第三章_随机向量

合集下载

概率论与数理统计(第3版)(谢永钦)第3章 随机向量

概率论与数理统计(第3版)(谢永钦)第3章 随机向量

概率论与数理统计
定义3.7 设X和Y是两个随机变量,如果对于任意实数x和y,事
件{X≤x}与{Y≤y}相互独立,即有P{ X≤x , Y≤y }=P{X≤x}P{Y≤y},则称随 机变量X与Y相互独立。 设F(x,y)为二维随机变量(X,Y)的分布函数, (X,Y)关于X和关于Y的边缘分布 函数分别为FX(x),FY(y),则上式等价于
这正是参数为
的 分布的概率密度。
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
X
X
Y
Y
概率论与数理统计
解: (1)串联情况
X
Y
概率论与数理统计
(2)并联情况
X
Y
感谢聆听 批评指导
概率论与数理统计
二维正态分布 若(X.,Y)的概率密度为
概率论与数理统计
4. n维随机变量
设E是一个随机试验,它的样本空间是=(e).设随机变量
是定义在同一样本空间上的n个随机变量,则称向

为n维随机向量或n维随机变量。简记为
设 数
为n维随机变量
是n维随机变量,对于任意实 ,称n元函数
的联合分布函数。
设(X,Y)的一切可能值为(xi,yj),i,j=1,2,… ,且(X,Y)取各对可能值的概率为 P{X=xi,Y=yj}=pij, i,j=1,2,…
称上式为(X,Y)的(联合)概率分布或(联合)分布律.离散型随机变量(X,Y) 的联合分布律可用表3-1表示.
概率论与数理统计
(X,Y)的分布律也可用表格形式表示:
记作
或记为
.

第三章-多维随机向量的分布及数字特征

第三章-多维随机向量的分布及数字特征



xi x y j y
一般求概率函数 P ( X , Y ) ( xi , y j ) 采用以下公式: P ( X , Y ) ( xi , y j ) PX xi P Y y j X xi 例3.3 整数 X 等可能的取值1,2,3,4,整数Y 等可能的取值 1~ X,求随机向量( X , Y )的概率分布列。 解: 由题目条件随机向量( X , Y )所有可能取值点为 (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4) 显然,当 y j xi时,P ( X , Y ) ( xi , y j ) 0 。 当 y j xi时,分别有 P ( X , Y ) (1,1) P X 1 P Y 1 X 1 1 1 1 4 4 P ( X , Y ) (2,1) P X 2 P Y 1 X 2
P x1 X x2 , y1 Y y2
X
pij
0 1
Y
0
1/4 1/4
1
1/4 1/4
0 x 0或y 0 1 / 4 0 x 1且0 y 1 F ( x, y ) PX x, Y y 1 / 2 0 x 1且y 1 1 / 2 x 1且0 y 1 1 x 1且y 1
表达随机试验结果的变量个数从一个增加到两个形成二 维随机向量,概率分布律的描述有了实质的变化,而二维推 广到多维只有形式上的变化并无实质性的困难,我们主要讨 论二维随机向量。 2. 二维随机向量的分布函数 Def 设( X , Y )为二维随机向量,( x, y )为平面内任意一点,则

