(30)数列求和

合集下载

数列求和常见的7种方法

数列求和常见的7种方法

精心整理数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和法, 1、2⎩3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=x x x n--1)1(=211211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.(利列.[例{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项②122+-n n[例nn n n n(反序)又由m n n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得 n nn n n nn n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②得题1已知函数 (1)证明:;(2)求的值(2所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组))13(nn -2)13(nn + [例k nk ∑=12)1(22+n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n[例[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121(211[(8+-+⋅⋅⋅+-+-+-=n nS n (裂项求和)=)111(8+-n = 18+n n[例n tan (裂]}答案:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cos n n --=(找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)= 0[例2002a +(1+a [例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++= 由等比数列的性质q p n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++[例(找 (分=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ )4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n(设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞∞∞+-+-=-+111(8)11(4))(1(n n a a n (分组、裂项 1.是等比数列;2..3⑵设。

数列与级数求和方法

数列与级数求和方法

数列与级数求和方法数学中,数列与级数是常见的概念,解决数列与级数的求和问题也是数学学习中的重要内容。

在本文中,我将介绍一些常见的数列与级数求和方法。

一、等差数列求和方法等差数列是最简单的数列之一,它的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

要求等差数列的和,可以使用以下公式:Sn = [n(a1 + an)] / 2其中,Sn为前n项的和。

举个例子来说明,假设有一个等差数列,首项a1 = 2,公差d = 3,求前5项的和。

首先,代入公式可得:an = 2 + (n-1)3。

然后,代入n = 5,得到a5 = 2 + (5-1)3 = 2 + 12 = 14。

最后,代入公式Sn = [n(a1 + an)] / 2,计算可得:S5 = [5(2+14)] / 2 = 80。

所以,该等差数列前5项的和为80。

二、等比数列求和方法等比数列也是常见的数列类型,它的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。

要求等比数列的和,可以使用以下公式:Sn = a1 * (1 - r^n) / (1 - r)其中,Sn为前n项的和。

假设有一个等比数列,首项a1 = 3,公比r = 2,求前4项的和。

首先,代入公式可得:an = 3 * 2^(n-1)。

然后,代入n = 4,得到a4 = 3 * 2^(4-1) = 24。

最后,代入公式Sn = a1 * (1 - r^n) / (1 - r),计算可得:S4 = 3 * (1 - 2^4) / (1 - 2) = 21。

所以,该等比数列前4项的和为21。

三、级数求和方法级数是数列的和,其中项与项之间没有规律的关系。

常见的级数求和方法包括等差级数、等比级数和调和级数。

1. 等差级数等差级数的求和公式为:Sn = n * (a1 + an) / 2其中,Sn为前n项的和。

举个例子来说明,假设有一个等差级数,首项a1 = 1,公差d = 2,求前6项的和。

高三数学第一轮复习课时作业(30)数列求和

高三数学第一轮复习课时作业(30)数列求和

