2018年高考数学(理科,通用版)练酷专题二轮复习课时跟踪检测:(十一) 直线与圆
2018年高考数学二轮复习专题(通用版)课时跟踪检测二十三理科数学(含答案)

课时跟踪检测(二十三)A 组——12+4提速练一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A 由题意得,f (1)=3,所以f (x )>f (1),即f (x )>3.当x <0时,x +6>3,解得-3<x <0;当 x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).2.在R 上定义运算:x ⊗y =x (1-y ).若不等式(x -a )⊗(x -b )>0的解集是(2,3),则a +b =( )A .1B .2C .4D .8解析:选C 由题知(x -a )⊗(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.3.已知正数a ,b 的等比中项是2,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6解析:选C 由正数a ,b 的等比中项是2,可得ab =4,又m =b +1a ,n =a +1b,所以m+n =a +b +1a +1b =a +b +a +b ab =54(a +b )≥54×2ab =5,当且仅当a =b =2时等号成立,故m +n 的最小值为5.4.(2017·合肥质检)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y 的最大值为( )A .5B .6C.132D .7解析:选C 作出不等式组表示的平面区域,如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y =4的交点,即⎝ ⎛⎭⎪⎫32,52时,z 取得最大值,z max =32+2×52=132,故选C.5.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3, 所以z =x -y 的取值范围是[-3,2].6.(2017·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:选A 作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15.7.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( ) A .8 B .4 C .2D .1解析:选B ∵a 2+b 2+c 2=4,∴2ab +2bc +2ac ≤(a 2+b 2)+(b 2+c 2)+(a 2+c 2)=2(a 2+b 2+c 2)=8,∴ab +bc +ac ≤4(当且仅当a =b =c =233时等号成立),∴ab +bc +ac 的最大值为4.8.(2017·惠州调研)已知实数x ,y 满足:⎩⎪⎨⎪⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8解析:选B 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2,故选B.9.当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx-y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧ x +2y =2,y -4=x ,得⎩⎪⎨⎪⎧x =-2,y =2,即B (-2,2),由⎩⎪⎨⎪⎧x +2y =2,x -7y =2,得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0),由⎩⎪⎨⎪⎧y -4=x ,x -7y =2,得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1),要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0,故选D.10.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(二十四) 函数与导数

课时跟踪检测(二十四) 函数与导数1.(2017·兰州模拟)已知函数f (x )=-x 3+x 2+b ,g (x )=a ln x .(1)若f (x )在⎣⎡⎭⎫-12,1上的最大值为38,求实数b 的值; (2)若对任意的x ∈[1,e],都有g (x )≥-x 2+(a +2)x 恒成立,求实数a 的取值范围. 解:(1)f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,得x =0或x =23. 当x ∈⎝⎛⎭⎫-12,0时,f ′(x )<0,函数f (x )为减函数; 当x ∈⎝⎛⎭⎫0,23时,f ′(x )>0,函数f (x )为增函数; 当x ∈⎝⎛⎭⎫23,1时,f ′(x )<0,函数f (x )为减函数.∵f ⎝⎛⎭⎫-12=38+b ,f ⎝⎛⎭⎫23=427+b , ∴f ⎝⎛⎭⎫-12>f ⎝⎛⎭⎫23. ∴f ⎝⎛⎭⎫-12=38+b =38,∴b =0. (2)由g (x )≥-x 2+(a +2)x ,得(x -ln x )a ≤x 2-2x ,∵x ∈[1,e],∴ln x ≤1≤x ,由于不能同时取等号,∴ln x <x ,即x -ln x >0,∴a ≤x 2-2x x -ln x(x ∈[1,e])恒成立.令h(x)=x2-2xx-ln x,x∈[1,e],则h′(x)=(x-1)(x+2-2ln x)(x-ln x)2,当x∈[1,e]时,x-1≥0,x+2-2ln x=x+2(1-ln x)>0,从而h′(x)≥0,∴函数h(x)=x2-2xx-ln x在[1,e]上为增函数,∴h(x)min=h(1)=-1,∴a≤-1,故实数a的取值范围为(-∞,-1].2.(2018届高三·合肥调研)已知函数f(x)=e x-12ax2(x>0,e为自然对数的底数),f′(x)是f(x)的导函数.(1)当a=2时,求证:f(x)>1;(2)是否存在正整数a,使得f′(x)≥x2ln x对一切x∈(0,+∞)恒成立?若存在,求出a的最大值;若不存在,请说明理由.