概率论第三章 随机向量

概率论第三章 随机向量

第三章随机向量在实际问题中,除了经常用到一个随机变量的情形外,还常用到多个随机变量的情形.例如,观察炮弹在地面弹着点e的位置,需要用它的横坐标X(e)与纵坐标Y(e)来确定,而横坐标和纵坐标是定义在同一个样本空间Ω={e}={所有可能的弹着点}上的两个随机变量.又如,某钢铁厂炼钢时必须考察炼出的钢e的硬度X(e)、含碳量Y(e)和含硫量Z(e)的情况,它们也是定义在同一个Ω={e}上的三个随机变量.因此,在实用上,有时只用一个随机变量是不够的,要考虑多个随机变量及其相互联系.本章以两个随机变量的情形为代表,讲述多个随机变量的一些基本内容.第一节二维随机向量及其分布1.二维随机向量的定义及其分布函数定义3.1设E是一个随机试验,它的样本空间是Ω={e}.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量(2-dimensional random vector)或二维随机变量(2-dimensional random variable),简记为(X,Y).类似地定义n维随机向量或n维随机变量(n>2).设E是一个随机试验,它的样本空间是Ω={e},设随机变量X1(e),X2(e),…,X n(e)是定义在同一个样本空间Ω上的n个随机变量,则称向量(X1(e),X2(e),…,X m(e))为Ω上的n维随机向量或n维随机变量.简记为(X1,X2,…,X n).与一维随机变量的情形类似,对于二维随机向量,也通过分布函数来描述其概率分布规律.考虑到两个随机变量的相互关系,我们需要将(X,Y)作为一个整体来进行研究.定义3.2设(X,Y)是二维随机向量,对任意实数x和y,称二元函数F(x,y)=P{X≤x,Y≤y} (3.1)为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数.类似定义n维随机变量(X1,X2,…,X n)的分布函数.设(X1,X2,…,X n)是n维随机变量,对任意实数x1,x2,…,x n,称n元函数F(x1,x2,…,x n)=P{X1≤x1,X2≤x2,…,X n≤x n}为n维随机变量(X1,X2,…,X n)的联合分布函数.我们容易给出分布函数的几何解释.如果把二维随机变量(X,Y)看成是平面上随机点的坐标,那么,分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在直线X=x的左侧和直线Y=y的下方的无穷矩形域内的概率(如图3-1所示).根据以上几何解释借助于图3-2,可以算出随机点(X,Y)落在矩形域{x1<X≤x2,y1<Y ≤y2}内的概率为:P{x1<X≤x2,y1<Y≤y2}=F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1). (3.2)图3-1 图3-2容易证明,分布函数F (x ,y )具有以下基本性质:(1) F (x ,y )是变量x 和y 的不减函数,即对于任意固定的y ,当x 2>x 1时,F (x 2,y )≥F (x 1,y );对于任意固定的x ,当y 2>y 1时,F (x ,y 2)≥F (x ,y 1).(2) 0≤F (x ,y )≤1,且对于任意固定的y ,F (-∞,y )=0,对于任意固定的x ,F (x ,-∞)=0,F (-∞,-∞)=0,F (+∞,+∞)=1. (3) F (x ,y )关于x 和y 是右连续的,即F (x ,y )=F (x +0,y ),F (x ,y )=F (x ,y +0).(4) 对于任意(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,下述不等式成立:F (x 2,y 2)-F (x 2,y 1)-F (x 1,y 2)+F (x 1,y 1)≥0.与一维随机变量一样,经常讨论的二维随机变量有两种类型:离散型与连续型.2.二维离散型随机变量 定义3.3 若二维随机变量(X ,Y )的所有可能取值是有限对或可列无穷多对,则称(X ,Y )为二维离散型随机变量.设二维离散型随机变量(X ,Y )的一切可能取值为(x i ,y j )i ,j =1,2,…,且(X ,Y )取各对可能值的概率为P {X =x i ,Y =y i }=p ij ,i ,j =1,2,…. (3.3)称式(3.3)为(X ,Y )的(联合)概率分布或(联合)分布律,离散型随机变量(X ,Y )的联合分布律可用表3-1表示.表3-1由概率的定义可知p ij 具有如下性质: (1) 非负性:p ij ≥0(i ,j =1,2,…); (2) 规范性:∑ji ijp,=1.离散型随机变量X 和Y 的联合分布函数为F (x ,y )=P {X ≤x ,Y ≤y }=∑∑≤≤x x yy iji j p, (3.4)其中和式是对一切满足x i ≤x ,y j ≤y 的i ,j 来求和的.例3.1 设二维离散型随机变量(X ,Y )的分布律如表3-2所示:求P {X >1,Y ≥3}及P {X =1}.解 P {X >1,Y ≥3}=P {X =2,Y =3}+P {X =2,Y =4}+P {X =3,Y =3}+P {X =3,Y =4}=0.3;P {X =1}=P {X =1,Y =1}+P {X =1,Y =2}+P {X =1,Y =3}+P {X =1,Y =4}=0.2.例3.2 设随机变量X 在1,2,3,4四个整数中等可能地取值,另一个随机变量Y 在1~X 中等可能地取一整数值,试求(X ,Y )的分布律.解 由乘法公式容易求得(X ,Y )的分布律,易知{X =i ,Y =j }的取值情况是:i =1,2,3,4,j 取不大于i 的正整数,且P {X =i ,Y =j }=P {Y =j |X =i }P {X =i }=i 1·41,i =1,2,3,4,j ≤i . 于是(X ,Y )的分布律为表3-33.二维连续型随机变量定义3.4 设随机变量(X ,Y )的分布函数为F (x ,y ),如果存在一个非负可积函数f (x ,y ),使得对任意实数x ,y ,有F (x ,y )=P {X ≤x ,Y ≤y }=⎰⎰∞-∞-x yv u v u f ,),(d d (3.5)则称(X ,Y )为二维连续型随机变量,称f (x ,y )为(X ,Y )的联合分布密度或概率密度. 按定义,概率密度f (x ,y )具有如下性质: (1) f (x ,y )≥0 (-∞<x ,y <+∞); (2)⎰⎰+∞∞-+∞∞-v u v u f d d ),(=1;(3) 若f (x ,y )在点(x ,y )处连续,则有yx y x F ∂∂∂),(2=f (x ,y );(4) 设G 为xOy 平面上的任一区域,随机点(X ,Y )落在G 内的概率为P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(. (3.6)在几何上,z =f (x ,y )表示空间一曲面,介于它和xOy 平面的空间区域的立体体积等于1,P {(X ,Y )∈G }的值等于以G 为底,以曲面z =f (x ,y )为顶的曲顶柱体体积. 与一维随机变量相似,有如下常用的二维均匀分布和二维正态分布.设G 是平面上的有界区域,其面积为A ,若二维随机变量(X ,Y )具有概率密度f (x ,y )=⎪⎩⎪⎨⎧∈.,0),(,1其他Gy x A则称(X ,Y )在G 上服从均匀分布.类似设G 为空间上的有界区域,其体积为A ,若三维随机变量(X ,Y ,Z )具有概率密度f (x ,y ,z )=⎪⎩⎪⎨⎧∈.,0,),,(,1其他G z y x A ,则称(X ,Y ,Z )在G 上服从均匀分布.设二维随机变量(X ,Y )具有分布密度f (x ,y )=,121])())((2)([)1(212222221212121221σμσσμμρσμρρσσ-+-------y y x x eπ-∞<x <+∞,-∞<y <+∞,其中μ1,μ2,σ1,σ2,ρ均为常数,且σ1>0,σ2>0,-1<ρ<1,则称(X ,Y )为具有参数μ1,μ2,σ1,σ2,ρ的二维正态随机变量,记作:(X ,Y )~N (μ1,μ2,σ12,σ22,ρ).例3.3 设(X ,Y )在圆域x 2+y 2≤4上服从均匀分布,求 (1) (X ,Y )的概率密度; (2) P {0<X <1,0<Y <1}.