课时作业(三十) 第30讲 数列求和时间:45分钟 分值:100分基础热身1.2011·海口调研 设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9的值是( ) A .24 B .19 C .36 D .402.2011·广州二模 已知数列{a n }的通项公式是a n =(-1)n(n +1),则a 1+a 2+a 3+…+a 10=( ) A .-55 B .-5 C .5 D .553.已知函数f (x )=x 2+bx 的图像在点A (1,f (1))处的切线的斜率为3,数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和为S n ,则S 2 012的值为( )A.2 0072 008B.2 0102 011C.2 0092 010D.2 0122 0134.已知函数f (x )对任意x ∈R ,都有f (x )=1-f (1-x ),则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=________.能力提升5.2011·阳泉一调 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .856.2011·海南省四校二模 已知数列{a n }的通项公式a n =log 3nn +1(n ∈N *),设其前n 项和为S n ,则使S n <-4成立的最小自然数n 等于( )A .83B .82C .81D .807.2011·连云港模拟 设a 1,a 2,…,a 50是从-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有( )A .11个B .12个C .15个D .25个8.2011·安徽卷 若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12C .-12D .-159.设m ∈N *,log 2m 的整数部分用F (m )表示,则F (1)+F (2)+…+F (1024)的值是( ) A .8204 B .8192C .9218D .以上都不对10.2011·淮北联考 对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.11.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x+y +n =0在y 轴上的截距为________.12.已知数列{a n }的通项公式是a n =4n -2n,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫2n S n 的前n 项和T n =________.13.已知函数f (x )=3x 2-2x ,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数f (x )的图像上,b n =3a n a n +1,T n 是数列{b n }的前n 项和,则使得T n <m20对所有n ∈N *都成立的最小正整数m 等于________. 14.(10分)2011·厦门质检 在等差数列{a n }中,a 2=4,其前n 项和S n 满足S n =n 2+λn (λ∈R ). (1)求实数λ的值,并求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n+b n 是首项为λ、公比为2λ的等比数列,求数列{b n }的前n 项和T n .15.(13分)2011·新余二模 已知数列{a n }满足a 1=1,a 2=12,且3+(-1)n a n +2-2a n +2(-1)n-1=0,n∈N *.(1)求a 3,a 4,a 5,a 6的值及数列{a n }的通项公式;(2)设b n =a 2n -1·a 2n (n ∈N *),求数列{b n }的前n 项和S n .难点突破16.(12分)2011·深圳一模 设数列{a n }是公差为d 的等差数列,其前n 项和为S n . (1)已知a 1=1,d =2,①求当n ∈N *时,S n +64n的最小值;②当n ∈N *时,求证:2S 1S 3+3S 2S 4+…+n +1S n S n +2<516;(2)是否存在实数a 1,使得对任意正整数n ,关于m 的不等式a m ≥n 的最小正整数解为3n -2?若存在,求a 1的取值范围;若不存在,请说明理由.课时作业(三十)【基础热身】1.A 解析 S 9=9(a 1+a 9)2=72,a 1+a 9=16,得a 5=8, 所以a 2+a 4+a 9=a 5-3d +a 5-d +a 5+4d =3a 5=24.2.C 解析 由a n =(-1)n(n +1),得a 1+a 2+a 3+…+a 10=-2+3-4+5-6+7-8+9-10+11=5. 3.D 解析 由题知f ′(x)=2x +b , ∴f ′(1)=2+b =3,∴b =1,∴f(n)=n 2+n ,∴1f(n)=1n(n +1)=1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=nn +1,∴S 2012=20122013.4.3 解析 由条件可知f(x)+f(1-x)=1, 其中x +(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1, 设M =f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3), 则M =f(3)+f(2)+f(1)+f(0)+f(-1)+f(-2), 两式相加,得2M =6,即M =3. 【能力提升】5.B 解析 由已知a n =2n +1,得a 1=3,a 1+a 2+…+a n =n(3+2n +1)2=n(n +2),则b n =n +2,T 10=10(3+12)2=75.6.C 解析 S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4,解得n>34-1=80.7.A 解析 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11个.8.A 解析 a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10·(3×10-2)=(-1+4)+(-7+10)+…+(-1)9·(3×9-2)+(-1)10·(3×10-2)=3×5=15.9.A 解析 ∵F(m)为log 2m 的整数部分,∴当2n ≤m ≤2n +1-1时,f(m)=n , ∴F(1)+F(2)+…+F(1024)=F(1)+F(2)+F(3)+F(4)+F(5)+F(6)+F(7)+…+F(1024)=0+2×1+4×2+…+2k ×k +…+29×9+10.