铝基复合材料及应用

合集下载

铝基复合材料的制

铝基复合材料的制

2.4 粉末冶金
• 粉末冶金是制备高熔点难成型金属材料的传统工艺。它是 将快速凝固金属粉末和增强陶瓷颗粒等经筛分、混合、冷 压固结、除气、热压烧结, 以及压力加工制得复合材料 的一种工艺。研究结果表明, 用粉末冶金工艺生产的颗 粒增强金属基复合材料的综合强度水平比用熔融金属工艺 生产的同种材料高, 伸长率也较高, 材料微观组织结构 有所改善。但是这种工艺及设备复杂, 金属粉末与陶瓷 颗粒混合时会因颗粒分布不均, 除气不完全而导致材料 内部出现气孔, 温度选择不当易造成汗析。另外, 制得 的复合材料坯件一般还需要二次成型。这种设备不适用于 生产较大型件,所以对铝基复合材料的工业规模生产有所 限制。
2.5 喷射沉积工艺
• 喷射沉积工艺是由英国S i n g e r 教授首创 并干1 9 7 0 年正式公布。这一工艺早期应 用于一些金属半成品的生产和制备, 后来 加利福尼亚大学L a v e r n i a E J 等人开始 利用这一技术制备颗粒增强金属基复合材 料。
二.材料的特点分析
对于小型空间红外遥感器来说,结构部分不仅要满足 高刚度、高强度和尺寸稳定性的要求,而且应该尽量减轻 质量。本文研究的空间红外遥感器镜筒材料采用了石墨纤 维增强铝基复合材料(以下简称铝基复合材料),这种材 料属于长纤维增强(连续强化)金属基复合材料,由哈尔滨 工业大学金属基复合材料研究所自主研制。 • 与金属材料相比,铝基复合材料具有如下优点:耐 高温、高比强、高比模、热膨胀系数小、尺寸稳定性好、 对缺口不敏感且抗磨损。与聚合物基复合材料相比铝基复 合材料具有如下优点:耐高低温、防燃、尺寸稳定、抗氧 化、抗辐照、抗电磁脉冲、无气化和导热、导电、剪切强 度高、热膨胀系数低、可直接加工螺纹和圆孔。 •
铝合金及镁合金轮毂等 铝基复合材料汽车架

铝基复合材料介绍

铝基复合材料介绍
铝基复合材料介绍
铝基复合材料,泛指以铝合金为基体(连续体)的复合材料,品种众多,功能各异。从 复合材料品种来分,主要分两大类:陶瓷颗粒增强铝基复合材料;纤维以及晶须增强的铝基 复合材料,当然,两者也经常混合在一起作为增强项以提供更为优异的性能。更多的时候, 是从材料功能及应用领域来分类的。下面介绍法迪公司目前提供的品种:
Alvaco 采用内部真空的薄壁球状陶瓷颗粒替代传统实心颗粒,并添加短碳纤维、短陶 瓷纤维增韧,浸渗铝合金液体后成形。材料典型特点:
1. 密度小:材料密度 1.4-1.6,典型 1.5(视其中加入的其它增强相而定),约为 铝合金的一半;
2. 机械加工性能得到大幅提升:可攻丝、可铣曲面,加工性能类似 7 系铝合金, 这是传统陶瓷颗粒增强材料无法做到的;
极限抗拉强度 曲服强 断裂伸长率
(MPa)
度(MPa)
(%)
弹性模量 (GPa)
洛氏硬 度(HRB)
10#陶瓷增强铝合金
338
303
1.2
86.2
73
20#陶瓷增强铝合金
359
338
0.4
98.6
77
注:基体合金为 ZL102,金属模铸造,T6 热处理。挤压铸造指标略高。
典型应用:
1. 用于制造刹车盘、刹车鼓、制动卡钳、缸套、悬架臂、车架、曲轴箱等结构件, 替代钢材可减重一半以上。
左图为 Alvaco 的晶相 图,球形的是氧化铝陶瓷中 空微珠,内真空。白色为铝 合金。
材料指标典型值:
抗弯强度:95MPa;
弹性模量:85GPa;
剪切模量:34GPa;
热导率:90W/mK;
热膨胀系数:8.5ppm;
电阻率:30µOhm-cm;