解 (1) 圆域x 2+y 2≤4的面积A =4π,故(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧≤+.,0,4,4122其他y x π(2) G 为不等式0<x <1,0<y <1所确定的区域,所以P {0<X <1,0<Y <1}=11011(,)d d d d .44Gf x y x y x y ππ==⎰⎰⎰⎰例3.4 设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)32(其他y x k y x e(1) 确定常数k ;(2)求(X ,Y )的分布函数;(3)求P {X <Y }.解 (1)由性质有⎰⎰⎰⎰-∞+∞+-+∞∞-+∞∞-=0)32(),(y x k y x y x f y x d d e d d=⎰⎰+∞+∞--032y x ky x d e d e=+∞-+∞-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-03023121y xk e e =k /6=1. 于是,k =6.(2) 由定义有F (x ,y )=⎰⎰∞-∞-y xv u v u f d d ),(⎪⎩⎪⎨⎧>>--==⎰⎰--+-.,0.0,0),1)(1(60032)32(其他y xy x v u x y v u e e d d e (3) P {X <Y }=(,)d d (,)d d Dx yf x y x y f x y x y <=⎰⎰⎰⎰=.52)1(362300)32(=-=⎥⎦⎤⎢⎣⎡⎰⎰⎰+∞--+∞+-y y x y y y y x d e e d d e 0例3.5 设(X ,Y )~N (0,0,σ2,σ2,0),求P {X <Y }. 解 易知f (x ,y )=2222221σπσy x +-e (-∞<x ,y <+∞),所以P {X <Y }=.212222y x yx y x d d e π⎰⎰<+-σσ.引进极坐标x =r cos θ, y =r sin θ,则P {X <Y }=.212122245402=-∞+⎰⎰θσσd d e πππr r r第二节 边缘分布二维随机变量(X ,Y )作为一个整体,它具有分布函数F (x ,y ).而X 和Y 也都是随机变量,它们各自也具有分布函数.将它们分别记为F X (x )和F Y (y ),依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数(Marginal distribution function ).边缘分布函数可以由(X ,Y )的分布函数F (x ,y )来确定,事实上F X (x )=P {X ≤x }=P {X ≤x ,Y <+∞}=F (x ,+∞), (3.7) F Y (y )=P {Y ≤y }=P {X <+∞,Y ≤y }=F (+∞,y ). (3.8)下面分别讨论二维离散型随机变量与连续型随机变量的边缘分布. 1.二维离散型随机变量的边缘分布设(X ,Y )是二维离散型随机变量,其分布律为:P {X =x i ,Y =y j }=p ij ,i ,j =1,2,….于是,有边缘分布函数F X (x )=F (x ,+∞)=∑∑≤x x jiji p.由此可知,X 的分布律为:P {X =x i }=ijj p∑,i =1,2,…, (3.9)称其为(X ,Y )关于X 的边缘分布律.同理,称(X ,Y )关于Y 的边缘分布律为:P {Y =y j }=ijip∑,j =1,2,…. (3.10)例3.6 设袋中有4个白球及5个红球,现从其中随机地抽取两次,每次取一个,定义随机变量X ,Y 如下:X =⎩⎨⎧;1第一次摸出红球第一次摸出白球,,0, Y =⎩⎨⎧.1第二次摸出红球第二次摸出白球,,0,写出下列两种试验的随机变量(X ,Y )的联合分布与边缘分布. (1) 有放回摸球;(2) 无放回摸球.解 (1)采取有放回摸球时,(X ,Y )的联合分布与边缘分布由表3-4给出.表3-4(2) 采取无放回摸球时,(X ,Y )的联合分布与边缘分布由表3-5给出.表3-5在上例的表中,中间部分是(X ,Y )的联合分布律,而边缘部分是X 和Y 的边缘分布律,它们由联合分布经同一行或同一列的和而得到,“边缘”二字即由上表的外貌得来.显然,离散型二维随机变量的边缘分布律也是离散的.另外,例3.6的(1)和(2)中的X 和Y 的边缘分布是相同的,但它们的联合分布却完全不同.由此可见,联合分布不能由边缘分布惟一确定,也就是说,二维随机变量的性质不能由它的两个分量的个别性质来确定.此外,还必须考虑它们之间的联系.这进一步说明了多维随机变量的作用.在什么情况下,二维随机变量的联合分布可由两个随机变量的边缘分布确定,这是第四节的内容.2.二维连续型随机变量的边缘分布设(X ,Y )是二维连续型随机变量,其概率密度为f (x ,y ),由F X (x )=F (x ,+∞)=⎰⎰∞-+∞∞-⎥⎦⎤⎢⎣⎡xx y y x f d d ),(知,X 是一个连续型随机变量,且其概率密度为f X (x )=⎰+∞∞-=.),()(y y x f xx F X d d d (3.11) 同样,Y 也是一个连续型随机变量,其概率密度为f Y (y )=⎰+∞∞-=.),()(x y x f yy F Y d d d (3.12) 分别称f X (x ),f Y (y )为(X ,Y )关于X 和关于Y 的边缘分布密度或边缘概率密度.例3.7 设随机变量X 和Y 具有联合概率密度f (x ,y )=⎩⎨⎧≤≤.,0.,62其他x y x求边缘概率密度f X (x ),f Y (y ).解f X (x )=⎪⎩⎪⎨⎧≤≤-==⎰⎰∞+∞-.,0,10),(66),(22其他x x x x x dy y y x f df Y (y )=⎰⎰∞+∞⎪⎩⎪⎨⎧≤≤-==-d d .,0,10),(66),(其他y yy y y x x y x f 例3.8 求二维正态随机变量的边缘概率密度. 解 f X (x )=⎰+∞∞-,),(y y x f d ,由于,)())((2)(212122112221212222σμρσμρσμσσμμρσμ--⎥⎦⎤⎢⎣⎡---=----x x y y x y 于是f X (x )=y x y x d eeπ-⎰∞+∞⎥⎦⎤⎢⎣⎡--------211222121)1(212)(221121σμρσμρσμρσσ令t =⎪⎪⎭⎫ ⎝⎛----1122211σμρσμρx y , 则有f X (x )=2121221212)(122)(12121σμσμσσ--∞+∞----=⎰x t x t e πd ee π, -∞<x <∞.同理f Y (y )=22222)(221σμσ--y e π,-∞<y <∞.我们看到二维正态分布的两个边缘分布都是一维正态分布,并且都不依赖于ρ,亦即对于给定的μ1,μ2,σ1,σ2,不同的ρ对应不同的二维正态分布,它们的边缘分布却都是一样的.这一事实表明,对于连续型随机变量来说,单由关于X 和关于Y 的边缘分布,一般来说也是不能确定X 和Y 的联合分布的.第三节 条件分布由条件概率的定义,我们可以定义多维随机变量的条件分布.下面分别讨论二维离散型和二维连续型随机变量的条件分布.1.二维离散型随机变量的条件分布律定义3.5 设(X ,Y ) 是二维离散型随机变量,对于固定的j ,若P {Y =y j }>0,则称P {X =x i |Y =y j }=P {X =x i ,Y =y j }/P {Y =y j },i =1,2,…,为在Y =y j 条件下随机变量X 的条件分布律(Conditional distribution ). 同样,对于固定的i ,若P {X =x i }>0,则称P {Y =y j |X =x i }=P {X =x i ,Y =y j }/P {X =x i },j =1,2,…,为在X =x i 条件下随机变量Y 的条件分布律.例3.9 已知(X ,Y )的联合分布律如表3-6所示求:(1) 在Y =1的条件下,X 的条件分布律; (2) 在X =2的条件下,Y 的条件分布律.解 (1) 由联合分布律表可知边缘分布律.于是P {X =1|Y =1}=4825/41=12/25; P {X =2|Y =1}=4825/81=6/25;P {X =3|Y =1}=4825/121=4/25; P {X =4|Y =1}=4825/161=3/25. 