设S =1×2+2×22+…+k ×2k +…+9×29,①则2S =1×22+…+8×29+9×210,② ①-②得-S =2+22+…+29-9×210=2(1-29)1-2-9×210=210-2-9×210=-213-2,∴S =213+2,∴F(1)+F(2)+…+F(1024)=213+12=8204.10.2n +1-2 解析 ∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n . ∴S n =2-2n +11-2=2n +1-2.11.-120 解析 由已知,得a n =1n +n +1=,故选A n +1-n ,则S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n)=n +1-1,∴n +1-1=10,解得n =120,即直线方程化为121x +y +120=0,故直线在y 轴上的截距为-120.12.3·2n -12n +1-1 解析 根据公式法S n =4(1-4n )1-4-2(1-2n )1-2=13(4n +1-3·2n +1+2)=13(2n +1-1)(2n +1-2)=23(2n +1-1)(2n-1),故2n S n =32·2n (2n +1-1)(2n-1)由于(2n +1-1)-(2n -1)=2n,所以2n S n =32·(2n +1-1)-(2n-1)(2n +1-1)(2n-1) =32⎝⎛⎭⎫12n -1-12n +1-1, 所以T n =32121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=321-12n +1-1=3·2n-12n +1-1.13.10 解析 由S n =3n 2-2n ,得a n =6n -5,又∵b n =3a n a n +1=12⎝⎛⎫16n -5-16n +1,∴T n =121-17+17-113+…+16n -5-16n +1=12-16n +1<12,要使12⎝⎛⎭⎫1-16n +1<m 20对所有n ∈N *成立,只需m 20≥12,∴m ≥10,故符合条件的最小正整数m =10.14.解答 (1)∵a 2=S 2-S 1=(4+2λ)-(1+λ)=3+λ, ∴3+λ=4,∴λ=1.∴a 1=S 1=2,d =a 2-a 1=2, ∴a n =2n .(2)由已知,∵λ=1,∴1S n+b n =1×2n -1=2n -1,∴b n =2n -1-1n (n +1)=2n -1-⎝⎛⎭⎫1n -1n +1,∴T n =(1+21+22+…+2n -1)-⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-2n1-2-⎝⎛⎭⎫1-1n +1=(2n -1)-1+1n +1=2n -2n +1n +1. 15.解答 (1)由已知得a 3=3,a 4=14,a 5=5,a 6=18当n 为奇数时,a n +2=a n +2,则a n =n ;当n 为偶数时,a n +2=12a n ,则a n =a 2·⎝⎛⎭⎫12n 2-1=⎝⎛⎭⎫12n2.因此,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n ,n =2k -1,⎝⎛⎭⎫12n2,n =2k .(2)因为b n =a 2n -1·a 2n ,则S n =1·12+3·⎝⎛⎭⎫122+5·⎝⎛⎭⎫123+…+(2n -3)·⎝⎛⎭⎫12n -1+(2n -1)·⎝⎛⎭⎫12n,12S n =1·⎝⎛⎭⎫122+3·⎝⎛⎭⎫123+5·⎝⎛⎭⎫124+…+(2n -3)·⎝⎛⎭12n +(2n -1)·⎝⎛⎭⎫12n +1, 两式相减得 12S n =1·12+2122+…+12n -(2n -1)·⎝⎛⎭⎫12n +1 =12+2⎣⎡⎦⎤14-⎝⎛⎭⎫12n +11-12-(2n -1)·⎝⎛⎭⎫12n +1 =32-(2n +3)⎝⎛⎭⎫12n +1, ∴S n =3-(2n +3)·⎝⎛⎭⎫12n.【难点突破】16.解答 (1)①∵a 1=1,d =2,∴S n =na 1+n (n -1)d 2=n 2,S n +64n =n +64n≥2n ×64n=16,当且仅当n =64n,即n =8时,上式取等号,故S n +64n的最小值是16. ②证明:由①知S n =n 2,当n ∈N *时,n +1S n S n +2=n +1n 2(n +2)2=14⎣⎡⎦⎤1n 2-1(n +2)2,2S 1S 3+3S 2S 4+…+n +1S n S n +2=14⎝⎛⎭⎫112-132+14⎝⎛⎭⎫122-142+…+14⎣⎡⎦⎤1n 2-1(n +2)2 =14112+122+…+1n 2-14132+142+…+1(n +1)2+1(n +2)2=14⎣⎡⎦⎤112+122-1(n +1)2-1(n +2)2, ∵1(n +1)2+1(n +2)2>0, ∴2S 1S 3+3S 2S 4+…+n +1S n S n +2<14⎝⎛⎭⎫112+122<516. (2)对任意n ∈N *,关于m 的不等式a m =a 1+(m -1)d ≥n 的最小正整数解为c n =3n -2, 当n =1时,a 1+(c 1-1)d =a 1≥1;当n ≥2时,恒有⎩⎨⎧ a 1+(c n -1)d ≥n ,a 1+(c n -2)d <n ,即⎩⎨⎧(3d -1)n +(a 1-3d )≥0,(3d -1)n +(a 1-4d )<0.从而⎩⎪⎨⎪⎧3d -1≥0,(3d -1)×2+(a 1-3d )≥0,3d -1≤0,(3d -1)×2+(a 1-4d )<0,⇔d =13,1≤a 1<43.当d =13,1≤a 1<43时,对任意n ∈N *,且n ≥2时,当正整数m <c n 时,有a 1+m -13<a 1+c n -13,所以a 1+m -13<n ,所以存在这样的实数a 1,且a 1的取值范围是⎣⎡⎭⎫1,43.。