金属基复合材料应用举例

金属基复合材料应用举例

金属基复合材料应用举例金属基复合材料是指以金属为基体,添加一种或多种增强相(如纤维、颗粒、片材等)来改善金属材料的性能和功能的一类材料。

金属基复合材料具有高强度、高韧性、高温稳定性等优点,因此在航空航天、汽车、船舶、电子等领域得到广泛应用。

以下是十个金属基复合材料的应用举例:1. 铝基复合材料:铝基复合材料由铝基体和增强相(如陶瓷颗粒、碳纤维等)构成,具有低密度、高强度、耐磨损等特点。

在航空航天领域,铝基复合材料被用于制造飞机机身、航天器传动系统等部件。

2. 镁基复合材料:镁基复合材料具有低密度、高比强度和良好的导热性能,广泛应用于航空航天、汽车、电子等领域。

例如,在汽车行业中,镁基复合材料被用于制造车身结构和发动机零部件,可以减轻车重,提高燃油效率。

3. 钛基复合材料:钛基复合材料由钛基体和增强相(如陶瓷颗粒、纤维等)构成,具有高强度、低密度和良好的耐腐蚀性能。

在航空航天领域,钛基复合材料被用于制造飞机发动机叶片、航天器外壳等高温部件。

4. 镍基复合材料:镍基复合材料由镍基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温强度和良好的耐腐蚀性能。

在航空航天领域,镍基复合材料被用于制造航空发动机涡轮叶片、燃烧室等高温部件。

5. 铜基复合材料:铜基复合材料由铜基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高导电性和高热导率。

在电子领域,铜基复合材料被用于制造高性能散热器、电子封装材料等。

6. 钨基复合材料:钨基复合材料由钨基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高密度、高熔点和高强度。

在核工业领域,钨基复合材料被用于制造核反应堆材料、高温组件等。

7. 铁基复合材料:铁基复合材料由铁基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高强度和良好的耐磨性。

在机械制造领域,铁基复合材料被用于制造高性能齿轮、轴承等零部件。

8. 锆基复合材料:锆基复合材料由锆基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温稳定性和良好的耐腐蚀性能。

