《一元一次不等式和一元一次不等式组》综合测试题(三)

合集下载

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)一、选择题(共10小题;共40分)1. 现有以下数学表达式:①−3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式有( )A. 5个B. 4个C. 3个D. 1个2. 自从11月起,贝贝每天至少跑步1800m,若他每天跑x m,则x满足的关系式是( )A. x>1800B. x<1800C. x≥1800D. x≤18003. 不等式组{2x−4<0,3−2x<1的解集为( )A. x<1B. x>2C. x<1或x>2D. 1<x<24. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A. x>−2B. x>3C. x<−2D. x<35. 下列说法中,错误的是( )A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个6. 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A. ∣a−c∣>∣b−c∣B. −a<cC. a+c>b+cD. ab <cb7. 使不等式 x −2≥2 与 3x −10<8 同时成立的 x 的整数值是 ( ) A. 3,4B. 4,5C. 3,4,5D. 不存在8. 已知点 P (2a −1,1−a ) 在第一象限,则 a 的取值范围在数轴上表示正确的是 ( )A.B.C. D.9. 篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负 1 场得 1 分.某队预计在 2014~2015赛季全部 32 场比赛中最少得到 54 分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是 ( ) A. 3x −(32−x )≥54 B. 3x +(32−x )≥54 C. 3x +(32−x )≤54D. 3x ≥5410. 若关于 x 的一元一次不等式组 {x −2m <0,x +m >2 有解,则 m 的取值范围为 ( )A. m >−23B. m ≤23C. m >23D. m ≤−23二、填空题(共8小题;共32分)11. 2016年6月9日某市最高气温是 34 ∘C ,最低气温是 27 ∘C ,则当天该市气温 t 的变化范围可表示为 .12. 若 x >y ,则 −3x +2 −3y +2(填“<”或“>”).13. 若 (m −2)x ∣m−1∣−3>6 是关于 x 的一元一次不等式,则 m = .14. 不等式组 {3x +10>0,163x −10<4x 的最小整数解是 .15. 小明借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,设以后几天里每天读 x 页,所列不等式为 .16. 函数 y =mx +n 和函数 y =kx 在同一坐标系中的图象如图所示,则关于 x 的不等式 mx +n >kx 的解集是 .17. 已知关于 x 的不等式 (a −1)x >4 的解集是 x <4a−1,则 a 的取值范围是 .18. 某商品的售价是 150 元,商家售出一件这种商品可获利润是进价的 10%∼20%,则进价的范围为 (结果取整数). 三、解答题(共7小题;共77分)19. 解不等式组 {4(x +1)≤7x +10,x −5<x−83, 并写出它的所有非负整数解.20. 若关于 x ,y 的方程组 {x +y =30−a,3x +y =50+a 的解都是非负数,求 a 的取值范围.21. 如图,一次函数 y 1=kx −2 和 y 2=−3x +b 的图象相交于点 A (2,−1).(1)求 k ,b 的值.(2)利用图象求出:当 x 取何值时,y 1≥y 2? (3)利用图象求出:当 x 取何值时,y 1>0 且 y 2<0?22. 解关于 x 的不等式 ax −x −2>0.23. 若关于x的不等式组{x2+x+13>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24. 按如图所示的程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算.(1)求程序运行一次便输出时的x的取值范围;(2)已知输入x后程序运行3次才停止,求x的取值范围.25. 去年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?参考答案第一部分 1. B 【解析】③ 是等式;④ 是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共 4个. 2. C 3. D 4. A 5. C 6. A 7. B8. C【解析】根据点 P 在第一象限,知横、纵坐标都是正数,可得到关于 a 的不等式组{2a −1>0,1−a >0, 求得 a 的取值范围是 0.5<a <1. 9. B10. C 【解析】{x −2m <0, ⋯⋯①x +m >2. ⋯⋯②解不等式 ① 得 x <2m ,解不等式 ② 得 x >2−m .∵ 不等式组有解,∴ 2m >2−m .∴ m >23. 第二部分11. 27 ∘C ≤t ≤34 ∘C 12. < 13. 0【解析】根据一元一次不等式的定义可知 ∣m −1∣=1 且 m −2≠0,求解即可. 14. −315. 2×5+(10−2)x ≥72 16. x <−1【解析】由图象可知,直线 y =mx +n 和直线 y =kx 的交点坐标是 (−1,−1),∴ 关于 x 的不等式 mx +n >kx 的解集是 x <−1. 17. a <1 18. 125∼136 元【解析】设进价为 x 元.依题意,得 0.1x ≤150−x ≤0.2x ,即 {150−x ≥0.1x,150−x ≤0.2x, 解得 125≤x ≤136411.∵ 结果取整数,∴ 进价的范围为 125∼136 元.第三部分 19.{4(x +1)≤7x +10, ⋯⋯①x −5<x −83. ⋯⋯②由 ① 得x ≥−2,由 ② 得x <72,∴−2≤x <72.∴ 非负整数的解为 0,1,2,3. 20. 解方程组,得{x =10+a,y =20−2a.依题意有{10+a ≥0,20−2a ≥0,解得−10≤a ≤10.21. (1) 将 A 点坐标代入 y 1=kx −2,得 2k −2=−1,即 k =12;将 A 点坐标代入 y 2=−3x +b ,得 −6+b =−1,即 b =5.(2) 从图象可以看出:当 x ≥2 时,y 1≥y 2. (3) 直线 y 1=12x −2 与 x 轴的交点为 (4,0), 直线 y 2=−3x +5 与 x 轴的交点为 (53,0).从图象可以看出:当 x >4 时,y 1>0;当 x >53 时,y 2<0, ∴ 当 x >4 时,y 1>0 且 y 2<0. 22. 由题意变形得(a −1)x >2.当 a −1>0,即 a >1 时,x >2a −1. 当 a −1=0,即 a =1 时,不等式无解; 当 a −1<0,即 a <1 时,x<2 a−1.23. 由不等式x2+x+13>0,解得x>−25.由不等式3x+5a+4>4(x+1)+3a,解得x<2a.∵不等式组恰有三个整数解,∴2<2a≤3.∴1<a≤32.24. (1)根据题意得2x−1>65,解得x>33.(2)根据题意得{2x−1≤65,2(2x−1)−1≤65,2[2(2x−1)−1]−1<65,解得9<x≤17.25. (1) 设饮用水有 x 件,则蔬菜有 (x −80) 件. 依题意,得x +(x −80)=320,解这个方程,得x =200. x −80=120.答:饮用水和蔬菜分别有 200 件和 120 件.(2) 设租用甲型货车 n 辆,则租用乙型货车 (8−n ) 辆. 依题意,得{40n +20(8−n )≥200,10n +20(8−n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数, ∴ n =2 或 3 或 4,所以安排甲、乙两种型号的货车时有 3 种方案,分别是: ①甲型货车 2 辆,乙型货车 6 辆; ②甲型货车 3 辆,乙型货车 5 辆; ③甲型货车 4 辆,乙型货车 4 辆. (3) 3 种方案的运费分别为:方案①:2×400+6×360=2960(元); 方案②:3×400+5×360=3000(元); 方案③:4×400+4×360=3040(元); ∴ 方案①运费最少,最少运费是 2960 元.答:选择甲型货车 2 辆,乙型货车 6 辆,可使运费最少,最少运费是 2960 元.。

(北师大版)深圳市八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(答案解析)

(北师大版)深圳市八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(答案解析)

