+x x xC.)(2222y x x xy x +-=--D. )b a (3b 3a 32222+=-5. 如图,点C 是直线AB 上一点,过点C 作⊥CD CE ,那么图中1∠和2∠的关系是 A. 互为余角 B. 互为补角 C. 对顶角 D. 同位角6. 已知⎩⎨⎧==21y x 是方程3=-ay x 的一个解,那么a 的值为A .1B . -1C .-3D .37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 A .个体B .总体C .总体的样本D .样本容量8. 如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为 A .130°B .50°21Ca A l BC.40°D.25°9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为.12 计算:2(36)3a a a-÷=.13. 分解因式:错误!未找到引用源。

2018-2019学年七年级下期末考试数学试卷及答案

2018-2019学年七年级下期末考试数学试卷及答案

228.如果 (x 1)2 2 ,那么代数式 x 2 2x 7的值是 A . 8B . 92018--2019 学年第二学期期末考试初一数学试卷考 生 须 知 1.本试卷共 6 页,共三道大题, 27道小题。

满分 100分。

考试时间 90分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、做图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共 30 分,每小题 3分)第 1-10 题均有四个选项,符合题意的选项只有..一个.1.根据北京小客车指标办的通报,截至 2017年 6月 8日 24时,个人普通小客车指标的基准中签几率继续创新低,约为 0.001 22,相当于 817 人抢一个指标,小客车指标中签难 度继续加大 .将 0.001 22 用科学记数法表示应为A .1.22 ×10-5B .122 ×10-3C . 1.22 ×10-3D .1.22 ×10-2 2. a 3 a 2 的计算结果是A . a 9B .a 6C . a 5D . a3.不等式 x 1 0 的解集在数轴上表示正确的是4. 如果-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 35.6.7.A .3如图, A .a 21,是关于 x 和 y 的二元一次方程 ax2y 1 的解,那么 a 的值是B .1C .-1D .-32×3 的网格是由边长为32B . aa 的小正方形组成,那么图中阴影部分的面积是C . 2a 2D . 3a 2如图,点 O 为直线 AB 上一点, OC ⊥OD. 如果∠ 1=35°, 那么∠ 2 的度数是 A . 35° B . 45° C . 55°D . 65°某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示知道香草口味冰淇淋一天售出 200 份,那么芒果口味冰淇淋 的份数是A . 80B . 40C .20D . 10,b14.右图中的四边形均为长方形 . 根据图形的面积关系,写出一个正 确的等式: ______________________ .15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基 本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程 术是《九章算术》最高的数学成就. 《九章算术》中记载: “今有共买 鸡,人出八,盈三;人出七,不足四 . 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出 8 钱,多余 3 钱,每人出 钱,还缺 4 钱.问人数和鸡的价钱各是多少?”设人数有 x 人,鸡的价钱是 y 钱,可列方程组为 ____________ .16.同学们准备借助一副三角板画平行线 . 先画一条直线 MN ,再按如图所示的 样子放置三角板 . 小颖认为 AC ∥DF ;小静认为 BC ∥EF.C .10D . 119.一名射箭运动员统计了 45 次射箭的成绩,并绘制了如图所示的折线统计图 . 则在射箭成绩的这组数据中,众数和中位数分别是A .18,18B . 8,8C .8, 9D . 18,810.如图,点 A ,B 为定点,直线 l ∥AB ,P 是 直线l 上一动点 . 对于下列各值: ①线段 AB 的长②△PAB 的周长 ③△PAB 的面积④∠APB 的度数其中不.会.随点 P 的移动而变化的是A .① ③B .