即,在Y =1的条件下X 的条件分布律为 表3-7(2) 同理可求得在X =2的条件下Y 的条件分布律为表3-8 例3.10 一射手进行射击,击中的概率为p (0<p <1),射击到击中目标两次为止.记X 表示首次击中目标时的射击次数,Y 表示射击的总次数.试求X ,Y 的联合分布律与条件分布律.解 依题意,X =m ,Y =n 表示前m -1次不中,第m 次击中,接着又n -1-m 次不中,第n 次击中.因各次射击是独立的,故X ,Y 的联合分布律为P {X =m ,Y =n }=p 2(1-p )n -2, m =1,2,…,n -1, n =2,3…. 又因P {X =m }={}∑∑∞+=∞+=--===1122)1(,m n m n n p p n Y m X P=∑∞+=--122)1(m n n p p=p (1-p )m -1, m =1,2,…;P {Y =n }=(n -1)p 2(1-p )n -2, n =2,3,…,因此,所求的条件分布律为当n =2,3,…时,P {X =m |Y =n }={}{},11,-====n n Y P n Y m X P m =1,2,…,n -1;当m =1,2,…时,P {Y =n |X =m }={}{}1)1(,---====m n p p n Y P n Y m X P , n =m +1,m +2,…. 2.二维连续型随机变量的条件分布 对于连续型随机变量(X ,Y ),因为P{X =x ,Y =y }=0,所以不能直接由定义3.5来定义条件分布,但是对于任意的ε>0,如果P {y -ε<Y ≤y +ε}>0,则可以考虑P {X ≤x |y -ε<Y ≤y +ε}={}{}.,εεεε+≤<-+≤<-≤y Y y P y y y x X P如果上述条件概率当ε→0+时的极限存在,自然可以将此极限值定义为在Y =y 条件下X 的条件分布.定义3.6 设对于任何固定的正数ε,P {y -ε<Y ≤y +ε}>0,若{}{}{}εεεεεεεε+≤<-+≤<-≤=+≤<-≤++→→y Y y P y Y y x X P y Y y x X P ,lim lim 0存在,则称此极限为在Y =y 的条件下X 的条件分布函数,记作P {X ≤x |Y =y }或F X |Y (x |y ).设二维连续型随机变量(X ,Y )的分布函数为F (x ,y ),分布密度函数为f (x ,y ),且f (x ,y )和边缘分布密度函数f Y (y )连续,f Y (y )>0,则不难验证,在Y =y 的条件下X 的条件分布函数为F X |Y (x |y )=(,)d .()xY f u y u f y -∞⎰若记f X |Y (x |y )为在Y =y 的条件下X 的条件分布密度,则f X |Y (x |y )=f (x ,y )/f Y (y ).类似地,若边缘分布密度函数f X (x )连续,f X (x )>0,则在X =x 的条件下Y 的条件分布函数为F Y |X (y |x )=⎰∞-yX v x f v x f d )(),(. 若记f Y |X (y |x )为在X =x 的条件下Y 的条件分布密度,则f Y |X (y |x )=)(),(x f y x f X .例3.11 设(X ,Y )~N (0,0,1,1,ρ),求f X |Y (x |y )与f Y |X (y |x ). 解 易知f (x ,y )=)1(222222121ρρρ-+---y xy x eπ(-∞<x ,y <+∞),所以f X |Y (x |y )=)1(2222)1(21)(),(ρρρ----=y x Y x f y x f eπ ;f Y |X (y |x )=)1(2222)1(21)(),(ρρρ----=x y X x f y x f eπ .例3.12 设随机变量X ~U (0,1),当观察到X =x (0<x <1)时,Y ~U (x ,1),求Y 的概率密度f Y (y ).解 按题意,X 具有概率密度f X (x )=⎩⎨⎧<<.,010,1其他x类似地,对于任意给定的值x (0<x <1),在X =x 的条件下,Y 的条件概率密度f Y |X (y |x )=⎪⎩⎪⎨⎧<<-.,0,1,11其他y x x因此,X 和Y 的联合概率密度为f (x ,y )=f Y |X (y |x )f X (x )=⎪⎩⎪⎨⎧<<<-.,0,10,11其他y x x于是,得关于Y 的边缘概率密度为f Y (y )=⎰⎰∞+∞-⎪⎩⎪⎨⎧<<--=-=.,0,10),1ln(11),(0其他y y y x x x y x f d d第四节 随机变量的独立性我们在前面已经知道,随机事件的独立性在概率的计算中起着很大的作用.下面我们介绍随机变量的独立性,它在概率论和数理统计的研究中占有十分重要的地位.定义3.7 设X 和Y 为两个随机变量,若对于任意的x 和y 有P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },则称X 和Y 是相互独立(Mutually independent )的.若二维随机变量(X ,Y )的分布函数为F (x ,y ),其边缘分布函数分别为F X (x )和F Y (y ),则上述独立性条件等价于对所有x 和y 有F (x ,y )=F X (x )F Y (y ). (3.13)对于二维离散型随机变量,上述独立性条件等价于对于(X ,Y )的任何可能取的值(x i ,y j )有P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }. (3.14)对于二维连续型随机变量,独立性条件的等价形式是对一切x 和y 有f (x ,y )=f X (x )f Y (y ), (3.15)这里,f (x ,y )为(X ,Y )的概率密度函数,而f X (x )和f Y (y )分别是边缘概率密度函数.如在例3.6中,(1)有放回摸球时,X 与Y 是相互独立的;而(2)无放回摸球时,X 与Y 不是相互独立的.例3.13 设(X ,Y )在圆域x 2+y 2≤1上服从均匀分布,问X 和Y 是否相互独立? 解 (X ,Y )的联合分布密度为f (x ,y )=⎪⎩⎪⎨⎧≤+.,0,1,122其他y x π由此可得f X (x )=11,(,)0,.x f x y dy +∞-∞-≤≤=⎪⎩⎰其他 f Y (y )=⎪⎩⎪⎨⎧≤≤--=⎰∞+∞-.,0,11,12),(2其他y y x y x f πd可见在圆域x 2+y 2≤1上,f (x ,y )≠f X (x )f Y (y ),故X 和Y 不相互独立.例3.14 设X 和Y 分别表示两个元件的寿命(单位:小时),又设X 与Y 相互独立,且它们的概率密度分别为f X (x )=⎩⎨⎧>-.,0,0,其他x x e ; f Y (y )=⎩⎨⎧>-.,0,0,其他y y e求X 和Y 的联合概率密度f (x ,y ).解 由X 和Y 相互独立可知f (x ,y )=f X (x )f Y (y )=⎩⎨⎧>>+-.,0,0,0,)(其他y x y x e第五节两个随机变量的函数的分布下面讨论两个随机变量函数的分布问题,就是已知二维随机变量(X ,Y )的分布律或密度函数,求Z =ϕ(X ,Y )的分布律或密度函数问题.1.二维离散型随机变量函数的分布律设(X ,Y )为二维离散型随机变量,则函数Z =ϕ(X ,Y )仍然是离散型随机变量.从下面两例可知,离散型随机变量函数的分布律是不难获得的.例3.15 设(X ,Y )的分布律为求Z =X +Y 和Z =XY 的分布律.解 先列出下表表3-10从表中看出Z =X +Y 可能取值为-2,0,1,3,4,且P {Z =-2}=P {X +Y =-2}=P {X =-1,Y =-1}=5/20; P {Z =0}=P {X +Y =0}=P {X =-1,Y =1}=2/20;P {Z =1}=P {X +Y =1}=P {X =-1,Y =2}+P {X =2,Y =-1}=6/20+3/20=9/20;P {Z =3}=P {X +Y =3}=P {X =2,Y =1}=3/20; P {Z =4}=P {X +Y =4}=P {X =2,Y =2}=1/20.于是Z =X +Y 的分布律为表3-11同理可得,Z =XY 的分布律为表3-12例3.16 设X ,Y 相互独立,且分别服从参数为λ1与λ2的泊松分布,求证Z =X +Y 服从参数为λ1+λ2的泊松分布.