一、选择题1.不等式组123x x -≤⎧⎨-<⎩的解集是( ) A .1x ≥-B .1x <-C .15x -≤<D .1x ≤-或5x < 2.不等式组211x x ≥-⎧⎨>-⎩的解集是( ) A .1x >- B .12x >- C .21x ≥- D .112x -<≤- 3.已知实数 a 、b ,若 a b >,则下列结论错误的是( )A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 4.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 5.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤6.如图,已知直线11y k x m =+与x 轴交于点()30A -,,和直线22y k x n =+交于点()1,2P -,则关于x 的不等式210k x n k x m +>+>的解集是()A .3x >-B .10x -<<C .31x -<<-D .2x <7.下列说法不一定成立的是( )A .若a >b ,则a +c >b +cB .若a +c >b +c ,则a >bC .若a >b ,则ac 2>bc 2D .若a >b ,则1+a >b ﹣18.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种 9.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( ) A .B .C .D .10.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 11.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 12.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( ) A .a <b B .3a <3b C .﹣a >﹣b D .a ﹣2>b ﹣2二、填空题13.关于x 的不等式组3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m 的取值范围是_____.14.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______. 15.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 16.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x☆m>1的解集在数轴上表示出来如图所示.则m的值是________ .17.不等式组112 251 xx⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.18.若关于x的不等式组31123124xx x a+⎧->⎪⎪⎨+-⎪-<⎪⎩有4个整数解,那么a的取值范围是_____.19.不等式组()2231117232x xx x⎧+>-⎪⎨-≤-⎪⎩的解为_____.20.不等式组20,360xx->⎧⎨+<⎩的解集是____________.三、解答题21.(1)解不等式:1213xx+≤+并把解集表示在数轴上.(2)若关于x的不等式组22x a+>的解为1x>-,求a的值.22.解下列一元一次不等式组.23253xxx+≤⎧⎪+⎨>⎪⎩23.如图,ABC中,8,6AC BC AB===,现有两点,M N分别从点A点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运度为每秒2个单位长度,当点M到达B点时,,M N同时停止运动,设运动时间为t秒.(1)当03t≤≤时,AM=,AN=;(用含t的代数式表示)(2)当点,M N在边BC上运动时,是否存在某个时刻,使得12AMN ABCS S=△△成立,若成立,请求出此时点M运动的时间;若不成立请说明理由.(3)当点,M N在同一直线上运动时,求运动时间t的取值范围.24.(1)解方程组:432 20 x yx y+=⎧⎨+=⎩(2)解不等式组:3(2)21 1124x xx x-<-⎧⎪⎨-≥-⎪⎩25.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:甲乙进价(元/件)1435售价(元/件)2043、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.26.解不等式:431132x x+-->,并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到答案.【详解】解:∵123xx-≤⎧⎨-<⎩,∴15x x ≥-⎧⎨<⎩, ∴15x -≤<;故选:C .【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式组的方法进行解题. 2.C解析:C【分析】先求出2x≥-1的解集,再确定不等式组的解集即可.【详解】解:211x x ≥-⎧⎨>-⎩①② 解不等式①得,21x ≥-, 解不等式②得,x>-1, ∴不等式组的解集为:21x ≥-故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 3.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a >b ,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B 、∵a >b ,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C 、∵a >b ,∴-3a <-3b ,故本选项符合题意;D 、∵a >b ,∴5a >5b ,故本选项不符合题意;故选:C .本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.4.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②, 解不等式①得:37x ≤,解不等式②得:18x >,∴1837x <≤,故选:D .本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.6.C解析:C【分析】所求不等式的解集就是满足“x 轴上方直线2y 在直线1y 上边”的x 的取值范围,即图中点A 、P 的横坐标之间的范围.【详解】解:由题意可知,满足条件的x 的值在A 与P 之间,∵A 点坐标为(-3,0),P 点坐标为(-1,2),所以所求不等式的解集为:-3<x< -1故选C .【点睛】本题考查一次函数图象的应用,熟练掌握一次函数间的交点坐标及一次函数与坐标轴的交点坐标的意义是解题关键.7.C解析:C【分析】根据不等式的性质,可得答案.【详解】解:A 、两边都加c 不等号的方向不变,故A 不符合题意;B 、两边都减c 不等号的方向不变,故B 不符合题意;C 、c =0时,ac 2=bc 2,故C 符合题意;D 、a >b ,则1+a >b +1>b ﹣1,故D 不符合题意;故选C .【点睛】本题考查了不等式的性质,熟记不等式的性质是解题关键.8.C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤,因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.9.A解析:A【分析】先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项.【详解】解不等式x-1≤0得x≤1,解不等式x+3>0得x >-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A .【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.10.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.11.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C、根据不等式的性质2,不等式的两边乘以13,可得33a b>,故C成立;D、根据不等式的性质3,不等式的两边乘以(-1),可得-a<-b,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.二、填空题13.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数解析:4 23m-<≤-【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<, ∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解,即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故 解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.16.-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题 解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>, ∴13m x ->, 根据图示知,已知不等式的解集是1x >,∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法. 17.【分析】先解不等式组再求整数解的最大值【详解】解不等式①得解不等式②得故不等式组的解集是所以整数解是:-101最大是1故答案为【点睛】考核知识点:求不等式组的最大整数值解不等式组是关键解析:1x =【分析】先解不等式组,再求整数解的最大值.【详解】112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >- 故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键. 18.【分析】不等式组整理后根据4个整数解确定出a 的范围即可【详解】解:不等式组整理得:解得:1<x <-a-2由不等式组有4个整数解得到整数解为2345∴5<-a-2≤6解得:-8≤a <-7故答案为:-8解析:87a -≤<-【分析】不等式组整理后,根据4个整数解确定出a 的范围即可.【详解】解:不等式组整理得:12x x a -⎩-⎧⎨><, 解得:1<x <-a-2,由不等式组有4个整数解,得到整数解为2,3,4,5,∴5<-a-2≤6,解得:-8≤a <-7,故答案为:-8≤a<-7【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.19.x≤4【分析】求出每个不等式的解集再根据找不等式组解集的规律找出即可【详解】解:解不等式①得x<5;解不等式②得x≤4;所以不等式组的解集为:x≤4【点睛】本题考查的知识点是不等式的性质解一元一次不解析:x≤4【分析】求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【详解】解:() 2231 131722x xx x⎧+>-⎪⎨-≤-⎪⎩①②解不等式①得,x<5;解不等式②得,x≤4;所以,不等式组的解集为:x≤4.【点睛】本题考查的知识点是不等式的性质,解一元一次不等式组,解此题的关键是能根据不等式的解集找出不等式组的解集.20.【分析】分别求出每一个不等式的解集根据口诀:同大取大同小取小大小小大中间找大大小小无解了确定不等式组的解集【详解】解:由①得:x<0由②得:x<-2不等式组的解集为:x<-2【点睛】本题考查了解一元解析:2x<-【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:20 360xx->⎧⎨+<⎩①②由①得:x<0,由②得:x<-2,不等式组的解集为:x<-2.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.(1)4x ≤,画图见解析;(2)4a =【分析】(1)先求出不等式的解集,再根据不等式的解集表示在数轴上即可;(2)先求出不等式的解集,再根据不等式解集列出关于a 的方程即可求解.【详解】(1)1213x x +≤+,解得:4x ≤;(2)解不等式得:22a x ->∵1x >-,∴212a -=- 解得:4a =【点睛】本题考查解不等式,用数轴表示解集,根据不等式解集求参数,解题的关键是熟练掌握解不等式的方法. 22.1x ≤【分析】先求出不等式的解集,再求出不等式组的解集即可.【详解】解:23253x x x +≤⎧⎪⎨+>⎪⎩①② 由①得1x ≤,由②得5x <,所以原不等式组的解是1x ≤.【点睛】本题考查了解一元一次不等式组,不等式的解等知识点,求出不等式或不等式组的解集是解此题关键.23.(1)t ,62t -;(2)存在,10秒;(3)37t ≤≤或811t ≤≤【分析】(1)先由运动得出AM=t ,BN=2t ,继而得出AN ,即可得出结论; (2)当点M ,N 在边BC 上运动时,AM=t-8,CN=2t-6-8,即可得到MN=t-6,根据题意知12MN BC =,列出方程即可求解; (3)根据运动的时间、速度和距离即可求得运动时间t 的取值范围.【详解】(1)∵6÷2=3,∴当 0≤t≤3 时,点N 在AB 上运动(包括端点),∵运动时间为t 秒.∴AM=t ,BN=2t ,∴AN=6-2t ,故答案为:t ,6-2t ;(2)存在.理由如下:当M N 、在边BC 上运动时,8672t +>=,点N 在边BC 上, 881t >=,点M 在边BC 上, ∴点N 在点M 前面,此时,CM=t-8,CN=2t-14, ∵12AMN ABC S S ∆∆=, ∴12MN BC =, 则1(214)(8)82t t ---=⨯, 解得:10t = 所以,当点M N 、在边BC 上运动,10t =秒时,12AMN ABCS S ∆∆=; (3)①当点M N 、同在AC 上时,∵68AB AC ==,,点N 的速度为2, ∴当66822t +≤≤即37t ≤≤时,点N 在AC 上, 又∵点M 的速度为1,∴当18t ≤≤时,点M 在AC 上, ∴当37t ≤≤时,点M N 、同在AC 上;②当点M N 、同在BC 上时,∵68AB AC ==,,点N 的速度为2,∴当6868822t +++≤≤即711t ≤≤时,点N 在BC 上, 又∵点M 的速度为1. ∴当88811t +≤≤即816t ≤≤时,点M 在BC 上, ∴当811t ≤≤时,点M N 、同在AC 上; 综上所述,当37t ≤≤与811t ≤≤时,点M N 、在同一直线上运动.【点睛】本题考查了一元一次方程在几何中的应用,一元一次不等式在几何中的应用等,解题的关键是理解题意,学会用方程的思想思考问题.24.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.(1)甲种商品购进100件,乙种商品购进80件;(2)方案一:甲种商品购进61件,乙种商品购进119件.方案二:甲种商品购进62件,乙种商品购进118件.方案三:甲种商品购进63件,乙种商品购进117件.获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【分析】(1)等量关系为:甲件数+乙件数=180;甲总利润+乙总利润=1240.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<5040;甲总利润+乙总利润≥1314.【详解】解:(1)(1)设甲种商品应购进x 件,乙种商品应购进y 件.根据题意得:180681240x y x y +=⎧⎨+=⎩. 解得:10080x y =⎧⎨=⎩. 答:甲种商品购进100件,乙种商品购进80件.(2)设甲种商品购进a 件,则乙种商品购进(180)a -件.根据题意得1435(180)504068(180)1314a a a a +-<⎧⎨+-≥⎩解不等式组得6063a <. a 为非负整数,a ∴取61,62,63180a ∴-相应取119,118,117方案一:甲种商品购进61件,乙种商品购进119件,此时利润为:66181191318⨯+⨯=元;方案二:甲种商品购进62件,乙种商品购进118件,此时利润为:66281181316⨯+⨯=元;方案三:甲种商品购进63件,乙种商品购进117件,此时利润为:66281181314⨯+⨯=元;所以,有三种购货方案,其中获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【点睛】本题考查了二元一次方程组的应用及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.26.57x <;数轴见解析 【分析】根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.。