① ④C .② ③D .② ④二、填空题(本题共 18 分,每小题 3 分)311.因式分解: 2m 3 8m . 12.如图,一把长方形直尺沿直线断开并错位,点 E ,D ,B , F 在同一条直线上.如果∠ ADE =126 °,13.关于 x 的不等式 ax b 的解集是 xb b. 写出一组满足条件的 a ,b 的值:aBD你认为的判断是正确的,依据是.三、解答题(本题共52分,第17- 21小题,每小题4分,第22- 26小题,每小题 5 分,第27 小题7 分)2017 0 1 17.计算:( 1)2017(3 )02 1.2 1 218.计算:6ab(2a2b - ab2).35x 17 8(x 1),19.解不等式组:x 10x 6 ,2并写出它的所有正整.数.解...20.解方程组:2x 3y 1,x 2y4.21.因式分解:- 3a3b- 27ab318a2b2 .22.已知m -1,求代数式(2m43)(2m 1) -(2m 1)2(m 1)(m 1)的值EF⊥BC,垂足为F,过点D作DG∥AB交AC于点G.(1)依题意补全图形;( 2)请你判断∠ BEF 与∠ ADG 的数量关系,并加以证明.24.《中共中央国务院关于深化教育改革全面推进素质教育的决定》中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现. ”王老师所在的学校为23.已知:如图,在ABC中,过点A作AD⊥BC,垂足为D,E 为AB 上一点,过点E作加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:1)王老师是第次购买足球和篮球时,遇到商场打折销售的;2)求足球和篮球的标价;3)如果现在商场均以标价的 6 折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60 个,且总费用不能超过2500 元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车” )的现状,北京市统计局采用拦截式问卷调查的方式对全市16 个区,16-65 周岁的1000 名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用 1 次,32.5%的人2-3 天使用1 次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT 业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8% 、93.1% 和92.3%.∴∠ A+∠ B+∠ ACB =180°.使用过共享单车的被访者中, 满意度(包括满意、 比较满意和基本满意) 达到 97.4% , 其中“满意”和“比较满意”的比例分别占 41.1% 和 40.1% ,“基本满意”占 16.2%. 从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9% ;对“付费 /押金”和“找车 /开锁 /还车流程”的满意度分别为 96.2% 和 91.9% ; 对“管理维护”的满意度较低,为 72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:1)现在北京市 16-65 周岁的常住人口约为 1700 万,请你估计每天共享单车骑行人数至少约为 万;2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来; 3)请你写出现在北京市共享单车使用情况的特点(至少一条) .26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180 °”的结论 . 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过 证明来确认它的正确性.请你参考小明解决问题的思路与方法,写出通过实验方法 2 证明该结论的过程受到实验方法 1的启发,小明形成了证明该结论的想法: 实验 1 的拼接方法直观上看, 是把∠1 和∠2 移动到∠ 3 的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象 为几何图形,那么利用平行线的性质就可以解决问题了 小明的证明过程如下:已知:如图, ABC .求证:∠ A+∠B+∠C =180°. 证明:延长 BC ,过点 C 作 CM ∥BA.∴∠ A=∠ 1(两直线平行,内错角相等), ∠ B=∠ 2(两直线平行,同位角∵∠ 1+∠2+∠ACB =180 °(平角定义),27.对x,y定义一种新运算T,规定:T(x,y)(mx ny)(x 2y)(其中m,n 均为非零常数).