数列的求和方法(专题)

数列的求和方法(专题)

例析数列求和的常用方法数列求和是数列教学内容的中心问题之一,也是近年高考命题的一个热点问题。

掌握一些求和的方法和技巧可以提高解决此问题的能力。

本文例析了一些求和的方法,仅供参考。

一、倒序相加法将一个数列倒过来排序(倒序),当它与原数列相加时,若有因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。

如等差数列的求和公式2)(1n n a a n S +=的推导。

例1.已知)(x f 满足R x x ∈21,,当121=+x x 时,21)()(21=+x f x f ,若N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,求n S 解:∵N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,①. ∴+=)1(f S n N n f nf n f n n f ∈++++-),0()1()2()1( ,②,①+②整理后可得)1(41+=n S n 二、错位相减法(此法是学生错误率最高的,到高三还有近半数还计算错误,教学时要多用几课时练习巩固)这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⋅的前n 项和,其中}{n a 、}{n b 分别是等差数列和等比数列。

例2.求数列}2{n n ⋅的前n 项和n S 。

解:∵ n n n n n S 22)1(2322211321⨯+⨯-++⨯+⨯+⨯=-①,所以①-①2⨯错位相消得1132122222+-⨯-++++=-n n n n S ,所以12)1(2+⨯-+=n n n S 。

三、分组求和法所谓分组求和法,即将一个数列中的项拆成几项,转化成特殊数列求和。

例3.已知数列}{n a 满足1)21(-+=n n n a ,求其前n 项和n S 。

解:∵1131211)21()21(3)21(2)21(1----++++++++=n n n S )321(n ++++= ])21()21()21[(11211---++++n 12122)1(--++=n n n 四、公式法(恒等式法)利用已知的求和公式来求和,如等差数列与等比数列求和公式,再如n ++++ 3212)1(+=n n 、)12)(1(613212222++=++++n n n n 等公式。

数列求和公式的几种方法

数列求和公式的几种方法

数列求和公式的几种方法数列求和公式是数学中十分重要的内容之一,它是指由一系列的数按照一定规律排列而成的序列的和的计算方法。

在数列求和公式中,常见的有等差数列求和公式和等比数列求和公式等。

下面将介绍几种数列求和公式的计算方法。

1.等差数列求和公式:等差数列是指数列中每一项与它的前一项之间的差值都相等的数列。

设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的求和公式为:Sn=(n/2)[2a₁+(n-1)d]其中n表示数列的项数。

例如,我们求等差数列2,5,8,11,14的和。

首项a₁=2,公差d=5-2=3,项数n=5代入公式Sn=(n/2)[2a₁+(n-1)d]可得:S₅=(5/2)[2*2+(5-1)*3]=(5/2)(4+12)=(5/2)*16=40所以,等差数列2,5,8,11,14的和为40。