《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣23.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.不等式组的解集在数轴表示正确的是()A.B.C.D.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种二.填空题(共10小题)11.3的解集是.12.不等式组的解集是.13.若不等式组无解,则m的取值范围是.14.当m的取值范围是时,关于x的方程1的解不大于11.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到人以上时,该公交车才不会亏损.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树棵;女同学种树棵.三.解答题(共8小题)21.解不等式组:.22.解不等式组:并把它的解集在数轴上表示出来.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是;(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a},min{﹣1,2,a}.(1)请填空:max{c﹣1,c,c+1}=;若m<0,n>0,min{3m,(n+3)m,﹣mn}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【解答】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x<﹣1﹣3,合并同类项,得:2x<﹣4,系数化为1,得:x<﹣2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x﹣1>2x+2,得:x<﹣3,解不等式2+5x≤3(6﹣x),得:x≤2,则不等式组的解集为x<﹣3.故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣3≥0,得:x≥1,解不等式x﹣1<5﹣x,得:x<3,则不等式组的解集为1≤x<3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.不等式组的解集在数轴表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 【分析】分别求出每一个不等式的解集,根据口诀:同大取大及不等式组的最小整数解求解即可.【解答】解:解不等式2,得:x≥4+m,解不等式x﹣4≤3(x﹣2),得:x≥1,∵不等式组的最小整数解是2,∴1<4+m≤2,解得﹣3<m≤﹣2,故选:B.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 【分析】分别求出每个不等式的解集,结合不等式组整数解的个数可得a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,则不等式组的解集为a<x<2,∵不等式组有3个整数解,∴不等式组的整数解为1、0、﹣1,则﹣2≤a<﹣1,故选:B.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式的基本步骤,并根据不等式组整数解的情况确定字母a的取值范围.8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨【分析】首先根据题意可知总工作量为30×8=240吨不变,故卸货速度v与卸货时间t 之间为反比例关系,即vt=240,将t≤5代入,即可求出答案.【解答】解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数关系式为v,∵v,∴t,∵t≤5,∴5,解得:v≥48.即平均每天至少要卸载48吨.故选:B.【点评】本题考查了一元一次不等式的应用,解答该类问题的关键是确定两个变量之间的函数关系.9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b【分析】解方程求出x,根据方程的解是非负数得出0,求出不等式的解集即可.【解答】解:,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x,∵关于x的方程的解是非负数,∴0,解得:a b,b a,故选:C.【点评】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式等知识点,能求出方程的解是解此题的关键.10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过2000元的资金、两种商品均售完所获利润大于380元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:x<37,∵x为整数,∴x=34、35、36,∴该店进货方案有3种,故选:A.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.二.填空题(共10小题)11.3的解集是x≥7.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】解:去分母,得:x﹣1≥6,移项、合并,得:x≥7,故答案为:x≥7.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.不等式组的解集是3≤x<4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式1<1,得:x<4,解不等式2﹣3x≤﹣7,得:x≥3,则不等式组的解集为3≤x<4,故答案为:3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.若不等式组无解,则m的取值范围是m≤2.【分析】求出第一个不等式的解集,根据口诀:大大小小找不到可得答案.【解答】解:解不等式x﹣2<3x﹣6,得:x>2,∵不等式组无解,∴m≤2,故答案为:m≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.当m的取值范围是m≤1时,关于x的方程1的解不大于11.【分析】解关于x的方程得出x,再根据解不大于11得出关于m的不等式,解之可得答案.【解答】解:解关于x的方程1得x,根据题意,得:11,解得m≤1,故答案为:m≤1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为2<x<2.5.【分析】根据新定义得出2≤x+0.5<3且﹣2≤1﹣x<﹣1,再分别求出其解集,继而找到其解集的公共部分即可.【解答】解:∵[x+0.5]=2,且[1﹣x]=﹣2,∴2≤x+0.5<3且﹣2≤1﹣x<﹣1,解2≤x+0.5<3得1.5≤x<2.5,解﹣2≤1﹣x<﹣1得2<x≤3,∴2<x<2.5,故答案为:2<x<2.5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价120元商店老板才能出售.【分析】设这件商品的进价为x,根据题意可得高出进价80%的价格标价为360元,列出方程,求出x的值,然后再求出最低出售价,用标价﹣最低出售价即可得出答案.【解答】解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360﹣240=120(元).故答案为:120.【点评】本题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为t.【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出:一定存在一个整数k,满足满足下列关系:,并分情况讨论得出k的取值,再得t的取值范围.【解答】解:解不等式①得:x,解不等式②得:x<3﹣2t,则不等式组的解集为:x<3﹣2t,∵不等式组有3个整数解,∴一定存在一个整数k,满足满足下列关系:,解不等式组①得,,解不等式组②得,,(1)当,即时,则,于是,,解得,,∴k,∵k为整数,∴k=3,∴,∴t;(2)当时,即时,不存在整数k,∴此时无解;(3)当,此时无解;(4)当,即k时,则,于是,,解得,,∴,不存在整数k,∴此时无解.综上,t.故答案为:t.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.难点是由不等式组有3个整数解,得出t的不等式组,以及分情况解k及t.难度大.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是2.【分析】根据题中已知条件得出关于bd的不等式,直接进行解答即可.【解答】解:已知13,即1<4﹣bd<3所以解得1<bd<3因为b,d都是整数,则bd一定也是整数,因而bd=2.【点评】读懂题目,把题目中的式子转化为一般的式子是解决本题的关键.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到2000人以上时,该公交车才不会亏损.【分析】设当每月乘客量达到x人以上时,该公交车才不会亏损,根据题意列出不等式,求出不等式的解集即可.【解答】解:设当每月乘客量达到x人以上时,该公交车才不会亏损,则1.5x﹣3000≥0,解得:x≥2000,故答案为:2000.【点评】此题主要考查了函数的表示方法,解题的关键首先正确理解题意,然后根据题目的数量关系列出关系式即可求解.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树104棵;女同学种树96棵.【分析】关系式为:8×(原来每行树的棵数+1)>100;8×(原来每行树的棵数﹣1)<100,把相关数值代入求得整数解,根据男同学种的树比女同学种的树多可得男同学和女同学原来种的每行树的棵数,乘以8即为总的种树棵树.【解答】解:设原来每行树的棵数为x.,解得11.5<x<13.5,∵x为整数,∴x为12,13.∵男同学种的树比女同学种的树多,∴男同学每行种13棵树,女同学每行种12棵树.∴男同学种了13×8=104棵树,女同学种了12×8=96棵树.故答案为:104;96.【点评】考查一元一次不等式组的应用;得到种树总棵数和100的2个关系式是解决本题的关键.三.解答题(共8小题)21.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+5>3,得:x>﹣2,解不等式,得:x≥2,则不等式组的解集为x≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.解不等式组:并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+6>3(x+1),得:x,解不等式,得:x≤4,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.【分析】(1)先解每个不等式得出其解集,结合已知的不等式组的解集得出关于k的方程,解之即可;(2)根据不等式组只有2个整数解知01,解之即可.【解答】解:(1)解不等式2x+4>0,得:x>﹣2,解不等式3x﹣k<6,得:x,则不等式组的解集为﹣2<x,∵该不等式组的解集为﹣2<x<3,∴3,解得k=3;(2)∵不等式组只有2个正整数解,∴23,解得0<k≤3.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式的能力,并根据不等式组的整数解个数得出关于k的不等式组.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是③;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是3x﹣3=﹣3(答案不唯一);(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围0<m≤1.【分析】(1)求出三个方程的解,并解不等式组求出其解集,从而得出答案;(2)解不等式组求出其解集,得出其整数解,继而得出答案;(3)先求出方程的解和不等式组的解集,根据关联方程的概念得到关于m的不等式组,解之即可得出答案.【解答】解:(1)解方程3x﹣1=0得:x,解方程x+1=0得:x,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:x,所以不等式组的关联方程是③,故答案为:③;(2)解不等式(x﹣2)<2x+1,得:x>﹣1,解不等式,得:x,∴不等式组的解集为﹣1<x,则不等式组的整数解为x=0,∴此不等式组的关联方程可以为3x﹣3=﹣3,故答案为:3x﹣3=﹣3(答案不唯一);(3)解方程1﹣x=﹣7+3x,得:x=2,解方程6(x)=10﹣x,得:x=3,解不等式3x﹣m≥x+3m,得:x≥2m,解不等式x﹣m x+3,得:x<m+3,则不等式组的解集为2m≤x<m+3,根据题意知2m≤2且m+3>3,解得0<m≤1,故答案为:0<m≤1.【点评】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?【分析】(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元,列方程组求解.(2)设建立中型图书馆a个,根据要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,列出不等式组求解.【解答】解:(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据题意列方程组:.解得:.答:建立每个中型图书馆需要5万元,建立每个小型图书馆需要3万元.(2)设建立中型图书馆a个,根据题意得:.解得:5≤a≤7.∵a取正整数,∴a=5,6,7.∴10﹣a=5,4,3答:一共有3种方案:方案一:中型图书馆5个,小型图书馆5个;方案二:中型图书馆6个,小型图书馆4个;方案三:中型图书馆7个,小型图书馆3个.【点评】本题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式组求解.26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,则a≥3(100﹣a),解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80(100﹣a)],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.【点评】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费280元,在乙商场需花费270元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300﹣200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300﹣100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.【解答】解:(1)当x=300时,小红在甲商场所花费用为200+(300﹣200)×80%=280(元);在乙商场所花费用为100+(300﹣100)×85%=270(元);故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x﹣200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x﹣100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,。

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(3)

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(3)