例如:T (1,1) 3m 3n.(1)已知T(1,1) 0,T (0,2) 8.① 求m,n 的值;T(2p,2 p) 4,② 若关于p的不等式组恰好有 3 个整数解,求a的取值范围;T(4p,3 2p) a(2)当x2y2时,T(x,y) T(y,x)对任意有理数x,y都成立,请直接写出m,n 满足的关系式.∴正整数解为 1,2.17.解:原式=1 2分34分18.解:原式=3212a 3b 223 2a 2b 3.19.解: 5x 17 8(x 1),①x 10. ② 2由①,x 3. 1分 由②,x 2. 2分 2.3分解得 y 1. 把 y1代入③,∴原方程组的解是21.解:原式= 3ab (a 222.解:原式= 4m 22m 2分3ab(a 6m 32. 2, 1.9b23b)2.(4m 23分 4分6ab) ⋯2 分4分4m 1) m 2 12=m 4m 1.3分20.解: 2x 由②, 3y 1,①2y 4.②得x 4 2y .③ 1分当m12 4 1时,原式 =( )44 1165分2018-2019学年度第二学期期末练习 初一数学评分标准及参考答案 、选择题(本题共 30 分,每小题 3分)二、填空题(本题共 18分,每小题 3分)把③代入①,得 8 4y 3y 1.三、23.(1)如图. ⋯⋯1分(2)判断:∠ BEF=∠ADG. ⋯⋯2 分证明:∵ AD⊥BC,EF ⊥BC,∴∠ ADF =∠EFB=90∴ AD∥ EF (同位角相等,两直线平行).∴∠ BEF=∠BAD(两直线平行,同位角相等).⋯⋯3分∵DG∥ AB ,∴∠BAD = ∠ADG (两直线平行,内错角相等).⋯⋯4分∴∠ BEF =∠ ADG. ⋯⋯5 分24.解:(1)三;(2)设足球的标价为x 元,篮球的标价为y 元.⋯⋯1分根据题意,得6x 5y700,3x 7y710.解得:x 50,y 80.答:足球的标价为50 元,篮球的标价为80元;⋯⋯ 4 分(3)最多可以买38 个篮球.⋯⋯5分25.解:(1)略.1分项目骑行付费/ 押金找车/ 开锁/还车流程管理维护满意度97.9%96.2%91.9%72.2% 2)使用共享单车分项满意度统计表3)略.26.已知:如图,ABC .求证:∠ A+∠B+∠C =180 °.证明:过点A作MN ∥BC. ⋯⋯1 分∴∠ MAB=∠ B,∠NAC=∠C(两直线平行,内错角相等).⋯3 分∵∠ MAB +∠ BAC+∠NAC=180°(平角定义),∴∠ B +∠BAC+∠C =180°.5分m 1, ⋯⋯2分 n1.(2p 2 p)(2p 4 2p) 4①, (4p 3 2p)(4 p 6 4p) a ②.∵恰好有 3 个整数解,42 a 54.2) m 2n27.解:①由题意,得 (m n) 0,8n 8. ②由题意,得解不等式①,得 p 解不等式②,得 p1. a 18123分1pa 18 12 4分a 18 123.6分 7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年初中数学有理数、整式的加减、一元一次方程和几何初步期末考试测试题数学 2018.7本试卷共5页,120分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共10小题,每小题3分,共30分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.若代数式的值是2,则x等于A.2B.C.6D.2.若,则x的值是()A.1B.-3C.1或-3D.1或33.下列各方程,变形正确的是()A.化为B.化为C.化为D.化为4.已知关于的方程的解是,则的值是()A.-6B.2C.-2D.65.下列方程中,是一元一次方程的是()A.B.C.D.6.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时7.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时8.在下列实数中:﹣0.6,,,,,0.010010001……,3.14,无理数有()A.2个B.3个C.4个D.5个9.如果水位下降4m,记作﹣4m,那么水位上升5m,记作()A.1m B.9m C.5m D.﹣510.如图,图书馆A在蕾蕾家B北偏东30°的方向上,若∠ABC=90°,则超市C在蕾蕾家的( )A.南偏东30°的方向上B.南偏东60°的方向上C.北偏东60°的方向上D.北偏东30°的方向上二、填空题共10小题,每小题3分,共30分。