证 Z 的可能取值为0,1,2,…,Z 的分布律为P {Z =k }=P {X +Y =k }={}{}∑=-==ki i k Y P i X P 0=k ki k i k i k i )(!1)!(!21)(01212121λλλλλλλλ+=-+-=---∑e e e ,k =0,1,2,…. 所以Z 服从参数为λ1+λ2的泊松分布.本例说明,若X ,Y 相互独立,且X ~π(λ1),Y ~π(λ2),则X +Y ~π(λ1+λ2).这种性质称为分布的可加性,泊松分布是一个可加性分布.类似地可以证明二项分布也是一个可加性分布,即若X ,Y 相互独立,且X ~B (n 1,p ),Y ~B (n 2,p ),则X +Y ~B (n 1+n 2,p ).2.二维连续型随机变量函数的分布设(X ,Y )为二维连续型随机变量,若其函数Z =ϕ (X ,Y )仍然是连续型随机变量,则存在密度函数f Z (z ).求密度函数f Z (z )的一般方法如下:首先求出Z = ϕ(X ,Y )的分布函数F Z (z )=P {Z ≤z }=P { ϕ(X ,Y )≤z }=P {(X ,Y )∈G }=⎰⎰Gv u v u f d d ),(,其中f (x ,y )是密度函数,G ={(x ,y )|ϕ(x ,y )≤z }.其次是利用分布函数与密度函数的关系,对分布函数求导,就可得到密度函数f Z (z ). 下面讨论两个具体的随机变量函数的分布. (1) Z =X +Y 的分布设(X ,Y )的概率密度为f (x ,y ),则Z =X +Y 的分布函数为F Z (z )=P {Z ≤z }=(,)d d ,x y zf x y x y +≤⎰⎰,这里积分区域G :x +y ≤z 是直线x +y =z 左下方的半平面,化成累次积分得F Z (z )=(,)d d z y f x y x y +∞--∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.固定z 和y ,对积分(,)d z yf x y x --∞⎰作变量变换,令x =u -y ,得(,)d (,)d z yzf x y x f u y y u --∞-∞=-⎰⎰.于是F Z (z )=(,)d d (,)d .zz --f u y y u y f u y y dy u +∞+∞∞∞-∞-∞⎡⎤-=-⎢⎥⎣⎦⎰⎰⎰⎰由概率密度的定义,即得Z 的概率密度为f Z (z )=(,)d f z y y y +∞-∞-⎰. (3.16)由X ,Y 的对称性,f Z (z )又可写成f Z (z )=(,)d f x z x x ∞-∞-⎰. (3.17)这样,我们得到了两个随机变量和的概率密度的一般公式.特别地,当X 和Y 相互独立时,设(X ,Y )关于X ,Y 的边缘概率密度分别为f X (x ),f Y (y ),则有f Z (z )=()()d X Y f z y f y y +∞-∞-⎰; (3.18) f Z (z )=()()d X Y f x f z x x +∞-∞-⎰. (3.19)这两个公式称为卷积(Convolution )公式,记为f X *f Y ,即f X *f Y =()()d ()()d X Y X Y f z y f y y f x f z x x +∞+∞-∞-∞-=-⎰⎰.例3.17 设X 和Y 是两个相互独立的随机变量,它们都服从N (0,1)分布,求Z =X +Y 的概率分布密度.解 由题设知X ,Y 的分布密度分别为f X (x )=2221x -e π, -∞<x <+∞,f Y (y )=2221y -e π, -∞<y <+∞.由卷积公式知f Z (z )=x x x x z f x f zx z x z x Y X d e eπd ee πd ⎰⎰⎰∞+∞------∞+∞--∞+∞-==-2222)2(42)(22121)()(.设t =2zx -,得 f Z (z )=44422222121z z t z t --∞+∞---===⎰eππe 2π1d e e π,即Z 服从N (0,2)分布.一般,设X ,Y 相互独立且X ~N (u 1,σ12),Y ~N (u 2,σ22),由公式(3.19)经过计算知Z=X+Y 仍然服从正态分布,且有Z ~N (u 1+u 2,σ12+σ22).这个结论还能推广到n 个独立正态随机变量之和的情况,即若X i ~N (u i ,σi 2)(i =1,2,…,n ),且它们相互独立,则它们的和Z =X 1+X 2+…+X n 仍然服从正态分布,且有Z ~N (∑∑=21,i ni i u σ).更一般地,可以证明有限个相互独立的正态随机变量的线性组合仍服从正态分布. 例3.18 设X 和Y 是两个相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;其他,0,10,1x f Y (y )=⎩⎨⎧>-.,0,0,其他e y y 求随机变量Z=X+Y 的分布密度.解 X ,Y 相互独立,所以由卷积公式知f Z (z )=.)()(⎰+∞∞--x x z f x f Y X d .由题设可知f X (x )f Y (y )只有当0≤x ≤1,y >0,即当0≤x ≤1且z -x >0时才不等于零.现在所求的积分变量为x ,z 当作参数,当积分变量满足x 的不等式组0≤x ≤1 x <z 时,被积函数f X (x )f Y (z -x )≠0.下面针对参数z 的不同取值范围来计算积分.当z <0时,上述不等式组无解,故f X (x )f Y (z -x )=0.当0≤z ≤1时,不等式组的解为0≤x ≤z .当z >1时,不等式组的解为0≤x ≤1.所以f Z (z )=()01()0e d 1e ,01,e d e (e 1),1,0,.z z x z z x z x z x z ------⎧=-≤≤⎪⎪=->⎨⎪⎪⎩⎰⎰其他, (2) Z =X/Y 的分布设(X ,Y )的概率密度为f (x ,y ),则Z =X /Y 的分布函数为FZ (z )=P {Z ≤z }=P {X /Y ≤z }=/(,)d d x y zf x y x y ≤⎰⎰.令u =y ,v =x /y ,即x =uv ,y =u .这一变换的雅可比(Jacobi )行列式为J =1uv =-u . 于是,代入上式得F Z (z )=(,)d d (,)d d zv zf uv u J u v f uv u u u v +∞-∞-∞≤⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰.这就是说,随机变量Z 的密度函数为f Z (z )=⎰+∞∞-.),(u u u zu f d (3.20)特别地,当X 和Y 独立时,有f Z (z )=⎰+∞∞-u u u f zu f Y X d )()(, (3.21)其中f X (x ),f Y (y )分别为(X ,Y )关于X 和关于Y 的边缘概率密度.例3.19 设X 和Y 相互独立,均服从N (0,1)分布,求Z =X /Y 的密度函数f Z (z ). 解 由3.21式有f Z (z )=u u u u u f zu f z u Y X d e πd ⎰⎰∞+∞-∞+∞-+-=2)1(2221)()(=)1(11202)1(22z u u z u +=⎰∞++-πd e π, -∞<z <+∞.例3.20 设X ,Y 分别表示两只不同型号的灯泡的寿命,X ,Y 相互独立,它们的概率密度依次为f (x )=⎩⎨⎧>-;,0,0,其他x x eg (y )=⎩⎨⎧>-.,0,0,22其他y y e求Z =X/Y 的概率密度函数.解 当z >0时,Z 的概率密度为f Z (z )=⎰⎰+∞+∞+---+==02)2(2)2(222z y y y y y z y yz d e d e e ; 当z ≤0时,f Z (z )=0.于是f Z (z )=⎪⎩⎪⎨⎧≤>+.0,0,0,)2(22z z z .(3) M =max(X ,Y )及N =min (X ,Y )的分布设X ,Y 相互独立,且它们分别有分布函数F X (x )与F Y (y ).求X ,Y 的最大值,最小值:M =max(X ,Y ),N =min(X ,Y )的分布函数F M (z ),F N (z ).