一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞ 2.已知关于x 的不等式210mx mx ++>恒成立,则m 的取值范围为( ).A .()0,4B .[)0,4C .[]0,4D .(](),04,-∞⋃+∞3.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .64.已知0,0,23x y x y >>+=,则1421x y++的最小值是( ) A .3B .94 C .4615D .95.对于任意实数x ,不等式210ax ax -+>恒成立,则实数a 的取值范围是( )A .(]0,4B .[)0,4C .(][),04,-∞+∞ D .()(),04,-∞+∞6.若集合{}2|10A x ax ax =-+<=∅,则实数a 的取值范围是 ( ) A .{}|04a a << B .{|04}a a ≤< C .{|04}a a <≤D .{|04}a a ≤≤7.如图,在ABC 中,23BD BC =,E 为线段AD 上的动点,且CE xCA yCB =+,则13x y+的最小值为( )A .16B .15C .12D .108.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .219.若,b R,,a a b ∈≠且则下列式子:(1)22a 32b ab +>,(2)553223a b b a a b +>+,(3)2252(2)a b a b ++≥-,(4)2b aa b+>.其中恒成立的个数是 A .1个 B .2个C .3个D .4个10.若过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是( )A .4B .5C .6D .811.若两个正实数,x y 满足112x y+=,且不等式2x y m m +<-有解,则实数m 的取值范围是( ) A .()1,2- B .()4,1- C .()(),12,-∞-+∞D .()(),14,-∞-+∞12.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd <二、填空题13.已知a 、b 都是正数,且0a b ab +-=,则1911b a b +--的最小值是__________.14.≤对任意0,0x y >>恒成立,则a 的最小值是_______.15.已知0x >,0y >,22x y +=,则223524x y x yxy+++的最小值为______.16.已知正实数m ,n 满足119222m n m n +++=,则2m n +的最小值是_______. 17.某企业开发一种产品,生产这种产品的年固定成本为3600万元,每生产x 千件,需投入成本c (x )万元,c (x )=x 2+10x .若该产品每千件定价a 万元,为保证生产该产品不亏损,则a 的最小值为_____.18.已知函数121()22x x f x +-+=+,如果对任意t ∈R ,f (3t 2+2t )+f (k 2﹣2t 2)<0恒成立,则满足条件的k 的取值范围是_____.19.已知方程210(0)x kx k ++=>有实根,则1k k+的最小值是______. 20.已知正实数x ,y 满足x +y =1,则1412x y +++的最小值为________ .三、解答题21.已知函数()()223f x x bx b R =-+∈.(1)若()f x 在区间[22]-,上单调递减,求实数b 的取值范围; (2)若()f x 在区间[22]-,上的最大值为9,求实数b 的值.22.已知命题:p 实数x 满足28200x x --≤,命题:q 实数x 满足222(1)0(0)x x m m -+-≤>,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.23.已知集合{}2430A x x x =-+≤,B =______.若“x A ∈”是“x B ∈”的必要不充分条件,给出如下三个条件:①{}1x a x a -≤≤,②{}2x a x a ≤≤+,③{}3x ≤≤.请从中任选一个补充到横线上.若问题中的a 存在,求出a 的取值范围.24.已知函数2(),(,)f x x ax b a b R =-+∈. (Ⅰ)不等式()0f x ≤的解集为[1,2]-,求a ,b 的值; (Ⅱ)令函数()()2xg x f =,对于任意的实数12,[1,2]x x∈,不等式()()125g x g x -≤恒成立,求a 的取值范围.25.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac aba b c++≥.26.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t t f +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】分0m =和0m ≠两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】因为关于x 的不等式210mx mx ++>恒成立,分以下两种情况讨论: (1)当0m =时,可得10>,合乎题意; (2)当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<.综上所述,实数m 的取值范围是[)0,4. 故选:B. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.3.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b >()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.B解析:B 【分析】由已知条件代入后凑出积为定值,再由基本不等式得最小值. 【详解】∵0,0,23x y x y >>+=,所以(2x+1)+y=4则()()421141141549=2152142142144x yx y x y x y x y ++++++=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭++=+++ 当且仅当()42121x y x y +=+且214x y ++=即18,63x y ==时取等号, 则1421x y ++的最小值是94. 故选:B . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】讨论0a =和0a ≠情况,再根据一元二次不等式与二次函数的关系,解不等式得解. 【详解】 关于x 的不等式210ax ax -+>恒成立,当0a =时,10>恒成立,满足题意当0a ≠时,即函数()21f x ax ax =-+恒在x 轴上方即可,所以00a >⎧⎨∆<⎩,即2040a a a >⎧⎨-<⎩,解得04a <<,所以实数a 的取值范围是[0,4).故选:B 【点睛】本题考查了一元二次不等式恒成立求参数的取值范围,考查了一元二次不等式的解法,属于基础题.6.D解析:D 【分析】本题需要考虑两种情况,00a a =≠,,通过二次函数性质以及即集合性质来确定实数a 的取值范围.【详解】设()21f x ax ax =-+当0a =时,()10f x =>,满足题意 当0a ≠时,()f x 时二次函数 因为{}2|10A x ax ax =-+<=∅ 所以()21f x ax ax =-+恒大于0,即0≤所以240a a -≤,解得04a ≤≤. 【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论.7.A解析:A 【分析】由已知可得A ,D ,E 三点共线,结合平面向量基本定理可得31x y +=,0x >,0y >,再利用基本不等式即可求解. 【详解】 解:∵23BD BC =, ∴3CB CD =,3CE xCA yCB xCA yCD =+=+,因为A ,D ,E 共线,所以31x y +=,则()3313333101016x y x y y x x y x y x y +++=+=++≥+. 当且仅当33y x x y =且31x y +=即14x y ==时取等号, 故选:A. 【点睛】本题主要考查三点共线的向量表示,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.8.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P(,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.9.A解析:A 【解析】分析:将不等式两侧的式子做差和0比即可,或者将不等式两侧的式子移到一侧,再配方即可. 详解:(1) 22a 32b ab +-=22322b a b ⎛⎫+- ⎪⎝⎭,当a=1,b=-2.时不等式不成立;(2)553223 a b b a a b +>+=()()()222a b a b a ab b -+++当a=1,b=-1时,不等式不成立;(3)()22522a b a b ++--()()22=a 210b -++≥恒成立.选项正确. (4) b aab +,2][2,)∈-∞-⋃+∞(,故不正确. 故答案为A.点睛:这个题目考查了基本不等式的应用条件,两式比较大小的方法;两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.10.B解析:B 【分析】先计算出两条动直线经过的定点,即A 和B ,注意到两条动直线相互垂直的特点,则有PA PB ⊥;再利用基本不等式放缩即可得出||||PA PB 的最大值.【详解】解:由题意可知,动直线0x my +=经过定点(0,0)A ,动直线30mx y m --+=即(1)30m x y --+=,经过点定点()1,3B ,注意到动直线0x my +=和动直线30mx y m --+=始终垂直,P 又是两条直线的交点,则有PA PB ⊥,222||||||10PA PB AB ∴+==.故22||||||||52PA PB PA PB +=(当且仅当||||PA PB ==时取“=” ) 故选:B . 【点睛】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有22||||PA PB +是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.11.C解析:C 【解析】 正实数x ,y 满足112x y+=, 则()111112222224y x x y x y x y x y ⎛⎫+=++=+++=⎪⎝⎭, 当且仅当1,y x x y ==+取得最小值2. 由2x y m m +<-有解,可得22m m ->, 解得m >2或m <−1. 本题选择C 选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.12.B解析:B 【分析】由题意利用不等式的性质逐一考查所给的四个选项中的结论是否正确即可.其中正确的命题可以用不等式的性质进行证明,错误的命题给出反例即可. 【详解】对于A ,若22ac bc >,则0c ≠,2222ac bc c c>,即a b >,故正确;对于B ,根据不等式的性质,若0a b <<,不妨取2,1a b =-=-,则22a b >,故题中结论错误;对于C ,若0a b >>,则a b ab ab>,即11a b <,故正确;对于D ,若0a b <<,0c d >>,则0a b ->->,故ac bd ->-,ac bd <,故正确. 故选B. 【点睛】本题主要考查不等式的性质及其应用,属于中等题.二、填空题13.【分析】由可得出根据已知条件得出将代入所求代数式可得出利用基本不等式可求得的最小值【详解】所以由解得则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必 解析:15【分析】由0a b ab +-=可得出1b a b =-,根据已知条件得出1b >,将1b a b =-代入所求代数式可得出()19919111b b a b b +=-++---,利用基本不等式可求得1911ba b +--的最小值. 【详解】0a b ab +-=,所以,()1a b b -=-,1b a b ∴=-, 由010b a b b ⎧=>⎪-⎨⎪>⎩,解得1b >,则10b ->, 所以,()()919191919915111111b b b b a b b b b -++=+=-++≥=------, 当且仅当4b =时,等号成立, 因此,1911ba b +--的最小值为15. 故答案为:15. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】不等式变形为然后利用基本不等式求得的最大值可得的最小值【详解】原不等式可化为因为所以即时等号成立又所以时等号成立所以的最大值是即的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要【分析】不等式变形为a ≥的最大值,可得a 的最小值.【详解】原不等式可化为a ≥,因为222m n mn +≥,所以222222()2()m n m mn n m n +≥++=+,即m n +≤,m n =时等号成立.又0,0x y >>≤=x y =时等号成立.a ≥a【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.16【分析】由条件可知则原式变形为展开后利用基本不等式求最小值【详解】原式;当且仅当即时取等所以的最小值为16故答案为:16【点睛】关键点点睛:本题的关键是结合1的妙用利用基本不等式求最值解析:16【分析】 由条件可知()1212x y +=,则原式变形为()1243522x y x y y x y x ⎛⎫=++++ ⎪⎝⎭,展开后,利用基本不等式求最小值.【详解】原式()124493524162x y x y x y y x y x y x⎛⎫=++++=++≥ ⎪⎝⎭; 当且仅当23x y =即67x =,47y =时取等. 所以223524x y x y xy+++的最小值为16. 故答案为:16【点睛】关键点点睛:本题的关键是结合 “1”的妙用,利用基本不等式求最值.16.【分析】利用基本不等式可求得再结合可得从而可求出的取值范围即可得到的最小值【详解】由题意当且仅当时等号成立又所以令则解得所以即的最小值是故答案为:【点睛】关键点点睛:本题考查求代数式的最值解题关键是 解析:32【分析】()1112222n m m n m n m n ⎛⎫++=+++ ⎪⎝⎭,利用基本不等式,可求得()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再结合()119222m n m n +=-+,可得()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的取值范围,即可得到2m n +的最小值.【详解】由题意,()11155922222222n m m n m n m n ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当n m m n=时,等号成立, 又()119222m n m n +=-+,所以()()()1199222222m n m n m n m n ⎛⎫⎡⎤++=+-+≥ ⎪⎢⎥⎝⎭⎣⎦, 令2m n t +=,则9922t t ⎛⎫-≥⎪⎝⎭,解得332t ≤≤, 所以32,32m n ⎡⎤+∈⎢⎥⎣⎦,即2m n +的最小值是32. 故答案为:32. 【点睛】关键点点睛:本题考查求代数式的最值,解题关键是利用基本不等式求出()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再根据()119222m n m n ⎛⎫+++= ⎪⎝⎭,可得到只包含2m n +的关系式()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.17.130【分析】本题先根据题意建立函数与不等式关系再运用参变分离化简最后运用基本不等式求最值即可【详解】解:有题意建立利润函数关系:()整理得:为保证生产该产品不亏损则()即当且仅当即取最小值130此 解析:130【分析】本题先根据题意建立函数与不等式关系,再运用参变分离化简,最后运用基本不等式求最值即可.【详解】解:有题意建立利润函数关系:2()(103600)f x ax x x =-++,(0x >) 整理得:2()(10)3600f x x a x =-+--,为保证生产该产品不亏损,则2()(10)36000f x x a x =-+--≥,(0x >)即36001010130a x x ≥++≥=, 当且仅当3600x x=即60x =,a 取最小值130,此时产品不亏损 故答案为:130.【点睛】 本题考查函数与不等式关系、参变分离法,基本不等式解决实际问题中的最值问题,是基础题.18.k<-1或k>1【分析】利用定义先求出函数为单调减函数与奇函数然后化简得到然后利用不等式得恒成立条件求出答案【详解】对于函数定义域为且所以为奇函数且对求导可得则在时为减函数可得利用为奇函数化简得利用 解析:k <-1或k >1.【分析】利用定义,先求出函数()f x 为单调减函数与奇函数,然后化简()()2223220f t t f k t ++-<得到222t t k --<,然后利用不等式得恒成立条件求出答案【详解】对于函数()f x ,定义域为R ,且()12122x x f x ---+-=+1122222xx x x+-+=+()12122x x f x +-==-+,所以,()f x 为奇函数,且对()f x 求导可得()'0f x <,则()f x 在x ∈R 时为减函数, ()()2223220f t t f k t ++-<,可得()()222322f t t f k t +<--,利用()f x 为奇函数 化简得()()222322f t t f t k +-<,利用()f x 在x ∈R 时为减函数,得222322t t t k +->,化简得222t t k --<恒成立,令()22g t t t =--,则有()2max g t k <,而()()max 11g t g =-=,所以21k <,得到1k >或1k <-答案:1k >或1k <-【点睛】本题考查函数的单调性、奇偶性以及不等式的恒成立问题,属于中档题19.【分析】先根据一元二次方程有解得再根据函数的单调性求解即可【详解】解:方程有实根解得又在上单调递增 的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值的问题根据条件求出k 的范围利用对勾函 解析:52【分析】先根据一元二次方程有解得2k ≥,再根据函数1y k k=+的单调性求解即可. 【详解】 解:方程210(0)x kx k ++=>有实根, 240k ∴-≥,解得2k ≥, 又1y k k=+在[)2+∞,上单调递增, ∴ 1k k +的最小值是15222+=, 故答案为:52. 【点睛】 本题主要考查了利用基本不等式求最值的问题,根据条件求出k 的范围,利用对勾函数在区间内的最值即可求出结果.20.【分析】由可得且则利用基本不等式可求出的最小值【详解】由可得且则(当且仅当即时取=)故的最小值为故答案为:【点睛】利本题考查基本不等式求最值注意用基本不等式求最值必须具备三个条件:①各项都是正数;② 解析:94【分析】由1x y +=,可得(1)(2)4x y +++=且10,20x y +>+>,则()()()112411411412412214142y x x y x y x y x y ⎛⎫⎛⎫+=+=+++⎡⎤ ⎪+ +⎪⎣⎦++++++⎝+⎭⎝+⎭+,利用基本不等式可求出1412x y +++的最小值. 【详解】由1x y +=,可得()()124x y +++=且10,20x y +>+>, 则()()114114124122x y x y y x ⎛⎫+=+⎡⎤ ⎪⎣⎦++++⎝+⎭++ ()11914541244412x y y x =+⎛⎛⎫ +++≥+= ⎪ ++⎝⎭⎝+,(当且仅当()24121x y x y =++++即12,33x y ==时取“=”). 故1412x y +++的最小值为94. 故答案为:94. 【点睛】利本题考查基本不等式求最值,注意用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件,属于中档题. 三、解答题21.无22.无23.无24.无25.无26.无。

第3章 一元一次不等式综合测试试题(含解析)

第3章 一元一次不等式综合测试试题(含解析)