碳化硅铝基复合材料

碳化硅铝基复合材料

碳化硅铝基复合材料引言。

碳化硅铝基复合材料是一种新型的高性能陶瓷复合材料,具有优异的耐磨、高温、抗腐蚀等性能,被广泛应用于航空航天、汽车制造、机械加工等领域。

本文将对碳化硅铝基复合材料的制备方法、性能特点以及应用领域进行详细介绍。

一、碳化硅铝基复合材料的制备方法。

碳化硅铝基复合材料的制备方法主要包括原料选择、混合、成型、烧结等步骤。

首先,选择高纯度的碳化硅和铝粉作为原料,按一定的比例进行混合。

然后将混合物进行成型,常见的成型方法包括压制成型、注射成型等。

最后,将成型体进行高温烧结,使其形成致密的碳化硅铝基复合材料。

此外,还可以通过添加其他元素或采用表面涂层等方法来改善材料的性能。

二、碳化硅铝基复合材料的性能特点。

1. 高温性能,碳化硅铝基复合材料具有优异的高温稳定性,可在高温环境下长期工作而不失效。

2. 耐磨性,该材料具有极高的硬度和耐磨性,适用于制造耐磨零部件,如机械密封件、轴承等。

3. 抗腐蚀性,碳化硅铝基复合材料能够抵抗酸碱腐蚀,具有良好的化学稳定性。

4. 导热性,该材料具有良好的导热性能,可用于制造高温导热部件。

三、碳化硅铝基复合材料的应用领域。

1. 航空航天领域,碳化硅铝基复合材料可用于制造航空发动机零部件、航天器热结构件等,具有轻质、高强度、耐高温等优点。

2. 汽车制造领域,该材料可用于制造汽车发动机缸套、刹车盘等耐磨零部件,提高汽车的使用寿命和性能。

3. 机械加工领域,碳化硅铝基复合材料可用于制造高速切削工具、磨料磨具等,具有优异的耐磨性和切削性能。

结论。

碳化硅铝基复合材料具有优异的高温、耐磨、抗腐蚀等性能,广泛应用于航空航天、汽车制造、机械加工等领域。

随着材料制备技术的不断进步,碳化硅铝基复合材料的性能将得到进一步提升,其应用领域也将不断扩大。

因此,碳化硅铝基复合材料具有很大的发展潜力,值得进一步研究和推广应用。

铝基复合材料在航空制造中的应用

铝基复合材料在航空制造中的应用

铝基复合材料在航空制造中的应用航空工业是技术含量较高、技术周期较长的重要行业之一,因此材料的选择也显得尤为重要。

铝基复合材料以其高强度、抗腐蚀、低密度等各种优良性能,在航空领域中得到了广泛应用。

1. 铝基复合材料的基本概念铝基复合材料是以铝合金作为基体,添加一些其他元素而制成的材料。

其中,添加的其他元素可以是碳纤维、玻璃纤维、陶瓷等材料。

铝基复合材料最大的特点在于它的强度和硬度比纯铝高很多。

此外,铝基复合材料还有较好的成型性能,能够适应各种复杂形状的工件。

2. 铝基复合材料在航空领域中的应用铝基复合材料的优良性能决定了它在航空领域中的应用广泛。

航空器需要具备高度、速度以及航程等多种性能,而铝基复合材料都可以很好地兼顾这些性能要求。

以下是铝基复合材料在航空领域中的应用:2.1 飞机结构部件航空器结构部件是安全飞行和航线寿命的关键。

铝基复合材料可以用于飞机机身壳体、襟翼、尾翼、襟翼和扰流板等零件的制造。

这些部件需要同时具备强度、硬度、耐磨损和抗腐蚀等多种性能,铝基复合材料可以完美满足这些要求。

2.2 发动机部件发动机是航空器的“心脏”,需要具备良好的耐高温、抗蜕化和耐热疲劳性能。

因此,铝基复合材料可以在航空发动机的压气机叶片、燃烧室、布氏环的制造等方面发挥重要作用。

2.3 航空器内饰航空器内饰也是航空领域中的一个重要部分。

铝基复合材料可以用于飞机的座椅、地板、橱柜等部件的制造,不仅能够提高内饰的美观性,还能增加强度和硬度。

3. 铝基复合材料的发展趋势随着科技的不断进步,铝基复合材料也不断得到优化和进步,未来还将有更广泛的应用前景。

以下是铝基复合材料的发展趋势:3.1 提高铝基复合材料的强度当前铝基复合材料的强度和硬度已经远远超过了传统的铝合金和钢铁材料,但是它们的强度和硬度仍有进一步提升的空间。

科研人员将不断探索并改进铝基复合材料制造工艺,以提高复合材料的强度和硬度。

3.2 探索新的应用领域目前铝基复合材料已经得到广泛应用,但是它的应用领域仍有不断拓展的空间。

铝基复合材料的应用领域及发展前景

铝基复合材料的应用领域及发展前景

铝基复合材料的应用领域及发展前景铝基复合材料的简单介绍铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基的符合技术容以掌握,易于加工等。

此外,铝基复合材料比强度和比刚度高,高温性能好,耐疲劳和耐磨,以及工程可靠性。

同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。

因此,铝基复合材料已成为金属基复合材料中最常用的,最重要的材料之一。

复合材料的制造包括将复合材料的组分组装并压合成始于复合材料零件的形状。

常用的工艺有两种,第一种是纤维与基体组装压合和零件成型同时进行;第二种是先加工成复合材料的预制品,然后再将预制品制成最终形态的零件。

前一种工艺类似于铸件,后一件则类似于先铸锭然后再锻成零件的形状。

制造过程可分为三个阶段:纤维排列、复合材料组分的组装压合和零件层压。

大多数硼-铝复合材料是用预制品或中间复合材料制造的。

前述的两种工艺具有十分相似的制造工艺,这就是把树脂粘合或者是等离子喷涂条带预制品再经过热压扩散结合。

1.挥发性粘合剂工艺这种工艺是一种直接的方法,几乎不需要什么重要设备或专门技术。

制造预制品的材料包括成卷的硼纤维、铝合金箔、气化后不残留的易挥发树脂以及树脂的溶剂。

铝箔的厚度应结合适当的纤维间距来选择,通常为50~75μm。

所用的纤维排列方法有两种,单丝滚筒缠绕和从纤维盘的线架用多丝排列成连续条带。

前一种工艺因为简单而较常使用。

利用滚筒缠绕可能做成幅片,其尺寸等于滚筒的宽度和围长。

由于简单的螺杆机构便能保证纤维盘的移动与滚筒转动相配合,故能使间距非常精确和满足张力控制。

铝基复合材料的性能铝基复合材料的性能取决于基体合金和增强物的特性、含量、分布等。

与集体和金相比,铝基复合材料具有许多优良的性能。

低密度良好的尺寸稳定性强度、模量与塑性耐磨性疲劳与断裂韧性在硼-铝的压合中有下述一些重要的限制:(1)纤维损伤问题限制了时间-温度参数。

(2)为保证铝的结合和消除孔隙度,时间-温度-压力参数必须高于门限值,因为这是一个受蠕变和扩散限制的过程。

碳化硅铝基复合材料

碳化硅铝基复合材料

碳化硅铝基复合材料
碳化硅铝基复合材料是一种新型的高性能材料,具有优异的耐高温、耐磨损、
耐腐蚀等特性,因此在航空航天、汽车制造、机械加工等领域有着广泛的应用前景。