由于M =max(X ,Y )不大于z 等价于X 和Y 都不大于z ,故P {M ≤z }=P {X ≤z ,Y ≤z },又由于X 和Y 相互独立,得F M (z )=P {M ≤z }=P {X ≤z ,Y ≤z }=P {X ≤z }·P {Y ≤z }=F X (z )·F Y (z ). (3.22) 类似地,可得N =min(X ,Y )的分布函数为F N (z)=P {N ≤z }=1-P {N >z }=1-P {X >z ,Y >z }=1-P {X >z }·P {Y >z }=1-(1-F X (z ))(1-F Y (z )). (3.23)以上结果容易推广到n 个相互独立的随机变量的情况.设X 1,X 2,…,X n 是n 个相互独立的随机变量,它们的分布函数分别为F Xi (x i )(i =1,2,…,n ),则M =max(X 1,X 2,…,X n )及N =min(X 1,X 2,…,X n )的分布函数分别为F M (z )=F X 1(z )F X 2(z )…F Xn (z ); (3.24)F N (z )=1-[1-F X 1(z )][1-F X 2(z )]…[1-F Xn (z )]. (3.25)特别,当X 1,X 2,…,X n 是相互独立且有相同分布函数F (x )时,有F M (z )=(F (z ))n , (3.26) F N (z )=1- [1-F (z )]n . (3.27)例3.21 设X ,Y 相互独立,且都服从参数为1的指数分布,求Z =max{X ,Y }的密度函数.解 设X ,Y 的分布函数为F (x ),则F (x )=⎩⎨⎧<≥--.0,0,0,1x x x e由于Z 的分布函数为F Z (z )=P {Z ≤z }=P {X ≤z ,Y ≤z }=P {X ≤z }P {Y ≤z }=[F (z )]2,所以,Z 的密度函数为f Z (z )=F ′Z (z )=2F (z )F ′(z )=⎩⎨⎧<≥---.0,0,0),1(2z z z z e e下面再举一个由两个随机变量的分布函数求两随机变量函数的密度函数的一般例子. 例3.22 设X ,Y 相互独立,且都服从N (0,σ2),求Z =22Y X +的密度函数.解 先求分布函数F Z (z )=P {Z ≤z }=P {22Y X +≤z }.当z ≤0时,F Z (z )=0;当z >0时,F Z (z )=P {22Y X +≤z }=y x y x zy x d d e π222222221σσ+-≤+⎰⎰.图3-3作极坐标变换x =r cos θ,y =r sin θ(0≤r ≤z ,0≤θ<2π)(如图3-3),于是有F Z (z )=2222220022121σσθσz zr r r ---=⎰⎰ed ed ππ.故得所求Z 的密度函数为f Z (z )=F ′Z (z )=⎪⎩⎪⎨⎧≤>-.0,0,0,2222z z z z σσe 此分布称为瑞利分布(Rayleigh ),它很有用.例如,炮弹着点的坐标为(X ,Y ),设横向偏差X ~N (0,σ2),纵向偏差Y ~N (0,σ2),X ,Y 相互独立,那么弹着点到原点的距离D 便服从瑞利分布,瑞利分布还在噪声、海浪等理论中得到应用.小 结对一维随机变量的概念加以扩充,就得多维随机变量,我们着重讨论二维随机变量. 1.二维随机变量(X ,Y )的分布函数:F (x ,y )=P {X ≤x ,Y ≤y },-∞<x <∞,-∞<y <∞.(1) 离散型随机变量(X ,Y )定义分布律:P {X =x i ,Y =y j }=p ij , i ,j =1,2,…,1,=∑ji ijp.(2) 连续型随机变量(X ,Y )定义概率密度f (x ,y )(f (x ,y )≥0):F (x ,y )=⎰⎰∞-∞-y xy x y x f d d ),(,对任意x,y .一般,我们都是利用分布律或概率密度(不是利用分布函数)来描述和研究二维随机变量的.2.二维随机变量的分布律与概率密度的性质与一维的类似.特别,对于二维连续型随机变量,有公式P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(.其中,G 是平面上的某区域,这一公式常用来求随机变量的不等式成立的概率,例如:P {Y ≤X }=P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(.其中G 为半平面y ≤x .3.研究二维随机变量(X ,Y )时,除了讨论上述一维随机变量类似的内容外,还讨论了以下新的内容:边缘分布、条件分布、随机变量的独立性等.(1) 对(X ,Y )而言,由(X ,Y )的分布可以确定关于X 、关于Y 的边缘分布.反之,由X 和Y 的边缘分布一般是不能确定(X ,Y )的分布的.只有当X ,Y 相互独立时,由两边缘分布能确定(X ,Y )分布.(2) 随机变量的独立性是随机事件独立性的扩充.我们也常利用问题的实际意义去判断两个随机变量的独立性.例如,若X ,Y 分别表示两个工厂生产的显像管的寿命,则可以认为X ,Y 是相互独立的.(3) 讨论了Z =X +Y ,Z =X/Y ,M =max(X ,Y ),N =min(X ,Y )的分布的求法.(设(X ,Y )分布已知);这是很有用的.4.本章在进行各种问题的计算时,例如,在求边缘概率密度,求条件概率密度,求Z =X +Y的概率密度或在计算概率P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(时,要用到二重积分,或用到二元函数固定其中一个变量对另一个变量的积分.此时千万要搞清楚积分变量的变化范围.题目做错,往往是由于在积分运算时,将有关的积分区间或积分区域搞错了.在做题时,画出有关函数的积分域的图形,对于正确确定积分上下限肯定是有帮助的.另外,所求得的边缘密度、条件密度或Z =X +Y 的密度,往往是分段函数,正确写出分段函数的表达式当然是必须的.重要术语及主题二维随机变量(X ,Y ) (X ,Y )的分布函数 离散型随机变量(X ,Y )的分布律 连续型随机变量(X ,Y )的概率密度 离散型随机变量(X ,Y )的边缘分布律 连续型随机变量(X ,Y )的边缘概率密度条件分布函数 条件分布律条件概率密度 两个随机变量X ,Y 的独立性 Z =X +Y 的概率密度 Z =X /Y 的概率密度 M =max(X ,Y ),N =min(X ,Y )的概率密度习 题 三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤-.,0,0,10),2(8.4其他x y x x y求边缘概率密度.9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度.10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度.11.设随机变量(X ,Y )的概率密度为 f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立?(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e (1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4只,求其中没有一只寿命小于180的概率.17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i=0,1,2,….18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.21 21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?(1998研考)22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布. (2001研考)24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫ ⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ). (2002研考)25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.(2006研考)26. 设二维随机变量(X ,Y )的概率分布为+Y .求:(1) a ,b ,c 的值;(2) Z 的概率分布;(3) P {X =Z }. (2006研考)。