第三章:一元一次不等式综合测试答案一.选择题:1.答案:C解析:解不等式3x ≤2(x -1)得:2-≤x ,故选择C2.答案:B解析:解不等式x -3≤3x +1得:2-≥x ,故选择B3.答案:C解析:解不等式3(x -1)≤5-x 得:2≤x , ∵非负整数解为:0,1,2共3个, 故选择C4.答案:B 解析:解不等式组⎩⎨⎧≤->+0421x ax 得:21≤<-x a∵不等式组⎩⎨⎧≤->+0421x ax 有解,∴3,21<∴<-a a ,故选择B5.答案:B解析:原不等式可化为323255104xx x -≤---, 去分母,得6(4x -10)-15(5-x )≤10(3-2x )去括号,得24x -60-75+15x ≤30-20x. 合并同类项,得59x ≤165. 系数化为1,得x ≤59165所以原不等式的非负整数解是0,1,2. 故选择B6.答案:C解析:设从第六天起平均每天至少要读x 页, 由题意得:4005≥x ,解得:80≥x ,故选择C解析:把方程组⎩⎨⎧=++=+3313y x k y x 转化为:444+=+k y x∴44+=+k y x ,∴1440<+<k 解得:04<<-k ,故选择A答案:B解析:∵x <0,y >0,x +y <0,y x >,∴x y y x >->>-,故选择B答案:B解析:解不等式①,得x >-52. 解不等式②,得x <2a .∵不等式组恰有三个整数解, 2<2a ≤3. 231≤<a ,故选择B10.答案:B解析:设最多可打x 折,由题意得:%5100010001500≥-x解得:7.0≥x ,故最多可打7折,故选择B二.填空题:11.答案:4解析:解不等式2(x+k)-2>k 得:22kx ->, ∵不等式2(x+k)-2>k 的解集是x >-1, 122-=-k,解得:4=k12.答案:26解析:设较大的偶数是x ,则较小的偶数是x -2. 根据题意,得x +x -2≥49. 解得x ≥25.5.所以x 的最小值是26,即较大的偶数最小是26.解析:解不等式组⎩⎨⎧>->+1312x a x 得:11-<<a x∵不等式组⎩⎨⎧>->+1312x a x 的解为1<x <3,∴4,31=∴=-a a14.答案:1<x +y <5解析:由x -y =3,得x =y +3. ∵x >2,∴y +3>2,解得y >-1. 又∵y <1,∴-1<y <1. 把x =y +3代入x +y , 得x +y =y +3+y =2y +3, 而1<2y +3<5, ∴1<x +y <5.15.答案:3解析:由题意,得a 1+a 2≤a 3,a 2+a 3≤a 4,a 3+a 4≤a 5, ∴当a 1=1时,a 2=2,a 3=3,a 4=5或6,a 5=9, ∴a 3=3.16.答案:152解析:设幼儿园共有小朋友x 人,共有玩具y 件,由题意得:⎩⎨⎧<--<=+4)1(50593x y yx解得:3230<<x ,∴31=x ,即小朋友为31人, 共有玩具15259313=+⨯=y三.解答题:17.解析:(1)去括号得:5x -10+8<6x -6+7. 移项得:5x -6x <10-8-6+7. 合并得:-x <3.系数化为1得:x>-3.(2)解不等式①,得x>-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.18.解析:(1)解不等式3x +a 2<1得:32ax -<,解不等式031>-x 得:31<x ∴3132=-a ,∴1=a . (2)∵不等式123<+ax 的解都是不等式031>-x 的解,∴3132≤-a ,解得1≥a19.解析:关于x 的方程2x -3m =2m -4x +4的解为645+=m x 根据题意得:3187645mm --≥+ 去分母,得4(5m +4)≥21-8(1-m ).去括号,得20m +16≥21-8+8m. 移项、合并同类项,得12m ≥-3. 系数化为1,得m ≥-41 所以当m ≥-41时,方程的解不小于3187m --, 所以m 的最小值为-4120.解析:(1)由题意得:()152523+≤+k k解得k ≥413(2)解不等式①,得x ≤3. 解不等式②,得x<a. ∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3; 当a<3时,不等式组的解集为x<a.21.解析:(1)解⎩⎨⎧+=---=+a y x a y x 317得:⎩⎨⎧--=-=423a y a x∵x 为非正数,y 为负数, ∴⎩⎨⎧<≤00y x 即⎩⎨⎧<--≤-04203a a 解得⎩⎨⎧->≤23a a∴a 的取值范围是-2<a ≤3.(2)∵-2<a ≤3,∴a -3≤0,a +2>0, ∴|a -3|+|a +2|=3-a +a +2=5. (3)不等式2ax +x <2a +1可化简为 (2a +1)x <2a +1.∵不等式的解为x >1, ∴2a +1<0,∴a <-21. 又∵-2<a ≤3,∴-2<a <-21. ∵a 为整数,∴a =-1.22.解析:(1)设购买平板电脑a 台,则购买学习机(100-a)台,由题意,得 3 000a +800(100-a)≤168 000.解得a ≤40. 答:平板电脑最多购买40台.(2)设购买的平板电脑a 台,则购买学习机(100-a)台,根据题意,得 100-a ≤1.7a.解得a ≥37271. ∵a 为正整数,∴a =38,39,40,则学习机依次买:62台,61台,60台. 因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.23.解析:(1)∵()()815723--<-+x x .解得6>x . ∴不等式的最小整数解是7. 将x =7代入3x -ax =2,得719=a ∴aa 197-=19-7=12.(2)①∵523=++c b a , 132=-+c b a , 解得:37-=c a , c b 117-=, ∵0≥a ,0≥b ,∴037≥-c ,0117≥-c , ∴11773≤≤c , ②()()23711737373-=--+-=-+=c c c c c b a S∵11773≤≤c ,∴1121379≤≤c , ∴1112375-≤-≤-c∴S 的最大值为111-,最小值为75-。

北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题(解析版)

北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题(解析版)