2.等比数列求和公式:等比数列是指数列中每一项与它的前一项之间的比值都相等的数列。

设等比数列的首项为a₁,公比为q,第n项为aₙ,则等比数列的求和公式为:Sn=a₁(1-qⁿ)/(1-q)其中n表示数列的项数。

例如,我们求等比数列3,6,12,24,48的和。

首项a₁=3,公比q=6/3=2,项数n=5代入公式Sn=a₁(1-qⁿ)/(1-q)可得:S₅=3(1-2⁵)/(1-2)=3(1-32)/(-1)=3(-31)/(-1)=93所以,等比数列3,6,12,24,48的和为933.平方和公式:平方和公式是指求1²+2²+3²+...+n²的和的公式。

平方和公式为:Sn=n(n+1)(2n+1)/6其中n表示数列的项数。

例如,我们求和1²+2²+3²+4²+5²的和。

项数n=5代入平方和公式Sn=n(n+1)(2n+1)/6可得:S₅=5(5+1)(2*5+1)/6=5(6)(11)/6=11*5=55所以,1²+2²+3²+4²+5²的和为554.等差数列差分求和法:等差数列差分求和法是一种利用等差数列的性质进行求和的方法。

数列求和的七种方法是什么

数列求和的七种方法是什么

数列求和的七种方法是什么
1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。

2、倒序相加法。

倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

3、分组求和法。

分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

4、错位相减法。

错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

5、裂项相消法。

裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

6、乘公比错项相减(等差×等比)。

这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

7、公式法。

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。

运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

8、迭加法。

主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

高三数学30 数列求和 学案

高三数学30  数列求和  学案

§30 数列求和1. 数列求和的常用方法:(1)公式法: ①直接用等差、等比数列的求和公式.②掌握一些常见数列的前n 项和公式.如:123_____n ++++= ;13521_____n ++++-= 等 (2)倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和就可用倒序相加法,如:______________数列的前n 项和就是用此法推导的. 3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如: _______________数列的前n 项和就是用此法推导的.4)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的拆项公式有:①()1_____1n n =+;②()()1_________2121n n =-+ ;________= (5)分组求和法:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,即先分别求和,然后再合并,形如:①{}n n a b +,其中{}n a 是等差数列,{}n b 是等比数列;②()()()()**21,2,n f n n k k N a g n n k k N ⎧=-∈⎪=⎨=∈⎪⎩【自学导引】1.数列1,0,3,,22,n n -+- 的前n 项和为 _________2.(必修5P40引例)若121x x +=,且()()1212f x f x +=,则121____n f f f n n n -⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;3.(必修5P62.7)数列{}n a 的通项公式()11n a n n =+,则 5S = _______________4.(必修5P54例3)22111____n n x x x y y y ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ________()0,1,1x y x ≠≠≠ 5. (必修5P58.6)数列()()2311,3,5,7,,21,0n a a a n a a --≠ 的前n 项和为_____________【要点例析】题型1 利用错位相减法求和例1. 1.(2011扬州中学)数列{}n a 的前n 项和22n S n n =+,设数列{}n b 满足2log n n a b =(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T ;(3)设1122n n n G a b a b a b =+++ ,求n G2.(2010四川)等差数列{}n a 的前3项和为6,前8项和为4-.(1)求数列{}n a 的通项公式;(2)设()()1*40,n n n b a q q q N -=-≠∈,求数列{}n b 的前n 项和n S题型2 利用裂项相消法求和【例2】. (2010山东)等差数列{}n a 满足:3577,26a a a =+=,{}n a 的前n 项和为n S .(1)求,n n a S ;(2)令211n n b a =-,求n b 的前n 项和n T ;题型3 倒序相加法求和【例3】.设函数()xf x =()()111222,,,P x y P x y ,若P 为12PP 的中点,且P 点的横坐标为12.(1)求证:P 点的纵坐标为定值,并求出这个值;(2)求12n f f f n n n ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值题型4 分组求和【例4】.(2011南师附中)各项均为正数的数列{}n a 的前n 项和为n S ,21142n n n S a a =+ (1)求{}n a 的通项公式;(2)令()()2n n n a n b b n ⎧⎪=⎨⎪⎩为奇数为偶数,24n n c b +=,求{}n c 的前n 项和n T【随堂演练】1. 数列{}n a 112123129,,,,,233444101010++++++ ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和______n S =.2. 数列11111,2,3,4,24816⨯⨯⨯⨯ 的前n 项和______n S = 3. (2011无锡)数列2231,12,122,1222,++++++ 的前n 项和______n S =4.(2011南师附中)数列{}n a 的通项22cossin 22n n n a n ππ⎛⎫=- ⎪⎝⎭,前n 项和为n S ,则2010______S =。