11.若x、y为实数,且满足,则x+y的值是_________.12.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为13.若x,y满足方程(x+y﹣a)2+|2x-y﹣b|=0,则x-2y=_______(用含a、b的代数式表示).14.某书店销售某种中考复习资料,每本的售价是20元.若每本打九折,全部卖完可获利1000元;若每本打八折,全部卖完可获利800元,则这批书共购进了_________本.15.计算:|2﹣|的相反数是_____.16.计算:|2﹣|的相反数是_____.17.若+|3﹣y|=0,则x﹣y的值是___.18.一个正方体的每个面都写着一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的汉字是______.19.-的系数是______,次数是______.20.某车间每天能生产甲种零件120个或乙种零件100个,甲、乙两种零件分别取2个和1个才能配套,要在80天生产最多的成套产品,甲种零件应该生产________天.三、解答题共10小题,每小题6分,共60分。

解答应写出文字说明、演算步骤或证明过程。

21.解答下列各题解方程:解方程组:22.解下列方程(组):(1)(2)(3)23.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超过200元的部分按9折收费;在乙商场累计购物超过100元后,超过100元的部分按9.5折收费,顾客到哪家商场购物花费少?24.某校计划购买篮球和排球两种球若干.已知购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)求篮球和排球的单价;(2)该校计划购买篮球和排球共30个.某商店有两种优惠活动(两种优惠活动不能同时参加),活动一:一律打九折,活动二:购物不超过600元时不优惠,超过600元时,超过600元的部分打八折.请根据以上信息,说明选择哪一种活动购买篮球和排球更实惠.25.为了加快新农村建设,国务院决定:凡农民购买家电和摩托车享受政府13%的补贴(凭购物发票到乡镇财政所按13%领取补贴).农民李伯伯家购买了一台彩电和一辆摩托车共花去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600元.(1)李伯伯可以到镇财政所领到的补贴是多少元?(2)求李伯伯家所买的摩托车与彩电的单价各是多少元?26.化简求值:(3a2-8a)+(2a2-13a2+2a)-2(a3-3),其中a=-2.27.计算(1)(-2)2×5-(-2)3÷4;(2)-24×(-).28.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超过200元的部分按9折收费;在乙商场累计购物超过100元后,超过100元的部分按9.5折收费,顾客到哪家商场购物花费少?29.如图,在∠AOB的内部作射线OC,使∠AOC与∠AOB互补.将射线OA,OC同时绕点O分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA,OC 分别记为OM,ON,设旋转时间为t秒.已知t<30,∠AOB=114°.(1)求∠AOC的度数;(2)在旋转的过程中,当射线OM,ON重合时,求t的值;(3)在旋转的过程中,当∠COM与∠BON互余时,求t的值.30.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12 m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3 m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36 m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求2天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要再安排多少名二级技工才能按时完成任务.参考答案1.B【解析】【分析】由已知可得=2,解方程可得.【详解】由已知可得=2,解得x=-2.故选:B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程. 2.C【解析】【分析】直接利用绝对值的性质进而化简得出答案.【详解】,,解得:或.故选:.【点睛】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.3.D【解析】试题解析:A、-=1化为x=-3,故此选项错误;B、1-[x-(2-x)]=x化为3x=-3,故此选项错误;C、化为3x-2x+2=6,故此选项错误;D、化为2(x-3)-5(x+4)=10,此选项正确.故选D.4.A【解析】【分析】把代入方程得出,求出即可.【详解】把代入方程得:,解得:.