北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题一、单选题1.(2022·北京十一学校一分校模拟预测)设m 是非零实数,给出下列四个命题:①若-1<m<0,则1m<m<2m ;②若m>1,则1m <2m <m ;③若m<1m <2m ,则m<0;④2m <m<1m,则0<m<1.其中命题成立的序号是( ) A .①③B .①④C .②③D .③④2.(2022·北京·东直门中学模拟预测)实数a 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .1a >B .<1a -C .10a +>D .11a<- 3.(2022·北京市三帆中学模拟预测)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .-4B .-2C .2D .44.(2022·北京·九年级专题练习)实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a <-B .a b <C .a b -<-D .0ab >5.(2021·北京东城·一模)实数a ,b ,c 在数轴上的对应点的位置如图所示,下列式子正确的是( )A .b +c >0B .a -b >a -cC .ac >bcD .ab >ac6.(2021·北京海淀·一模)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .4B .2C .0D .2-7.(2021·北京丰台·二模)若a b >,则下列不等式一定成立的是( ) A .33a b -<- B .22a b -<- C .44a b< D .22a b <8.(2020·北京·北理工附中一模)不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .二、填空题9.(2022·北京市三帆中学模拟预测)已知三个实数a 、b 、c 满足20a b c -+=,20a b c ++<,则:①0b >,②0b <,③240b ac -≤,④20b ac -≥,以上4个结论中正确的是__________(写出正确的序号).10.(2022·北京·九年级专题练习)不等式组3021x x -<⎧⎨-<⎩的解集是______.11.(2022·北京·九年级专题练习)小琦跟几位同学在某快餐厅吃饭,如下为此快餐厅的菜单、若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了______份A 套餐(用含x 或y 的代数式表示);(2)若6x =,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案.12.(2022·北京·九年级专题练习)用一组a 、b 、c 的值说明命题“若a >b ,则ac >bc ”错误的,这组值可以是a = ,b= ,c = .13.(2021·北京西城·一模)某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.14.(2021·北京朝阳·一模)某校初三年级共有8个班级的190名学生需要进行体检,各班学生人数如下表所示:若已经有7个班级的学生完成了体检,且已经完成体检的男生、女生的人数之比为4:3,则还没有体检的班级可能是_____.15.(2021·北京房山·二模)已知a b <,且实数c 满足ac bc >,请你写出一个符合题意的实数c 的值___. 16.(2020·北京密云·二模)已知“若a b >,则ac bc <”是真命题,请写出一个满足条件的c 的值是__________. 17.(2020·北京四中模拟预测)某校初三年级84名师生参加社会实践活动,计划租车前往,租车收费标准如下:则租车一天的最低费用为___________元.三、解答题18.(2022·北京·中考真题)解不等式组:274,4.2x x x x +>-⎧⎪⎨+<⎪⎩19.(2022·北京十一学校一分校模拟预测)解不等式组:4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩ 20.(2022·北京市第十九中学三模)解不等式组:1251635341x x x x +-⎧>+⎪⎨⎪+≥-⎩,并写出其中的正整数解.21.(2022·北京·中国人民大学附属中学朝阳学校一模)解不等式组()4126{533x x x x +≤+--<,并写出它的所有非负..整数解.... 22.(2021·北京·中考真题)解不等式组:451342x x x x ->+⎧⎪⎨-<⎪⎩ 23.(2021·北京门头沟·一模)解不等式组:213(1)532x x xx ->-⎧⎪⎨-<+⎪⎩ 24.(2021·北京朝阳·二模)解不等式232(4)x x -≥-,并把它的解集在数轴上表示出来. 25.(2021·北京石景山·二模)解不等式113x x -≤-,并把它的解集在数轴上表示出来.26.(2021·北京顺义·一模)解不等式()3125x x -≥-,并把它的解集在数轴上表示出来.参考答案:1.B【分析】逐个进行一次判断即可,判断一个命题是假命题,只需举出一个反例. 【详解】解:①若-1<m <0,则1m<m<2m ,成立,是真命题; ②若m >1,取m=2时,m 2=4, m <m 2,原命题不成立; ③若m<1m <2m ,取m=-12时,1m =-2,m >1m ,原命题不成立; ④2m <m<1m,则0<m<1,成立,是真命题; 成立的有①④, 故选:B .【点睛】此题考查了命题和不等式,解题的关键是理解不等式的性质. 2.A【分析】直接利用a 在数轴上位置进而通过绝对值的几何意义:绝对值表示一个点与原点的距离,及不等式的性质分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 正确;因为a <-1,不等号两边同时乘以-1,改变不等号方向,得1a ->,故选项B 错误; 因为a <-1,不等号两边同时加1,得10a +<,故选项C 错误;因为a <-1,不等号两边同时除以a ,0a <,∴改变不等号方向,得11a->,不等号两边同时除以-1,改变不等号方向,得11a-<,故选项D 错误;故选:A .【点睛】此题主要考查了绝对值的几何意义、不等式的性质,结合数轴分析各选项,掌握不等式的性质是解题关键. 3.D【分析】将x =1代入不等式求出b 的取值范围即可得出答案. 【详解】解:∵x =1是不等式2x -b <0的解, ∴2-b <0, ∴b >2, 故选:D .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.D【分析】先根据数轴的性质可得20a b -<<<,再根据绝对值的性质、不等式的性质、有理数乘法法则逐项判断即可得.【详解】解:由数轴的性质得:20a b -<<<. A 、2a >-,此项错误,不符题意; B 、a b >,此项错误,不符题意; C 、a b ->-,此项错误,不符题意; D 、0ab >,此项正确,符合题意; 故选:D .【点睛】本题考查了数轴、绝对值、不等式的性质、有理数的乘法法则,熟练掌握数轴的性质是解题关键. 5.A【分析】先根据数轴的定义可得0a c b <<<,再根据不等式的基本性质逐项判断即可得. 【详解】由数轴的定义得:0a c b <<<, A 、0b c +>,此项正确,符合题意; B 、b c >,b c ∴-<-,a b a c ∴-<-,此项错误,不符题意;C 、,0a b c <>,ac bc ∴<,此项错误,不符题意;D 、,0b c a ><,ab ac ∴<,此项错误,不符题意;故选:A .【点睛】本题考查了数轴、不等式的基本性质,熟练掌握数轴的定义是解题关键. 6.A【分析】把x 的值代入不等式,求出b 的取值范围即可得解. 【详解】解:∵1x =是不等式20x b -<的解, ∴20b -<, 解得,2b >所以,选项A 符合题意, 故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 7.B【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】解:A 、不等式的两边都减去3,不等号的方向不变,故A 错误; B 、不等式的两边都乘以−2,不等号的方向改变,故B 正确; C 、不等式的两边都除以4,不等号的方向不变,故C 错误; D 、当a =1,b =-1时,a 2=b 2,故D 错误; 故选:B .【点睛】本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 8.B【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:21512x x ①②->⎧⎪⎨+≥⎪⎩ 解不等式①可得x <1, 解不等式②得x≥-3,则不等式组的解集为:-3≤x <1, 由此可知用数轴表示为:故选B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键 9.②④##④②【分析】根据条件得出b 的符号,再将2a cb +=代入,根据完全平方式的非负性即可进行判断. 【详解】解:20a bc -+=,2a c b ∴+=, 20a b c ++<,40b ∴<, 0b ∴<,∴①选项不符合题意,②选项符合题意;2a c b +=,2a cb +=∴, 0b <,0a c ∴+<,222()164()424a c a c acb ac ac ++-∴-=-=, ac 的符号不能确定,24b ac ∴-的符号不能确定,∴③选项不确定,222()()024a c a cb ac ac +--=-=≥,∴④选项符合题意,故答案为:②④.【点睛】本题考查了不等式与因式分解的综合,根据条件得出b 的符号以及b 的表达式是解题的关键. 10.13x <<【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找到解集即可.【详解】解:3021x x -<⎧⎨-<⎩①②,解不等式①可得3x <, 解不等式②可得1x >, ∴不等式组的解集为13x <<, 故答案为:13x <<.【点睛】本题考查解一元 一次不等式组,掌握不等式组的解法是解决本题的关键. 11. (10-y ) 5【分析】(1)由三种套餐中均包含盖饭且只有A 套餐中不含凉拌菜,即可得出他们点了(10-y )份A 套餐; (2)由三种套餐中均包含盖饭且只有B 套餐中不含凉拌菜,即可得出他们点了4份B 套餐.设他们点了m 份A 套餐,则点了(10-4-m )份C 套餐,由A ,C 套餐均至少点了1份,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出点餐方案的个数.【详解】解:(1)∵B,C套餐中均含一份凉拌菜,且A套餐中不含凉拌菜,∴他们点了(10-y)份A套餐.故答案为:(10-y) .(2)∵A,C套餐均含一杯饮料,且B套餐中不含饮料,∴他们点了4份B套餐.设他们点了m份A套餐,则点了(10-4-m)份C套餐,依题意得:11041 mm≥⎧⎨--≥⎩解得:1≤m≤5.又:m为正整数,∴m可以取1,2,3,4,5,最多有5种点餐方案.故答案为:5.【点睛】本题考查了一元一次不等式组的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含y的代数式表示出他们点A套餐的数量;(2)根据各数量之间的关系,正确列出一元一次不等式组.12.1;﹣1,0.(答案不唯一)【分析】根据题意选择a、b、c的值即可.【详解】解:当a=1,b=﹣1,c=0时,1>﹣1,而1×0=0×(﹣1),∴命题“若a>b,则ac>bc”是错误的,故答案为1;﹣1,0.(答案不唯一)【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.购买24块彩色地砖,60块单色地砖或购买27块彩色地砖,55块单色地砖【分析】设购买x块彩色地砖,购买单色地砖y块,进而由题意得到2x<y<3x,再根据总费用为1500元,且x、y均为正整数,将y用x的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x块彩色地砖,购买单色地砖y块,则2x<y<3x,25x+15y=1500,∴1500255100(1)153xy x,又已知有:23x y x,∴510033510023x x x x⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x, 又x 为正整数,且30021.414,30027.311,∴x =22,23,24,25,26,27; 由(1)式中,x y ,均为正整数, ∴x 必须是3的倍数, ∴24x =或27x =,当24x =时,单色砖的块数为15002425=6015;当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖. 【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况. 14.1班或5班【分析】设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,根据题意和结合表格数据得19≤190﹣7x≤29,解之即可解答.【详解】解:设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,由题意,19≤190﹣7x ≤29, 解得:23≤x ≤3247,∵x 为整数, ∴x =23或24,当x =23时,190﹣7x =29, 当x =24时,190﹣7x =22,所以,还没有体检的班级可能是1班或5班, 故答案为:1班或5班.【点睛】本题考查统计表、一元一次不等式组的应用,理解题意,正确列出一元一次不等式组是解答的关键. 15.-3【分析】根据不等式的性质解答即可.<,【详解】解:∵a b<,∴当c>0时,ac bc>,当c<0时,ac bc故答案为:-3(答案不唯一).【点睛】此题考查不等式的性质,熟记不等式的性质是解题的关键.16.1-(答案不唯一,负数即可)【分析】当a b>,要使符号变号,则只需不等式两边同时乘同一个负数c即可.<成立,即不等式两边同时乘一个c符号会变号,则使c是负数即可,则可使【详解】当a b>,要使ac bcc=-.1【点睛】本题考查了真命题和不等式的性质知识点,不等式符号要变号,就使不等式两边同时乘或除同一个负数即可,这一性质是解题的关键.17.3800【分析】将84名师生同时送到目的地,且花费是最少,只有优化租车方案方可达到节约,从同款型和不同车型组合两方面考虑求解.【详解】解:依题意得:租车费用最低的前题条件是将84名师生同时送到目的地,其方案如下:①全部一种车型:小巴车23座最少4辆,其费用为:4×1000=4000元,中巴车39座最少3辆,其费用为:3×1800=5400元,大巴车55座最少2辆,其费用为:2×2400=4800元∵4000<480<5400,∴同种车型应选取小巴车4辆费用最少.②搭配车型:2辆23座小巴车和1辆39座中巴车,其费用为:1000×2+1800=3800元,1辆39座中巴车和1辆55座大巴车,其费用为:1800+2400=4200元,∵3800<4200,∴搭配车型中2辆23座小巴车和1辆39座大巴车最少.综合①、②两种情况,费用最少为3800元.故答案为:3800.【点睛】本题考查了不等式的应用,主要考虑方案的可行性,正确分类并通过计算比较大小求解.18.14<<x【分析】分别解两个一元一次不等式,再求交集即可. 【详解】解:27442x x x x +>-⎧⎪⎨+<⎪⎩①② 解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.19.12x ≤<【分析】分别求得各不等式的解集,然后求得公共部分即可. 【详解】解:原不等式组为4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩①② 解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为12x <.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.543x -≤<;正整数解为1. 【分析】分别求出两个不等式得解集,找出两个解集的公共部分即可得不等式组得解集,再找出解集中得正整数解即可得答案. 【详解】1251635341x x x x +-⎧>+⎪⎨⎪+-⎩ 解不等式125163x x +->+得:53x <, 解不等式5341x x +≥-得:4x ≥-,∴不等式组得解集为543x -≤<, ∴不等式组的正整数解为:1.【点睛】本题考查解一元一次不等式组及求不等式组得正整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.不等式组的解集为1x ,所有非负整数解为0,1【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的所有非负整数解即可.【详解】解:原不等式组为4(1)26,53.3x x x x +≤+⎧⎪⎨--<⎪⎩①②解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为1x .∴原不等式组的所有非负整数解为0,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.24x <<【分析】根据一元一次不等式组的解法可直接进行求解. 【详解】解:451342x x x x ->+⎧⎪⎨-<⎪⎩①② 由①可得:2x >,由②可得:4x <,∴原不等式组的解集为24x <<.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.23.123x -<< . 【分析】先分别求解两个不等式的解集,再求两个解集的公共部分即得.【详解】解:()2131532x x x x ⎧->-⎪⎨-<+⎪⎩①②, 解不等式①得:2x <,解不等式②得:13x >-, ∴这个不等式的解集为123x -<< . 【点睛】本题考查了一元一次不等式组求解,解题关键是根据不等式的性质将不等式去分母、去括号、移项、合并同类项和系数化为1.24.2x ≤,数轴见解析【分析】按照解一元一次不等式的一般步骤解答,并把解集规范的表示在数轴上即可.【详解】解:2328x x -≥-.2328.x x --≥--510.x -≥-2.x ≤不等式的解集在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.1x ≥,数轴见解析【分析】正确解不等式,后根据大于向右,小于向左,有等号,实心圆,无等号,空心圆表示出来即可.【详解】解:去分母:133x x -≤-.移项,合并同类项:22x ≤.解得,1x ≥.【点睛】本题考查了不等式的解法,规范按照解不等式的基本步骤,扎实求解,理解数轴表示的符号意义是解题的关键.26.x ≥-2,在数轴上表示见解析【分析】去括号,移项,合并同类项,再在数轴上表示出不等式的解集即可.【详解】解:3(x −1)≥2x −5,去括号,得3x -3≥2x -5,移项,得3x -2x ≥-5+3,合并同类项,得x ≥-2,在数轴上表示不等式的解集为:.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.。

新浙教版八上数学第三章一元一次不等式和不等式组测试卷

新浙教版八上数学第三章一元一次不等式和不等式组测试卷

新浙教版八上数学第三章一元一次不等式和不等式组测试卷It was last revised on January 2, 2021一元一次不等式和不等式组测试卷 一、选择题:1.在方程组221x y m y x -=⎧⎨-=⎩ 中,x,y 满足x+y>0,m的取值范围是 ( )A . B. C. D.2.下列按要求列出的不等式中错误的是 ( )是非负数,则m ≥0 是非正数,则m ≦0不大于-1,则m<-1 倍m 为负数,则2m<03.不等式9-114x>x+23的正整数解的个数是 ( ).24.若a<0,下列式子不成立的是 ( ) +2<3-a +2<a+3 C.-2a <-3aD.2a>3a5. 若a 、b 、c 是三角形三边的长,则代数式a 2 + b 2 —c 2 —2ab 的值 ( ).A.大于0B.小于0C.大于或等于0D.小于或等于06.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ( ) >m>12 >m>-12 C.112>m>-12 D.12>m>-1127.若方程35x a-=26b x-的解是非负数,则a 与b 的关系是 ( ) ≤56b ≥56b ≥-56b ≥528b8.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ( )≤-1 <-1 ≥1 >1.9.若方程组3133x y k x y +=+⎧⎨+=⎩ 的解、满足01x y <+<,则k 的取值范围是 ()A.40k-<< B. 10k-<< C.08k<< D. 4k>-10.设a、b、c的平均数为M,a、b的平均数为N,N、c的平均数为P,若a>b>c,则M与P的大小关系是().A. M= PB. M > PC. M < PD. 不确定二、填空题:1.不等式组3231xx-≥⎧⎨->⎩的解集是 .2.当x________ 时,代数式354x-的值是非正数,当x_______时,代数式3(2)5x-的值是非负数.3.关于x的方程3x+2m=x-5的解为正数,则m的取值范围是.4.能使代数式12×(3x-1)的值大于(5x-2)+14的值的最大整数x是.5. 已知x >0,y<0.且x + y <0,那么有理数x , y,- x ,- y的大小关系为 .6.若关于x的不等式组4132x xx a+⎧>+⎪⎨⎪-<⎩解集为x<2,则a的取值范围是.7. 在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对________题.8.已知机器工作时,每小时耗油9kg,现油箱中存油多于38kg但少超过45kg,问这油箱中的油可供这台机器工作时间t的范围为___________ 。