(完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式

一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(三十) [第30讲 数列求和][时间:45分钟 分值:100分]基础热身1. 已知数列{a n }的各项均为正数,其前n 项和为S n ,若{log 2a n }是公差为-1的等差数列,且S 6=38,那么a 1的值为( )A.421B.631C.821D.21312. 已知数列{a n }的通项公式是a n =(-1)n (n +1),则a 1+a 2+a 3+…+a 10=( ) A .-55 B .-5 C .5 D .553.已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线的斜率为3,数列⎩⎨⎧⎭⎬⎫1f (n )的前n项和为S n ,则S 2 012的值为( )A.2 0072 008B.2 0102 011C.2 0092 010D.2 0122 0134.已知函数f (x )对任意x ∈R ,都有f (x )=1-f (1-x ),则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=________.能力提升5. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .856. 已知直线(3m +1)x +(1-m )y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n a n +1,数列{b n }的前n 项和为T n ,则T 10=( )A.921B.1021C.1121D.20217. 设a 1,a 2,…,a 50是从-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有( )A .11个B .12个C .15个D .25个8. 若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15 9.设m ∈N *,log 2m 的整数部分用F (m )表示,则F (1)+F (2)+…+F (1 024)的值是( ) A .8 204 B .8 192C .9 218D .以上都不对10. 对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.11.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为________.12.已知数列{a n }的通项公式是a n =4n-2n,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫2nS n 的前n 项和T n =________.13. 如表所示,将数以斜线作如下分群:(1),(2,3),(4,6,5),(8,12,10,7),(16,24,20,14,9),…,并顺次称其为第1群,第2群,第3群,第4群,…,(1)第7群中的第2(2)第n 群中n 个数的和是________.14.(10分) 在等差数列{a n }中,a 2=4,其前n 项和S n 满足S n =n 2+λn (λ∈R ). (1)求实数λ的值,并求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1S n +b n 是首项为λ、公比为2λ的等比数列,求数列{b n }的前n 项和T n .15.(13分) 已知数列{a n }满足a 1=1,a 2=12,且[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)求a 3,a 4,a 5,a 6的值及数列{a n }的通项公式; (2)设b n =a 2n -1·a 2n (n ∈N *),求数列{b n }的前n 项和S n .难点突破16.(12分) 设数列{a n }是公差为d 的等差数列,其前n 项和为S n . (1)已知a 1=1,d =2,①求当n ∈N *时,S n +64n的最小值;②当n ∈N *时,求证:2S 1S 3+3S 2S 4+…+n +1S n S n +2<516;(2)是否存在实数a 1,使得对任意正整数n ,关于m 的不等式a m ≥n 的最小正整数解为3n -2?若存在,求a 1的取值范围;若不存在,请说明理由.