故选:.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于的方程是解此题的关键. 5.B【解析】【分析】只含有一个未知数(元),并且未知数的指数是一(次)的方程叫做一元一次方程,它的一般形式是(、是常数且).【详解】、含有两个未知数,不是一元二次方程,选项错误;、正确;、最高次数是二次,故不是一元一次方程,选项错误;、不是整式方程,故不是一元一次方程,选项错误.故选:.【点睛】本题考查了一元一次方程的概念和解法,一元一次方程的未知数的指数为1.6.C【解析】【分析】过点C作CD垂直AB延长线于D,根据题意得∠CDB=45°,∠CAD=30°,设BD=x则CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD=即,解方程求出BD的长,从而可知BC的长,进而求出救援艇到达C处所用的时间即可.【详解】如图:过点C作CD垂直AB延长线于D,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x,救援艇到达C处所用的时间为t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t= =(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键. 7.C【解析】【分析】过点C作CD垂直AB延长线于D,根据题意得∠CDB=45°,∠CAD=30°,设BD=x则CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD=即,解方程求出BD的长,从而可知BC的长,进而求出救援艇到达C处所用的时间即可.【详解】如图:过点C作CD垂直AB延长线于D,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x,救援艇到达C处所用的时间为t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t= =(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键. 8.B【解析】【分析】整数和分数统称为有理数,【详解】有理数有﹣0.6,,,3.14.无理数有,,0.010010001…….【点睛】熟记有理数的分类是解题的关键.9.C【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位下降4m,记作-4m,∴水位上升5m,记作+5m.故选:C.【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.10.B【解析】【分析】由图书馆A在蕾蕾家B北偏东30°的方向上,可得∠1=30°,根据∠2=180°-∠1-∠ABC即可求出超市C在蕾蕾家的南偏东60°的方向上.【详解】∵图书馆A在蕾蕾家B北偏东30°的方向上,∴∠1=30°.∵∠ABC=90°,∴∠2=180°-30°-90°=60°,∴超市C在蕾蕾家的南偏东60°的方向上.故选B.【点睛】本题考查了方向角,熟练掌握方向角的意义是解答本题的关键.在观测物体时,用地球南北方向与观测者观测物体视线的夹角叫做方向角.11.0【解析】【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】根据题意得:,解得:, ∴x+y=0,故答案是:0.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.16【解析】假设十位数字为x,则个位数字为7-x,该两位数加上45后可表示为:10(4+x)+7-x+5因为恰好成为十位数字和个位数字对调后的两位数,则有10(4+x)+7-x+5=10×(7-x)+x,可得x=1,这个两位数为16.13.b-a【解析】∵(x+y﹣a)2+|2x-y﹣b|=0,,∴,①+②得:3x=a+b,即x=,把x=代入①得:y=,则x-2y=b-a,故答案为:b-a.14.100【解析】【分析】根据打折的变化得出每本利润的变化,进而利用总利润的变化得出等式求出答案.【详解】每本的售价是元,若每本打九折,全部卖完可获利元,若每本打八折,全部卖完可获利元,九折时售价为:元,八折时售价为:元,则从九折到八折每本少赚元,总利润减少:(元),设这批书共购进了本,根据题意可得:,解得:.故答案为:.【点睛】此题主要考查了一元一次方程的应用,正确得出每本书的利润变化是解题关键.15.2-【解析】【分析】先去绝对值符号,再根据相反数的定义求解.【详解】∵|2﹣|=,∴|2﹣|的相反数是-()=2-.故答案是:2-.【点睛】考查了去绝对值符号和求一个数的相反数,解题关键是去绝对值符号|2﹣|=.16.