2022年京改版七年级数学下册第四章一元一次不等式和一元一次不等式组综合练习试卷(名师精选)

2022年京改版七年级数学下册第四章一元一次不等式和一元一次不等式组综合练习试卷(名师精选)

七年级数学下册第四章一元一次不等式和一元一次不等式组综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果x >y ,则下列不等式正确的是( )A .x ﹣1<y ﹣1B .5x <5yC .33xy > D .﹣2x >﹣2y2、若不等式组4101x m x x m -+<+⎧⎨+>⎩解集是4x >,则( ) A .92m ≤ B .5m ≤ C .92m = D .5m =3、一个不等式的解集为x ≤1,那么在数轴上表示正确的是( )A .B .C .D .4、若不等式﹣3x <1,两边同时除以﹣3,得( )A .x >﹣13B .x <﹣13 C .x >13 D .x <135、如图,数轴上表示的解集是( )A .﹣3<x ≤2B .﹣3≤x <2C .x >﹣3D .x ≤26、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围() A .﹣3≤a <﹣2 B .﹣3≤a ≤﹣2 C .﹣3<a ≤﹣2 D .﹣3<a <﹣27、关于x 的两个代数式3x -与5x +的值的符号相反,则x 的取值范围是() A .3x > B .5x <- C .53x -<< D .5x <-或3x >8、适合|2a +7|+|2a ﹣1|=8的整数a 的值的个数有( )A .2B .4C .8D .169、对不等式a b >进行变形,结果正确的是( )A .0a b -<B .22a b -<-C .22a b <D .11a b -<-10、,a b 都是实数,且a <b , 则下列不等式的变形正确的是( )A .a +x >b +xB .-a <-bC .3a <3bD .22a b>第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组32510x x <⎧⎨-<⎩的解集是___________.2、据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c (3)c -a _______c -b(4)-a |c |_______-b |c |4、已知a b <,用“<”或“>”填空:(1)3a -_____3b -;(2)6a ______6b ;(3)a -______b -;(4)-a b _______0.5、小明同学所在班级举行了生态文明知识小竞赛,试卷一共有25道题.评分办法是答对一题记4分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了____道题.三、解答题(5小题,每小题10分,共计50分)1、解下列不等式(组),并把解集表示在数轴上.(1)()3121132x x -+≥+; (2)54271132x x x x x -≤+⎧⎪-+⎨-⎪⎩< 2、(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 3、不等式组2153136215x x x +-⎧-<⎪⎨⎪-≤⎩的解集是关于x 的一元一次不等式1ax >-解集的一部分,求a 的取值范围.4、解不等式组:21432x x x x +>⎧⎨≤+⎩. 5、已知关于x 的方程2233x m x x ---=的解是非负数,m 是正整数,求m 的值.---------参考答案-----------一、单选题1、C【解析】【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A .∵x >y ,∴x ﹣1>y ﹣1,故本选项不符合题意;B .∵x >y ,∴5x >5y ,故本选项不符合题意;C .∵x >y , ∴33xy >,故本选项符合题意; D .∵x >y ,∴﹣2x <﹣2y ,故本选项不符合题意;故选:C .【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.2、C【解析】【分析】首先解出不等式组的解集,然后与x >4比较,即可求出实数m 的取值范围.【详解】解:由①得2x >4m -10,即x >2m -5;由②得x >m -1;∵不等式组4101x m x x m -+<+⎧⎨+>⎩的解集是x >4, 若2m -5=4,则m =92,此时,两个不等式解集为x >4,x >72,不等式组解集为x >4,符合题意;若m -1=4,则m =5,此时,两个不等式解集为x >5,x >4,不等式组解集为x >5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.3、C【解析】【分析】根据数轴上数的大小关系解答.【详解】解:解集为x≤1,那么在数轴上表示正确的是C,故选:C.【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.4、A【解析】【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x<1,两边同时除以﹣3,得x>﹣13.故选:A.【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.5、A【解析】【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.6、C【解析】【分析】先求出不等式解组的解集为2a x≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0 521 x ax-≥⎧⎨->⎩①②解不等式①得x a≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.7、C【解析】【分析】代数式x -3与x +5的符号相反,分两种情况,解不等式组即可.【详解】解:根据题意得,3050x x ->⎧⎨+<⎩或3050x x -<⎧⎨+>⎩, 解得:53x -<<,故选:C .【点睛】本题考查了解一元一次不等式组,是基础知识要熟练掌握.8、B【解析】【分析】先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.【详解】解:(1)当2a+7≥0,2a﹣1≥0时,可得,2a+7+2a﹣1=8,解得,a=12解不等式2a+7≥0,2a﹣1≥0得,a≥﹣72,a≥12,所以a≥12,而a又是整数,故a=12不是方程的一个解;(2)当2a+7≤0,2a﹣1≤0时,可得,﹣2a﹣7﹣2a+1=8,解得,a=﹣7 2解不等式2a+7≤0,2a﹣1≤0得,a≤﹣72,a≤12,所以a≤﹣72,而a又是整数,故a=﹣72不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,2a +7﹣2a +1=8,解得,a 可为任何数.解不等式2a +7≥0,2a ﹣1≤0得,a ≥﹣72,a ≤12, 所以﹣72≤a ≤12,而a 又是整数,故a 的值有:﹣3,﹣2,﹣1,0.(4)当2a +7≤0,2a ﹣1≥0时,可得,﹣2a ﹣7+2a ﹣1=8,可见此时方程不成立,a 无解.综合以上4点可知a 的值有四个:﹣3,﹣2,﹣1,0.故选:B .【点睛】本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.9、D【解析】【分析】根据不等式的基本性质进行逐一判断即可得解.【详解】A.a b >不等式两边同时减b 得0a b ->,故选项A 错误;B.a b >不等式两边同时减2得22a b ->-,故选项B 错误;C.a b >不等式两边同时乘2得22a b >,故选项C 错误;D.a b >不等式两边同时乘1-得a b -<-,不等式两边再同时加1得11a b -<-,故选项D 准确. 故选:D .【点睛】本题主要考查了不等式的基本性质,注意不等式两边都加上或减去一个数或整式,不等号方向不变,不等式两边同时乘或除以一个正数,不等号的方向不变,不等式两边同时乘或除以一个负数,要改变不等号的方向.10、C【解析】【分析】根据不等式的性质逐一判断选项,即可.【详解】解:A 、不等式的两边都加或都减同一个整式,不等号的方向不变,故A 错误;B 、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B 错误;C 、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C 正确;D 、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D 错误;故选:C .【点睛】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.二、填空题1、23x <【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】32510x x <⎧⎨-<⎩①②解不等式①得:23x <解不等式②得:15x <∴不等式组32510x x <⎧⎨-<⎩的解集是23x < 故答案为:23x <【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.2、28.25【解析】【分析】设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.【详解】解:设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,∵《长津湖》与《铁道英雄》的日销售量和为450本,∴a +b =450,即b =450-a , ∵《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本, ∴22303b a ≤< ,即()24502303a a -≤<, 解得:180230a ≤< ,∵《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,∴5060m n <+≤ ,∵《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,∴()()332205ma nb mb na +-+= ,∵b =450-a ,∴()()345034502205ma n a m a na +---+=⎡⎤⎡⎤⎣⎦⎣⎦,∴()()13503135032205n a m a ma na ---+-= ,∴()()413502205m n a --= ,∵180230a ≤<,∴413500a -<,∴0m n -< ,即m n < ,∴当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即()3345013503ma nb ma n a ma n na +=+-=+- 最大,∴此时3na 的值最小,则m 最大,∵180230a ≤<,∴a 的最小值为180,将a =180代入()()413502205m n a --=,解得: 3.5m n -=- ,即 3.5n m =+ ,∵5060m n <+≤,∴50 3.560m m <++≤,即23.2528.25m <≤ ,∵m 最大,∴28.25m = ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为28.25元.故答案为:28.25【点睛】本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.3、 > > < <【解析】【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、 < < > <【解析】【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.解:(1)不等式a b <两边都减去3可得33a b -<-;(2)不等式a b <两边都乘以6可得66a b <;(3)不等式a b <两边都乘以1-可得a b ->-;(4)不等式a b <两边都减去b 可得0a b -<;故答案为: <;<;>;<.【点睛】此题主要考查了不等式的基本性质.解题时要注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.解题的关键是掌握不等式的基本性质.5、18【解析】【分析】设小明答对了x 道题,则答错了(25﹣3﹣x )道题,根据总分=4×答对题目数﹣2×答错题目数,结合成绩超过60分,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再取其中最小正整数即可得出结论.【详解】设小明答对了x 道题,则答错了(25﹣3﹣x )道题,依题意,得:4x ﹣2(25﹣3﹣x )>60,解得:x >1713,∵x 为正整数,∴x 的最小值为18,故答案为18.本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.三、解答题1、(1)x ≤1,见解析;(2)﹣3≤x <1,见解析【解析】【分析】(1)按照去分母,去括号,移项,合并,系数化为1的步骤解不等式,然后在数轴上表示出不等式的解集即可;(2)先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示不等式组的解集即可.