解:(1)证明:当a=2时,f(x)=e x-x2,则f′(x)=e x-2x,令f1(x)=f′(x)=e x-2x,则f1′(x)=e x-2,令f1′(x)=0,得x=ln 2,又0<x<ln 2时,f1′(x)<0,x>ln 2时,f1′(x)>0,∴f1(x)=f′(x)在x=ln 2时取得极小值,也是最小值.∵f′(ln 2)=2-2ln 2>0,∴f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上为增函数.∴f(x)>f(0)=1.(2)由已知,得f′(x)=e x-ax,由f′(x)≥x2ln x,得e x -ax ≥x 2ln x 对一切x >0恒成立,当x =1时,可得a ≤e ,∴若存在,则正整数a 的值只能取1,2.下面证明当a =2时,不等式恒成立,设g (x )=e x x 2-2x-ln x , 则g ′(x )=(x -2)e x x 3+2x 2-1x =(x -2)(e x -x )x 3, 由(1)得e x >x 2+1≥2x >x ,∴e x -x >0(x >0),∴当0<x <2时,g ′(x )<0;当x >2时,g ′(x )>0.∴g (x )在(0,2)上是减函数,在(2,+∞)上是增函数.∴g (x )≥g (2)=14(e 2-4-4ln 2)>14×(2.72-4-4ln 2)>14(3-ln 16)>0, ∴当a =2时,不等式f ′(x )≥x 2ln x 对一切x >0恒成立,故a 的最大值是2.3.(2017·安徽二校联考)已知函数f (x )=ln x -a x -m (a ,m ∈R)在x =e(e 为自然对数的底数)时取得极值,且有两个零点记为x 1,x 2.(1)求实数a 的值,以及实数m 的取值范围;(2)证明:ln x 1+ln x 2>2.解:(1)f ′(x )=1x ·x -(ln x -a )x 2=a +1-ln x x 2, 由f ′(x )=0,得x =e a +1,且当0<x <e a +1时,f ′(x )>0,当x >e a +1时,f ′(x )<0, 所以f (x )在x =e a +1时取得极值,所以e a +1=e ,解得a =0.所以f (x )=ln x x -m (x >0),f ′(x )=1-ln x x 2,函数f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,f (e)=1e-m .又x →0(x >0)时,f (x )→-∞;x →+∞时,f (x )→-m ,f (x )有两个零点x 1,x 2,故⎩⎪⎨⎪⎧1e -m >0,-m <0,解得0<m <1e . 所以实数m 的取值范围为⎝⎛⎭⎫0,1e . (2)证明:不妨设x 1<x 2,由题意知⎩⎪⎨⎪⎧ ln x 1=mx 1,ln x 2=mx 2. 则ln x 1x 2=m (x 1+x 2),ln x 2x 1=m (x 2-x 1)⇒m =ln x 2x 1x 2-x 1.欲证ln x 1+ln x 2>2,只需证ln x 1x 2>2,只需证m (x 1+x 2)>2,即证x 1+x 2x 2-x 1ln x 2x 1>2. 即证1+x 2x 1x 2x 1-1ln x 2x 1>2,设t =x 2x 1>1, 则只需证ln t >2(t -1)t +1. 即证ln t -2(t -1)t +1>0.记u (t )=ln t -2(t -1)t +1(t >1), 则u ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0. 所以u (t )在(1,+∞)上单调递增,所以u (t )>u (1)=0,所以原不等式成立, 故ln x 1+ln x 2>2,得证.4.(2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12·⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <m ,求m 的最小值. 解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝⎛⎭⎫12=-12+a ln 2<0, 所以不满足题意;②若a >0,由f ′(x )=1-a x =x -a x 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.故x =a 是f (x )在(0,+∞)的唯一最小值点.由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n ,得ln ⎝⎛⎭⎫1+12n <12n . 从而ln ⎝⎛⎭⎫1+12+ln ⎝⎛⎭⎫1+122+…+ln ⎝⎛⎭⎫1+12n <12+122+…+12n =1-12n <1. 故⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <e. 而⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+123>2, 所以m 的最小值为3.。
2018年高考数学二轮复习专题(通用版)课时跟踪检测五理科数学(含答案)

课时跟踪检测(五)一、选择题1.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为( ) A.π2 B .π C.3π2D .2π 解析:选B 由已知可画出草图,如图所示,则T 4=π2+2π32-π2+π62,解得T =π. 2.已知外接圆半径为R 的△ABC 的周长为(2+3)R ,则sin A +sin B +sin C =( )A .1+32B .1+34C.12+32D.12+ 3 解析:选A 由正弦定理知a +b +c =2R (sin A +sin B +sin C )=(2+3)R ,所以sin A +sin B +sin C =1+32,故选A. 3.若函数f (x )=2m sin ⎝ ⎛⎭⎪⎫2x +π3-2在x ∈⎣⎢⎡⎦⎥⎤0,5π12内存在零点,则实数m 的取值范围是( )A .(-∞,-1]∪[1,+∞)B.⎣⎢⎡⎦⎥⎤-233,2 C .(-∞,-2]∪[1,+∞)D .[-2,1]解析:选C 设x 0为f (x )在⎣⎢⎡⎦⎥⎤0,5π12内的一个零点,则2m sin ⎝⎛⎭⎪⎫2x 0+π3-2=0,所以m =1sin ⎝ ⎛⎭⎪⎫2x 0+π3.因为0≤x 0≤5π12,所以π3≤2x 0+π3≤7π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x 0+π3≤1,所以m ≤-2或m ≥1,故选C.