【解析】【分析】根据负数的绝对值等于它的相反数解答即可.【详解】|2﹣|的相反数是.故答案为:.【点睛】本题考查了相反数,解题的关键是掌握负数的绝对值等于它的相反数.17.-1【解析】【分析】根号里面的数为非负数,绝对值为非负数.【详解】根据根号和绝对值的性质易知,x=2,y=3,所以x-y=-1.【点睛】这一类题均可利用非负性求解.18.自【解析】【分析】根据正方体的表面展开图,可知相对的面之间一定相隔一个正方形,进而可得“信”和“着”相对,“沉”和“越”相对.故答案为:自.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“超”与“自”相对.【点睛】本题考查了正方体的展开与折叠,掌握正方体的展开图的特征是解题的关键.19. 3【解析】【分析】根据单项式系数及次数的定义,结合题意进行解答即可.【详解】∵单项式-的数字因数是,所有字母指数的和为1+2=3,∴此单项式的次数是3,系数是.故答案为:,3.【点睛】本题考查了单项式的系数与次数,熟知单项式系数及次数的定义是解答此题的关键.20.50【解析】【分析】设甲种零件应生产x天,则乙种零件应生产(80-x)天,根据甲、乙两种零件分别取2个、1个才能配成一套,列出方程解答即可.【详解】设甲种零件应生产x天,则乙种零件应生产(80−x)天,120x=100(80−x)×2,解得:x=50,则80−x=30.即甲种零件应生产50天,乙种零件应生产30天.故答案为:50.【点睛】考查一元一次方程的应用,解题的关键是分析题意,找到题目中的等量关系.21.(1)x=10;(2) .【解析】【分析】(1)按解一元一次方程的一般步骤进行;(2)用加减法解方程组:.【详解】解:去分母得,,去括号得,,移项得,,合并同类项得,;(2),得:,解得:,把代入得:,解得:,所以原方程组的解是:.【点睛】本题考核知识点:解方程;解方程组.解题关键点:掌握解方程和方程组的一般方法.22.(1)x=30;(2);(3).【解析】【分析】(1)根据解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1可得;(2)利用加减消元法求解可得;(3)由第个方程得出,代入第个方程得出,据此联立得到关于、的二元一次方程组,进一步求解可得.【详解】(1)去分母,得:2x-3(30-x)=60,去括号,得:2x-90+3x=60,移项,得:2x+3x=60+90,合并同类项,得:5x=150,系数化为1,得:x=30;,②×2-①,得:5x=10,解得:x=2,将x=2代入②,得:6+y=8,解得:y=2,∴方程组的解为;(3),由①,得③,将③代入②,得,整理,得:3x+4y=4,则,解得:.【点睛】此题考查了解一元一次方程与二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.详见解析.【解析】【分析】先设顾客累计花费x元,再根据三种情况进行讨论,当x≤100,100<x≤200,x≥200时,分别进行分析,即可得出答案.【详解】设顾客累计花费x元,根据题意得:(1)当x≤100时,两家商场都不优惠,则花费一样;(2)当100<x≤200时,去乙商场享受优惠,花费少;(3)当x≥200,在甲商场花费200+(x-200)×90%=0.9x+20(元),在乙商场花费100+(x-100)×95%=0.95x+5(元),①到甲商场花费少,则0.9x+20<0.95x+5,解得x>300;②到乙商场花费少,则0.9x+20>0.95x+5,x<300;③到两家商场花费一样多,则0.9x+20=0.95x+5,x=300.【点睛】本题主要考查一元一次方程与不等式的实际应用,设出未知数,根据题意列出所有可能的情况是解此题的关键.24.(1)篮球每个50元,排球每个30元;(2)当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠【解析】【分析】见解析.【详解】(1)设篮球每个x元,排球每个y元,根据题意得:2x+3y=190且3x=5y解得x=50,y=30.答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(30﹣x)个,价值:50m+30(30﹣m)=900+20m因为900+20m>600,所以可以参加活动二;按活动一需付款:0.9(900+20m)=810+18m;按活动二付款:600+0.8(900+20m﹣600)=840+16m;若活动一更实惠:810+18m<840+16m,m<15;若活动一和活动二一样实惠:810+18m=840+16m,m=15;若活动二更实惠:810+18m>840+16m,m>15;综上所述,当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠.【点睛】列出方程组和不等式是解题的关键.25.(1)李伯伯可以从政府领到补贴780元(2)彩电与摩托车的单价分别为1800元/台,4200元/辆【解析】【分析】(1)据农民购买家电和摩托享受政府13%的补贴及一共花去6000元,可以求出补贴钱数;(2)用一元一次方程解应用题的关键是找到合适的等量关系.本题中等量关系是:彩电单价+摩托车单价=6000,摩托车单价=2×彩电单价+600,根据这两个等量关系可以列出方程.【详解】(1)根据题意可得:6000×13%=780,李伯伯可以从政府领到补贴780元(2)设彩电的单价为x元/台,摩托车的单价为(2x+600)元,则x+2x+600=6000,解得x=1800,2x+600=2×1800+600=4200,彩电与摩托车的单价分别为1800元/台,4200元/辆【点睛】本题关键是弄清题意,找到等量关系:彩电单价+摩托车单价=6000,摩托车单价=2×彩电单价+600.26.2【解析】【分析】首先利用合并同类项法则化简,进而将a=-2代入求出即可.【详解】原式=-2a3-8a2-6a+6;当a=-2时,原式=2【点睛】本题考查了整式的加减运算以及代数式求值,正确合并同类项得出是解题关键.27.(1)22(2)13【解析】【分析】(1)先计算乘方,再根据有理数的运算顺序计算即可;(2)利用乘法分配律计算即可.【详解】(1) (-2)2×5-(-2)3÷4=4×5+8÷4=20+2=22;(2) -24×(-)=(-24) ×(-)+(-24) ×+(-24) ×()=20-9+2=13.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数混合运算的法则.28.详见解析.【解析】【分析】先设顾客累计花费x元,再根据三种情况进行讨论,当x≤100,100<x≤200,x≥200时,分别进行分析,即可得出答案.【详解】设顾客累计花费x元,根据题意得:(1)当x≤100时,两家商场都不优惠,则花费一样;(2)当100<x≤200时,去乙商场享受优惠,花费少;(3)当x≥200,在甲商场花费200+(x-200)×90%=0.9x+20(元),在乙商场花费100+(x-100)×95%=0.95x+5(元),①到甲商场花费少,则0.9x+20<0.95x+5,解得x>300;②到乙商场花费少,则0.9x+20>0.95x+5,x<300;③到两家商场花费一样多,则0.9x+20=0.95x+5,x=300.29.(1) 66°;(2)当t=16.5时,射线OM,ON重合;(3)当∠COM与∠BON互余时,t的值为1.2或10.2.【解析】【分析】(1)利用互补的定义列式计算;(2)根据∠AOM=∠AON,列方程12t=8t+66,得出结论;(3)分两种情况:利用∠COM+∠BON=90°,列方程解出即可.【详解】(1)因为∠AOC与∠AOB互补,所以∠AOC+∠AOB=180°.因为∠AOB=114°,所以∠AOC=180°-114°=66°.(2)由题意得12t=8t+66.解得t=16.5.所以当t=16.5时,射线OM,ON重合.(3)当t<5.5时,射线OM在∠AOC内部,射线ON在∠BOC内部,由题意得66-12t+114-66-8t=90,解得t=1.2;当t>6时,射线ON在∠BOC外部,射线OM在∠AOC外部,由题意得12t-66+8t-(114-66)=90,解得t=10.2.综上所述,当∠COM与∠BON互余时,t的值为1.2或10.2.【点睛】本题考查了补角的定义,角的和差,一元一次方程的应用及分类讨论的数学思想.熟记补角的定义是解(1)的关键,根据∠AOM=∠AON列方程是解(2)的关键,分类讨论是解(3)的关键.30.(1)每个宿舍需要铺瓷砖的地板面积为18 m2;(2)需要再安排4名二级技工才能按时完成任务.【解析】【分析】(1)设每个宿舍需要铺瓷砖的地板面积为x m2,根据每名一级技工比二级技工一天多铺3m2瓷砖列出方程,然后求解即可;(2)设需要再安排y名二级技工才能按时完成任务,根据每名一级技工每天可铺砖面积和每名二级技工每天可铺砖面积列出方程,然后求解即可得出答案.【详解】(1)设每个宿舍需要铺瓷砖的地板面积为x m2,则依题意列出方程:-=3,解方程得:x=18.所以每个宿舍需要铺瓷砖的地板面积为18 m2.(2)设需要再安排y名二级技工才能按时完成任务.因为每名一级技工每天可铺砖面积:=15(m2),每名二级技工每天可铺砖面积:15-3=12(m2),所以15×4×5+2×12y=20×18+36.解得:y=4.所以需要再安排4名二级技工才能按时完成任务.【点睛】本题考查了一元一次方程的应用,找出等量关系列出方程是解答本题的关键.。

相关文档
最新文档