首先,碳化硅铝基复合材料具有优异的高温性能。

由于碳化硅具有高熔点和高
硬度,而铝基材料具有良好的导热性能,因此碳化硅铝基复合材料能够在高温环境下保持稳定的性能,适用于高温发动机零部件、航空航天器件等领域。

其次,碳化硅铝基复合材料具有出色的耐磨损性能。

碳化硅具有类似金刚石的
硬度,能够有效抵抗磨损,而铝基材料具有较好的韧性,使得碳化硅铝基复合材料在高速摩擦、磨损严重的工况下表现出色,适用于汽车发动机零部件、机械设备的磨损件等领域。

此外,碳化硅铝基复合材料还具有优异的耐腐蚀性能。

碳化硅具有较高的化学
稳定性,能够抵抗酸碱腐蚀,而铝基材料具有良好的抗氧化性能,因此碳化硅铝基复合材料能够在恶劣的化学环境下保持稳定的性能,适用于化工设备、海洋工程等领域。

总的来说,碳化硅铝基复合材料以其优异的高温性能、耐磨损性能和耐腐蚀性能,成为了各个领域中备受青睐的材料之一。

随着材料科学技术的不断发展,碳化硅铝基复合材料的性能和应用领域将得到进一步拓展,为各行各业带来更多的技术创新和发展机遇。

铝基复合材料的分类

铝基复合材料的分类

铝基复合材料的分类铝基复合材料是指以铝为基体材料,通过添加一种或多种增强材料,经过加工制备而成的一种具有优良性能的复合材料。

铝基复合材料广泛应用于航空航天、汽车、船舶、电子等领域,具有重量轻、强度高、刚性好、耐热性好等优点。

根据不同的增强材料和制备工艺,铝基复合材料可以分为以下几类:1. 碳纤维增强铝基复合材料碳纤维增强铝基复合材料是将碳纤维作为增强材料与铝基体材料相结合而成。

碳纤维具有优异的机械性能和热稳定性,能够显著提高铝基复合材料的强度和刚度。

碳纤维增强铝基复合材料在航空航天领域得到广泛应用,如飞机结构件、导弹外壳等。

2. 碳化硅颗粒增强铝基复合材料碳化硅颗粒增强铝基复合材料是将碳化硅颗粒作为增强材料与铝基体材料相结合而成。

碳化硅具有高硬度、高熔点和良好的耐磨性,可以显著提高铝基复合材料的耐磨性和高温性能。

碳化硅颗粒增强铝基复合材料广泛应用于汽车发动机缸套、摩擦制动器等高温摩擦部件。

3. 碳纳米管增强铝基复合材料碳纳米管增强铝基复合材料是将碳纳米管作为增强材料与铝基体材料相结合而成。

碳纳米管具有优异的力学性能和导电性能,能够显著提高铝基复合材料的强度和导电性能。

碳纳米管增强铝基复合材料在电子领域得到广泛应用,如电子封装材料、散热器等。

4. 陶瓷颗粒增强铝基复合材料陶瓷颗粒增强铝基复合材料是将陶瓷颗粒作为增强材料与铝基体材料相结合而成。

陶瓷颗粒具有高硬度、高耐磨性和耐腐蚀性,可以显著提高铝基复合材料的硬度和耐磨性。

陶瓷颗粒增强铝基复合材料广泛应用于机械制造领域,如轴承、齿轮等耐磨件。

铝基复合材料根据不同的增强材料可以分为碳纤维增强铝基复合材料、碳化硅颗粒增强铝基复合材料、碳纳米管增强铝基复合材料和陶瓷颗粒增强铝基复合材料等多种类型。

这些铝基复合材料在不同领域具有广泛的应用前景,将为相关行业的发展带来巨大的推动力。

未来,随着科技的不断进步和材料制备技术的不断改进,铝基复合材料的性能将会进一步提升,为各行各业的发展提供更多可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3铝基复合材料及应用
Aluminum matrix composites and applications
在材料体系设计、制备技术、界面研究、改性处理、性能表征、塑性变形和应用研究等方面开展了系统的研究工作,攻克了高致密制备技术、复合材料稳定性设计、稳定化处理技术、超声波辅助钎焊技术和材料稳定性评价方法等关键技术。

研制出的系列颗粒、晶须和纤维增强铝基复合材料,已经应用于卫星、飞机、载人航天等领域。

2008年获得国家技术发明二等奖。

The fabrication technology,interface structure,surface modification,property characterization,and plastic deformation have been investigated.A series of key technological problems have been broken through,such as high-density composite fabrication,design of dimensional stability,stabilizing treatment,ultrasonic assisted brazing and evaluation of materials stability.The composites have been successfully applied for
industries.
SiCp/Al 复合材料样件
SiCp/Al composites samples
SiCw/Al 复合材料卫星天线展开机构丝杠
Satellite antenna screw rods of SiCw/Al
composite SiC p /Al 相机框架焊接件Brazed camera carriages of SiCp/Al composite。

相关文档
最新文档