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =5,a =3,cos(B -A )=79,则△ABC 的面积为( )A.152B.523C .5 2D .2 2 解析:选C 在边AC 上取点D 使A =∠ABD ,则cos ∠DBC =cos(∠ABC -A )=79,设AD =DB =x ,在△BCD 中,由余弦定理得,(5-x )2=9+x 2-2³3x ³79,解得x =3.故BD =DC ,在等腰三角形BCD 中,DC 边上的高为22,所以S △ABC =12³5³22=52,故选C. 5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A 由射影定理可知a cos C +c cos A =b ,则(a cos C +c cos A )sin B =b sin B ,又a sin B cos C +c sin B cos A =12b ,则有b sin B =12b ,sin B =12.又a >b ,所以A >B ,则B ∈⎝⎛⎭⎪⎫0,π2,故B =π6. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,λ∈R ,若BQ ―→²CP ―→=-32,则λ=( ) A.12B.1±22C.1±102D.-3±222解析:选A 以点A 为坐标原点,AB 所在的直线为x 轴,过点A 且垂直于AB 的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),C (1,3),∴AB ―→=(2,0),AC ―→=(1,3),又AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,∴P (2λ,0),Q (1-λ,3(1-λ)),∴BQ ―→²CP ―→=(-1-λ,3(1-λ))²(2λ-1,-3)=-32,化简得4λ2-4λ+1=0,∴λ=12. 二、填空题7.对任意两个非零的平面向量α和β,定义α∘β=α²ββ²β.若平面向量a ,b 满足|a |≥|b |>0,a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫0,π4,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2|n ∈Z 中,则a ∘b =________.解析:a ∘b =a²b b²b =|a ||b |cos θ|b |2=|a |cos θ|b |,① b ∘a =b²a a²a =|b ||a |cos θ|a |2=|b |cos θ|a |.② ∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴22<cos θ<1. 又|a |≥|b |>0,∴0<|b ||a |≤1.∴0<|b ||a |cos θ<1,即0<b ∘a <1. ∵b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,∴b ∘a =12. ①³②,得(a ∘b )(b ∘a )=cos 2θ∈⎝ ⎛⎭⎪⎫12,1, ∴12<12(a ∘b )<1,即1<a ∘b <2,∴a ∘b =32. 答案:328.在边长为2的菱形ABCD 中,∠BAD =60°,P ,Q 分别是BC ,BD的中点,则向量AP ―→与AQ ―→的夹角的余弦值为________.解析:以A 为原点,AB 所在直线为x 轴建立如图所示的直角坐标系,则A (0,0),B (2,0),C (3,3),D (1,3),所以P ⎝ ⎛⎭⎪⎫52,32,Q ⎝ ⎛⎭⎪⎫32,32,则AP ―→=⎝ ⎛⎭⎪⎫52,32,AQ ―→=⎝ ⎛⎭⎪⎫32,32, 所以cos ∠PAQ =AP ―→²AQ ―→|AP ―→||AQ ―→|=154+347³3=32114. 答案:321149.(2017²石家庄质检)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组。
教育最新K12通用版2018年高考数学二轮复习课时跟踪检测三理

课时跟踪检测(三)A 组——12+4提速练一、选择题1.(2017·沈阳质量检测)已知△ABC 中,A =π6,B =π4,a =1,则b =( )A .2B .1 C. 3D . 2解析:选D 由正弦定理asin A =bsin B,得1sin π6=b sinπ4,即112=b 22,∴b =2,故选D.2.(2017·张掖模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sinB -a sin A =12a sin C ,则sin B =( )A.74 B.34 C.73D.13解析:选A 由b sin B -a sin A =12a sin C ,得b 2-a 2=12ac ,∵c =2a ,∴b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34,则sin B = 1-⎝ ⎛⎭⎪⎫342=74. 3.已知sin β=35⎝ ⎛⎭⎪⎫π2<β<π,且sin(α+β)=cos α,则tan(α+β)=( ) A .-2 B .2 C .-12D .12解析:选A ∵sin β=35,且π2<β<π,∴cos β=-45,tan β=-34.∵sin(α+β)=sin αcos β+cos αsin β=cos α, ∴tan α=-12,∴tan(α+β)=tan α+tan β1-tan α·tan β=-2.4.若△ABC 的三个内角A ,B ,C 对应的边分别为a ,b ,c ,且a cos C ,b cos B ,c cos A成等差数列,则B =( )A .30°B .60°C .90°D .120°解析:选B 由题意知2b cos B =a cos C +c cos A ,根据正弦定理可得2sin B cos B =sin A cos C +cos A sin C ,即2sin B cos B =sin(A +C )=sin B ,解得cos B =12,所以B =60°.5.(2018届高三·贵州七校联考)已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎪⎫2θ+π4的值为( ) A .-7210B.7210 C .