课时作业(三十)【基础热身】1.A [解析] 由题设知log 2a n -log 2a n -1=-1,∴log 2a n a n -1=-1,即a n a n -1=12,∴{a n }是以a 1为首项,12为公比的等比数列,∴S 6=a 1⎣⎡⎦⎤1-⎝⎛⎭⎫1261-12=38,∴a 1=421,故选A .2.C [解析] 由a n =(-1)n (n +1),得a 1+a 2+a 3+…+a 10=-2+3-4+5-6+7-8+9-10+11=5,故选C . 3.D [解析] 由题知f ′(x)=2x +b , ∴f ′(1)=2+b =3,∴b =1,∴f(n)=n 2+n ,∴1f (n )=1n (n +1)=1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=nn +1, ∴S 2 012=2 0122 013,故选D .4.3 [解析] 由条件可知f(x)+f(1-x)=1, 其中x +(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1, 设M =f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3), 则M =f(3)+f(2)+f(1)+f(0)+f(-1)+f(-2), 两式相加,得2M =6,即M =3. 【能力提升】5.B [解析] 由已知a n =2n +1,得a 1=3,a 1+a 2+…+a n =n (3+2n +1)2=n(n +2),则b n =n +2,T 10=10(3+12)2=75,故选B .6.B [解析] 将直线方程化为(x +y -4)+m(3x -y)=0, 令⎩⎪⎨⎪⎧ x +y -4=0,3x -y =0,解得⎩⎪⎨⎪⎧x =1,y =3,即直线过定点(1,3), 所以a 1=1,a 2=3,公差d =2,∴a n =2n -1,∴b n =1a n a n +1=12⎝⎛⎭⎫12n -1-12n +1,∴T 10=12×⎝⎛⎭⎫1-13+13-15+…+120-1-120+1=12×⎝⎛⎭⎫1-121=1021,故选B . 7.A [解析] (a 1+1)2+(a 2+1)2+…+(a 50+1)2 =a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107, ∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11个,故选A . 8.A [解析] a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10·(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.9.A [解析] ∵F(m)为log 2m 的整数部分,∴当2n ≤m ≤2n +1-1时,f(m)=n , ∴F(1)+F(2)+…+F(1 024)=F(1)+[F(2)+F(3)]+[F(4)+F(5)+F(6)+F(7)]+…+F(1 024) =0+2×1+4×2+…+2k ×k +…+29×9+10.设S =1×2+2×22+…+k ×2k +…+9×29,① 则2S =1×22+…+8×29+9×210,② ①-②得-S =2+22+…+29-9×210=2(1-29)1-2-9×210=210-2-9×210=-213-2,∴S =213+2,∴F(1)+F(2)+…+F(1 024)=213+12=8 204,故选A .10.2n +1-2 [解析] ∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2 =2-2n 1-2+2=2n -2+2=2n . ∴S n =2-2n +11-2=2n +1-2.11.-120 [解析] 由已知,得a n =1n +n +1=n +1-n ,则S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n)=n +1-1,∴n +1-1=10,解得n =120,即直线方程化为121x +y +120=0,故直线在y 轴上的截距为-120.12.3·2n -12n +1-1 [解析] 根据公式法S n =4(1-4n )1-4-2(1-2n )1-2=13(4n +1-3·2n +1+2)=13(2n +1-1)(2n +1-2)=23(2n +1-1)(2n -1),故2nS n =32·2n (2n 1-1)(2n -1). 