第3章 随机向量(含习题参考答案)

第3章 随机向量(含习题参考答案)
=0+0+0=0
∴ 选 A.
p⋅ j 1 4 1 2 1 4
·8·
则下列式子正确的是 ( (A) X=Y; (C)P(X=Y)=1/2;
·5·
解:A 显然不对.
P ( X = Y ) = P( X = −1, Y = −1) + P( X = 1, Y = 1) 1 1 1 1 1 ⋅ + ⋅ = 2 2 2 2 2
= P( X = −1) P(Y = −1) + P( X = 1) P(Y = 1) =
.
2. 已知(X,Y)的联合概率分布如下:
Y X
1 0 1/3
2 1/3 1/3
1 2
则 X 与 Y 的边缘概率分布为__________; X 与 Y 是否独立?__________. 解:X 的边缘概率分布为:
X
P Y 的边缘概率分布为:
1 1/3
2 2/3
1 2 1/3 2/3 1 1 1 由于 P ( X = 1) ⋅ P(Y = 1) = ⋅ = ≠ P( X = 1, Y = 1) = 0 ,故 X 与 Y 不 3 3 9
解: S阴 =

e2 1
1 e2 ( − 0)dx = ln x 1 = 2 x
·2·
⎧1 ( x, y ) ∈ D ⎪ ∴ f ( x, y ) = ⎨ 2 ⎪ ⎩0 其他 f X ( x) = ∫
+∞ −∞
y
f ( x, y )dy
y=
1 x
D x
⎧ 1 1 1 1 ≤ x ≤ e2 , ⎪ ∫ 0x dy = =⎨ 2 2x ⎪ 0 其它. ⎩
2 2
解:相互独立的随机变量 Xi~N(μi,σi2),i=1,…,n. 有

概率与数理统计 第三章-3-二维连续型随机向量及其边缘分布

概率与数理统计 第三章-3-二维连续型随机向量及其边缘分布

[ cy(2 x)dy] dx
0 0
f (x, y)dxdy 1 确定C
c
1
[
x2
(2
x)
/
2]dx
5c
y
1
0
c 24 5
24
0
y=x 1x
例2 设(X,Y)的概率密度是
f
(x,
y)
cy(2
0
x), ,
0 x 1,0 y 注x 意积分限 其它 y
求 (1) c的值; (2) 两个边缘密度 .
y 5
2
1
arctg
x 4
1 2
1
arctg
y 5
1 2