【详解】解:(1)2131132x x +-≥+(), 去分母得:()()221916x x +≥-+,去括号得: 4x +2≥9x ﹣9+6,移项得:4x ﹣9x ≥﹣9+6﹣2,合并得:﹣5x ≥﹣5,系数化为1得:x ≤1,在数轴上表示为:(2)54271132x x x x x -≤+⎧⎪-+⎨-⎪⎩< 解不等式5x ﹣4≤2+7x ,得:x ≥﹣3,解不等式x1132x x-+-<,得:x<1,则不等式组的解集为﹣3≤x<1,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,并在数轴上表示不等式和不等式组的解集,解题的关键在于能够熟练掌握解一元一次不等式的方法.2、(1)x≥﹣1,数轴见解析;(2)733x-<≤,2【解析】【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x﹣5x≤2,合并同类项,得:﹣2x≤2,系数化为1,得:x≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.3、11 3a-<≤【解析】【分析】先求出不等式组2153136215x xx+-⎧-<⎪⎨⎪-≤⎩的解集为13x-<≤,然后分别讨论当0a>时,当0a<时,当0a=时,不等式1ax>-的解集,然后根据不等式组2153136215x xx+-⎧-<⎪⎨⎪-≤⎩的解集是关于x的一元一次不等式1ax>-解集的一部分进行求解即可.【详解】解:2153136215x xx+-⎧-<⎪⎨⎪-≤⎩①②解不等式①得:1x>-,解不等式②得:23x-≤≤,∴不等式的解集为13x-<≤,∵1ax>-,∴当0a>时,1 xa >-∵不等式组2153136215x xx+-⎧-<⎪⎨⎪-≤⎩的解集是关于x的一元一次不等式1ax>-解集的一部分,∴11a-≤-,∴01a<≤;同理当0a<时,1xa<-,∵不等式组2153136215x xx+-⎧-<⎪⎨⎪-≤⎩的解集是关于x的一元一次不等式1ax>-解集的一部分,∴13a ->,∴13-<<a;当0a=时,01>-恒成立,即关于x的一元一次不等式1ax>-的解集为一切实数,∴此时也满足不等式组2153136215x xx+-⎧-<⎪⎨⎪-≤⎩的解集是关于x的一元一次不等式1ax>-解集的一部分,∴综上所述,113a-<≤.【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解不等式的方法.4、12x-<≤【解析】【分析】分别解两个不等式,取公共解即可.解:21432x x x x +>⎧⎨≤+⎩①②解等式①得1x >-,解不等式②得2x ≤,故12x -<≤,【点睛】本题考查解不等式组.掌握利用“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是解题关键.5、m 的值为1或2【解析】【分析】 先求出方程2233x m x x ---=的解,再由x 为非负数,可得到关于m 的不等式,解出即可. 【详解】 解:2233x m x x ---= 去分母得:()322x x m x --=- ,解得:x =22m -, 因为x 为非负数, 所以22m -≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.本题主要考查了方程的解和解一元一次不等式,根据题意得到关于m的不等式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次不等式和一元一次不等式组》综合测试题一、选择题(每小题3分,共30分)1、a 、b 、c 在数轴上的对应点的位置如图1所示,下列式子中正确的有( )图1○1b+c>0,○2a+b>a+c ,○3bc>ac ,○4ab>ac A.1个; B.2个; C.3个; D.4个. 2、不等式2x -5≤0的正整数解有( )A .1个;B .2个;C .3个;D .0个.3、如图2,能表示不等式组⎩⎨⎧<-<12x x 解集的是 ( )A .B .C .D .图24、如图3,不等式组240,10x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )A .B .C .D .图35、不等式组⎩⎨⎧x -2≤0x +1>0的解是( ) A 、x ≤2 B 、x ≥2C 、-1<x ≤2D 、x >-16、下面不等式组无解的是( )A.⎩⎨⎧<+<-0201x x ; B.⎩⎨⎧>+<-0201x x ; C.⎩⎨⎧<+>-0201x x ; D.⎩⎨⎧>+>-0201x x .7、已知a 、b 为实数,且1=ab,设11+++=b b a aM,1111+++=b a N,则M 、N 的大小关系是( )A .NMB .NM= C .NMD .不确定8、已知关于x 的不等式组⎪⎩⎪⎨⎧>-><a x x x 12无解,则a 的取值范围是( )0 2 -1A.a ≤-1B.a ≥2C. -1<a <2D. a <-1,或a >29、小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买钢笔( ).A. 12支;B. 13支;C. 14支;D. 15支.10、小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端;体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端.这时,爸爸的那一端仍然着地.请你猜一猜小芳的体重应小于( )A. 49千克B. 50千克C. 24千克D. 25千克二、填空题(每小题3分,共30分) 11、若a>b ,则2b _____2a --.12、如果>0,那么xy__0.13、不等式 5x -9≤3(x +1)的解集是______. 14、不等式组的整数解为______.15、已知4x 33x 22x 1-<+≤-,则x 的最大整数值为_________.16、在关于x 1,x 2,x 3的方程组⎪⎩⎪⎨⎧=+=+=+313232121ax x a x x a x x 中,已知321a a a >>,那么将x 1,x 2,x 3从大到小排起来应该是____________.17、对于整数a,b,c,d ,符号c b d a表示运算ac-bd ,已知1<41bd <3,则b+d 的值是____________. 18、已知关于x 的不等式组⎩⎨⎧>--≥-0a x 1x 25无解,则a 的取值范围是_____.19、已知不等式4x -a ≤0的正整数解是1,2,则a 的取值范围是_________.20、为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生______人,共有_____个交通路口安排值勤.三、解答题(每小题7分,共35分)21、解不等式组⎪⎩⎪⎨⎧>-≥--②①32x-11-x )1(2)3(410x x ,并写出此不等式组的整数解.22、已知关于x 、y 的方程组⎩⎨⎧=++=-ay x a y x 523的解满足x>y>0,化简|a|+|3-a|.23、有一个两位数,其中十位上的数字比个位上的数字小2,如果这个两位数大于20而小于40,求这个两位数.24、慧秀中学在防“非典”知识竞赛中,评出一等奖4人,二等奖6人,三等奖20人,学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.(1)若一等奖,二等奖、三等奖的奖品分别是喷壶、口罩和温度计,购买这三种奖品共计花费113元,其中购买喷壶的总钱数比购买口罩的总钱数多9元,而口罩的单价比温度计的单价多2元,求喷壶、口罩和温度计的单价各是多少元?(2)若三种奖品的单价都是整数,且要求一等奖的单价是二等奖单价的2倍,二等奖的单价是三等奖单价的2倍,在总费用不少于90元而不足150元的前提下,购买一、二、三等奖奖品时它们的单价有几种情况,分别求出每种情况中一、二、三等奖奖品的单价?25、某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评.A 、B 、C 、D 、E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:表表规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定; 民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分; 综合得分=演讲答辩得分×(1-a )+民主测评得分×a (0.5≤a ≤0.8).⑴ 当a =0.6时,甲的综合得分是多少?⑵ a 在什么范围时,甲的综合得分高?a 在什么范围时,乙的综合得分高? 四、探索题(第26、27小题,每小题8分,第28小题9分,共25分)26、马小虎同学在做练习时,有两道不等式组是这样解的: (1)解不等式组⎩⎨⎧2x+3<7 ①5x-6>9 ②小虎解法:由不等式①,得x<2由不等式②,得x>3所以,原不等式组的解集为2>x>3.(2)解不等式组⎩⎨⎧2x<7+x ①3x<x-6 ②小虎解法:②-①,得不等式组的解集为x<-13.你认为小虎的解法对吗?为什么?如果有错误,请予以改正.27、a 克糖水中有b 克糖(a>b>0),则糖的质量与糖水的质量比为_________;若再加c 克糖(c>0),则糖的质量与糖水的质量比为___________.生活常识告诉我们:加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼一个不等式.28、某园林的门票每张10元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A 、B 、C 三类,A 类年票每张 120元,持票者进人园林时,无需再购买门票;B 类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C 类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A 类年票比较合算.参考答案一、C B A B C ,C B B B D .二、11、<; 12、>; 13、x ≤6; 14、-3,-2; 15、0; 16、x 2>x 1>x 3; 17、3或者-3; 18、a ≥3; 19、8≤a<12; 20、158,20. 三、21、不等式①的解是x ≤4, 不等式②的解是54x >,所以不等式组的解为4x 54≤<,所以它的整数解为1,2,3,4. 22、由方程组⎩⎨⎧=++=-a5y x 23a y x ,解得⎩⎨⎧-=+=2a y 1a 2x 由x>y>0,得⎩⎨⎧>-->+02a 2a 1a 2 解得a>2当2<a ≤3时,|a|+|3-a|=a +3-a =3; 当a>3时,|a|+|3-a|=a +a -3=2a -3.23、设十位上的数字为x ,则个位上的数字为x +2. 根据题意得20<10x +x +2<40, 以上不等式可化成下列不等式组 ⎩⎨⎧<++>++②①402x 10x 20210x由①得1118x >;由②得1138x <,所以不等式组的解集是1138x 1118<<.因为x 表示的是十位上的数字, 所以x 只能是2或3, 则个位上数字是4或5, 所以这个两位数是24或35. 答:这个两位数是24或35.24、(1)设喷壶和口罩的单价分别是y 元和z 元,根据题意,得 ⎩⎨⎧4y+6z+20(z-2)=1134y-6z=9解得⎩⎨⎧y=9z=4.5所以,z-2=2.5.因此,喷壶、口罩和温度计的单价分别是9元、4.5元和2.5元.(2)设三等奖奖品的单价为x 元,则二等奖奖品的单价为2x 元,一等奖奖品的单价为4x 元. 根据题意,得90≤4×4x+6×2x+20x<150解得178 ≤x<318.因为三种奖品的单价都是整数,所以x=2,或者x=3. 当x=2时,2x=4, 4x=8;当x=3时,2x=6, 4x=12.因此,购买一、二、三等奖奖品时它们的单价有两种情况:第一种情况中一、二、三等奖奖品的单价分别是8元、4元和2元; 第二种情况中一、二、三等奖奖品的单价分别是12元、6元和3元.25、⑴甲的演讲答辩得分为90+92+943=92(分),民主评议得分为40×2+7×1+3×0=80+7+0=87(分),当a =0.6时,甲的综合得分为92×(1 – 0.6)+87×0.6=36.8+52.2=89(分).(2)乙的演讲答辩得分为89+87+913=89(分),民主评议得分为42×2+4×1+4×0=84+4+0=88(分), 甲的综合得分为92×(1 – a )+87×a = 92 – 5a (分), 乙的综合得分为89×(1 – a )+88×a = 89 –a (分) 当92 – 5a>89 –a 时,a<0.75;又因为0.5≤a ≤0.8,所以,当0.5≤a<0.75时,甲的综合得分高. 当92 – 5a<89 –a 时,a>0.75;又因为0.5≤a ≤0.8,所以,当0.75<a ≤0.8时,乙的综合得分高.四、26、小虎两道题的做法都不对.第(1)题的解集2>x>3显然是错误的,绝对不能出现2>3.此题中两个不等式的解集x<2和x>3没有公共部分,所以原不等式组无解.解第(2)题时,小虎把方程组的解法机械地套用到解方程组中,缺乏科学依据.正确的解法是由不等式①,得x<7;由不等式②,得x<-3.可知,原不等式组的解集为x<-3.27、ab ,ca cb ++,ca cb ab ++<.28、(1)根据题意,需分类讨论.因为80<120,所以不可能选择A 类年票;若只选择购买B 类年票,则能够进入该园林 80-602 = 10(次); 若只选择购买C 类年票,则能够进入该园林 80-403 ≈13(次); 若不购买年票,则能够进入该园林 8010 =8(次).所以,计划在一年中用80元花在该园林的门票上,通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C 类年票.(2)设一年中进入该园林至少超过x 次时,购买A 类年票比较合算,根据题意,得⎩⎪⎨⎪⎧60+2x>120 ①40+3x>120 ②10x>120 ③ 由①,解得x>30; 由②,解得x>2623 ; 由③,解得x>12.解得原不等式组的解集为x>30.所以,一年中进入该园林至少超过30次时,购买A 类年票比较合算.。

相关文档
最新文档