由于(2n +1-1)-(2n -1)=2n ,所以2n S n =32·(2n +1-1)-(2n-1)(2n +1-1)(2n -1)=32⎝⎛⎭⎫12n -1-12n +1-1, 所以T n =32121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=321-12n +1-1=3·2n -12n +1-1. 13.(1)96 (2)3·2n -2n -3 [解析] (1)第7群中的第2项是第2列中的第6个数,为3×26-1=96;(2)第n 群中n 个数分别是1×2n -1,3×2n -2,5×2n -3,…,(2n -1)×2n -n .设第n 群中n 个数的和为S n ,所以S n =1×2n -1+3×2n -2+5×2n -3+…+(2n -1)×2n -n .利用错位相减法可求得S n =3·2n -2n -3.14.[解答] (1)∵a 2=S 2-S 1=(4+2λ)-(1+λ)=3+λ, ∴3+λ=4,∴λ=1.∴a 1=S 1=2,d =a 2-a 1=2, ∴a n =2n.(2)由已知,∵λ=1,∴1S n+b n =1×2n -1=2n -1,∴b n =2n -1-1n (n +1)=2n -1-⎝⎛⎭⎫1n -1n +1,∴T n =(1+21+22+…+2n -1)-⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-2n 1-2-⎝⎛⎭⎫1-1n +1=(2n -1)-1+1n +1=2n-2n +1n +1.15.[解答] (1)由已知得a 3=3,a 4=14,a 5=5,a 6=18.当n 为奇数时,a n +2=a n +2,则a n =n ;当n 为偶数时,a n +2=12a n ,则a n =a 2·⎝⎛⎭⎫12n 2-1=⎝⎛⎭⎫12n 2. 因此,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n ,n =2k -1,⎝⎛⎭⎫12n 2,n =2k.(2)因为b n =a 2n -1·a 2n ,则S n =1·12+3·⎝⎛⎭⎫122+5·⎝⎛⎭⎫123+…+(2n -3)·⎝⎛⎭⎫12n -1+(2n -1)·⎝⎛⎭⎫12n , 12S n =1·⎝⎛⎫122+3·⎝⎛⎫123+5·⎝⎛⎭⎫124+…+(2n -3)·⎝⎛⎭⎫12n +(2n -1)·⎝⎛⎫12n +1, 两式相减得 12S n =1·12+2122+…+12n -(2n -1)·⎝⎛⎭⎫12n +1 =12+2⎣⎡⎦⎤14-⎝⎛⎭⎫12n +11-12-(2n -1)·⎝⎛⎭⎫12n +1 =32-(2n +3)⎝⎛⎭⎫12n +1, ∴S n =3-(2n +3)·⎝⎛⎭⎫12n . 【难点突破】16.[解答] (1)①∵a 1=1,d =2,∴S n =na 1+n (n -1)d 2=n 2,S n +64n =n +64n ≥2n ×64n=16, 当且仅当n =64n,即n =8时,上式取等号,故S n +64n的最小值是16.②证明:由①知S n =n 2,当n ∈N *时,n +1S n S n +2=n +1n 2(n +2)2=14⎣⎡⎦⎤1n 2-1(n +2)2,2S 1S 3+3S 2S 4+…+n +1S n S n +2=14⎝⎛⎭⎫112-132+14⎝⎛⎭⎫122-142+…+14⎣⎡⎦⎤1n 2-1(n +2)2=14112+122+…+1n 2-14132+142+…+1(n +1)2+1(n +2)2=14⎣⎡⎦⎤112+122-1(n +1)2-1(n +2)2, ∵1(n +1)2+1(n +2)2>0, ∴2S 1S 3+3S 2S 4+…+n +1S n S n +2<14⎝⎛⎭⎫112+122<516. (2)对∀n ∈N *,关于m 的不等式a m =a 1+(m -1)d ≥n 的最小正整数解为c n =3n -2,当n =1时,a 1+(c 1-1)d =a 1≥1; 当n ≥2时,恒有⎩⎪⎨⎪⎧ a 1+(c n -1)d ≥n ,a 1+(c n -2)d <n ,即⎩⎪⎨⎪⎧(3d -1)n +(a 1-3d )≥0,(3d -1)n +(a 1-4d )<0. 从而⎩⎪⎨⎪⎧3d -1≥0,(3d -1)×2+(a 1-3d )≥0,3d -1≤0,(3d -1)×2+(a 1-4d )<0,⇔d =13,1≤a 1<43.当d =13,1≤a 1<43时,对∀n ∈N *,且n ≥2时,当正整数m <c n 时,有a 1+m -13<a 1+c n -13,所以a 1+m -13<n ,所以存在这样的实数a 1,且a 1的取值范围是⎣⎡⎭⎫1,43.。

相关文档
最新文档