(3) P{0<X<4, 0<Y<5}
5 0
4 0
2 (16
20 x2 )(25
y2
dxdy )
20
2
4
0 16
1
x2
dx
5 0
1 25
y2 dy
20
2
1 4
arctg
4 4
0
1 5
arctg
5 5
0
1
4
yx
f (u, v) dudv,
则称(X,Y)为二维连续型随机向量,f(x,y)为 (X,Y)的概率密度函数, 简称概率密度,也称为 X与Y的联合概率密度。
※ (1) F(x, y) PX x,Y y
yx
f (u,v)dudv
(2) 概率密度f(x,y)的性质:
① f (x, y) 0,
此因:
此因: F (x, y) y
x
f (u, v)dudv

概率论与数理统计第3章随机向量

概率论与数理统计第3章随机向量

解 (1)根据概率密度函数性质(2)知
f (x, y)dxdy
Ce(3x4 y) dxdy C e3xdx e4y dy C 1
00
0
0
12
从而 C 1
12
(2)由定义3.3.1知
xy
F(x, y)
f (u,v)dudv
(1 e3x )(1 e4y ), x 0, y 0,
3
7
7
1
3.4.1 二维离散型随机向量的边缘分布
(2) 采取无放回摸球时,与(1)的解法相同,(X,Y)的 联合分布与边缘分布由表3.4给出.
表3.4
Y X
0
1 P{Y=yj} p j
01Biblioteka 2277
2
1
7
7
4
3
7
7
P{X=xi} pi
4 7 3 7
1
3.4.2 二维连续型随机向量的边缘分布
设(X,Y)是二维连续型随机向量,其概率密度为f(x,y),

FX (x) F(x,)
x
f (x,y)dydx
知,X是一个连续型随机变量,且其概率密度为
f X (x)
dFX (x) dx
f (x,y)dy.
(3.4.5)
同样,Y也是一个连续型随机变量,其概率密度为
fY ( y)
= dFY(y)
dy
f (x,y)dx.
(3.4.6)
(X ,Y )
~
N (1,
2
,
2 1
,
2 2
,
)
称(X,Y)为二维正态随机向量.
3.4 边缘分布
1 二维离散型随机向量的边缘分布 2 二维连续型随机向量的边缘分布

第三章 随机向量及其独立性

第三章 随机向量及其独立性

联合分布律的性 质 ≥ 0, i, j = 1,2,L (1) p .
ij
(2)∑pi j = 1.
i, j
第三章
随机向量及其独立性
二维离散型随机向量的联合分布律全面 地反映了向量(X,Y)的取值及其概率规律 的取值及其概率规律. 地反映了向量 的取值及其概率规律 而单个随机变量X,Y也具有自己的概率 也具有自己的概率 而单个随机变量 分布. 分布 那么要问:二者之间有什么关系呢 那么要问 二者之间有什么关系呢? 二者之间有什么关系呢
第三章
随机向量及其独立性
实例2 实例
在平面坐标系中, 在平面坐标系中,一门大炮向目标发射 一发炮弹. 一发炮弹 炮弹落点位置由它的横坐标X和纵坐标 炮弹落点位置由它的横坐标 和纵坐标Y 和纵坐标 来确定. 来确定 X,Y 都是随机变量,称(X,Y )是二维随机 都是随机变量, 是二维随机 向量. 向量
第三章
随机向量及其独立性
二 离 型 机 量 设 维 散 随 向 (X,Y)的 有 所 可 取 值 (xi , yj ), i = 1,2,L j = 1,2,L 能 的 为 , .
记 pij = P{X = xi ,Y = yj }, i = 1,2,L j = 1,2,L , .
的联合分布律, 称上式为随机向量 ( X,Y ) 的联合分布律,也 称为概率分布. 称为概率分布 若随机向量 ( X,Y ) 的的概率分布的规律 性不强,或者不能用上式表示时, 性不强,或者不能用上式表示时,还可以用 表格的形式表示如下. 表格的形式表示如下
F(x1, x2,L xn ) = P{X1 ≤ x1, X2 ≤ x2,L Xn ≤ xn} , ,
x1 , x 2 , L , x n 为任意实数

第三章 随机变量与随机向量

第三章  随机变量与随机向量
7
二、随机变量的概率分布函数与概率密度函数 1、概率分布函数定义 描述了X(s)小于等于
FX ( x) PX ( s) x
x这一事件的概率
性质1 区间概率特性(随机变量出现在某区间的概 率)
Pa X b F (b) F (a)
X
F (b) PX b
F ( a ) P X a



( x)dx 1
x0 其它
13
1 U ( x) 0

例3.3 离散型随机变量X的概率密度函数为
f ( x) 0.2 ( x x1 ) 0.3 ( x x2 ) 0.1 ( x x3 ) 0.4 ( x x4 )
F ( x) 0.2U ( x x1 ) 0.3U ( x x2 ) 0.1U ( x x3 ) 0.4U ( x x4 )

FX ( x) F (
x aX
X
)
21


175 169 .7 P X 175 1 F ( ) 1 F (1.293 ) 4 .1
查表
1 0.9015 0.0985
(2)设5人中至少有Y人身高大于175cm,则Y是 服从(5,p)的二项式分布,p=0.0985
f (x)
0.3 0.2
0.4
0.1
x
x1
x2
x3
F (x)
x4
1.0 0.6 0.5 0.2
x
x1
x2
x3
x4
14
三、 典型的概率密度函数
1、二项式分布 每次实验结果互不影响
进行n次独立实验,每次观察事件B是否出现, 设事件B出现的概率为p,不出现的概率为q=1-p, n次独立实验中,事件B出现的次数K是随机的,则 K是二项式分布的随机变量。K=k的概率为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin 0sin sin 0sin4346361).4=--+=题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12e d d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()X Y f x y X Y f x f y 独立 5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)dY f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得 214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立(2) X 与Y 是否相互独立?(2) 因{2}{0.4}0.20.8P X P Y ===⨯ 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e (1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩ 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 21(1)(0)]0.1445.x y x y-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥ 之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-< 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-== 于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n kP X i P Y k i n n p q p q i k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3i = 于是(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r rR θθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-=而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y ===== ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤= . (2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤= 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。

相关文档
最新文档