-210D.210解析:选D 由三角函数的定义得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35,所以sin 2θ=cos 2θtan 2θ=45,所以sin ⎝ ⎛⎭⎪⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝ ⎛⎭⎪⎫45-35=210,故选D. 6.(2017·青岛模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2sin B +sin C )b +(2c +b )sin C ,则A =( )A .60°B .120°C .30°D .150°解析:选B 由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理a 2=b 2+c 2-2bc cos A ,得cos A =-12,又A 为三角形的内角,故A =120°.7.(2017·惠州调研)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.2+1B.3+1 C .2D. 5解析:选B 由正弦定理bsin B =csin C,得sin B =b sin Cc =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1. 8.(2017·长沙模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2+b 2=4a +2b -5且a 2=b 2+c 2-bc ,则sin B 的值为( )A.32B.34 C.22D.35解析:选B 由a 2+b 2=4a +2b -5可知(a -2)2+(b -1)2=0,故a =2且b =1.又a 2=b 2+c 2-bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,故sin A =32.根据正弦定理a sin A =bsin B,得sin B =322=34,故选B.9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b cos C ,则△ABC 的形状是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形解析:选C ∵a =2b cos C =2b ·a 2+b 2-c 22ab,即b 2-c 2=0,∴b =c ,∴△ABC 是等腰三角形,故选C.10.在△ABC 中,A =60°,BC =10,D 是AB 边上不同于A ,B 的任意一点,CD =2,△BCD 的面积为1,则AC 的长为( )A .2 3 B. 3 C.33D.233解析:选D 由S △BCD =1,可得12×CD ×BC ×sin∠DCB =1,即sin ∠DCB =55,所以cos∠DCB =255或cos ∠DCB =-255,又∠DCB <∠ACB =180°-A -B =120°-B <120°,所以cos ∠DCB >-12,所以cos ∠DCB =255.在△BCD 中,cos ∠DCB =CD 2+BC 2-BD 22CD ·BC =255,解得BD =2,所以cos ∠DBC =BD 2+BC 2-CD 22BD ·BC =31010,所以sin ∠DBC =1010.在△ABC 中,由正弦定理可得AC =BC sin B sin A =233,故选D.11.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos ∠A =( )A.223 B.24 C.64D.63解析:选C 因为DE ⊥AB ,DE =22,所以AD =22sin ∠A ,所以BD =AD =22sin ∠A .因为AD=DB ,所以∠A =∠ABD ,所以∠BDC =∠A +∠ABD =2∠A .在△BCD 中,由正弦定理BDsin ∠C =BC sin ∠BDC ,得22sin ∠A 32=4sin 2∠A ,整理得cos ∠A =64.12.已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5解析:选D ∵23cos 2A +cos 2A =23cos 2A +2cos 2A -1=25cos 2A -1=0,∴cos 2A =125,∵△ABC 为锐角三角形,∴cos A =15.由余弦定理知a 2=b 2+c 2-2bc cos A ,即49=b 2+36-125b ,解得b =5或b =-135(舍去). 二、填空题13.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得sin B =b sin C c =6sin 60°3=22, 因为0°<B <180°, 所以B =45°或135°.因为b <c ,所以B <C ,故B =45°, 所以A =180°-60°-45°=75°. 答案:75°14.(2017·广州模拟)设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2sinC =4sin A ,(ca +cb )(sin A -sin B )=sinC (27-c 2),则△ABC 的面积为________.解析:由a 2sin C =4sin A 得ac =4,由(ca +cb )(sin A -sin B )=sin C (27-c 2)得(a +b )(a -b )=27-c 2,即a 2+c 2-b 2=27,∴cos B =a 2+c 2-b 22ac =74,则sin B =34,∴S △ABC =12ac sin B =32.答案:3215.(2018届高三·湖北七市(州)联考)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C =120°,a =2b ,则tan A =________.解析:由余弦定理得,c 2=a 2+b 2-2ab cos C =4b 2+b 2-2×2b ×b ×⎝ ⎛⎭⎪⎫-12=7b 2,∴c =7b ,则cos A =b 2+c 2-a 22bc =b 2+7b 2-4b 22×b ×7b =277,∴sin A =1-cos 2A =1-47=217,∴tan A =sin A cos A =32. 答案:3216.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =________.解析:由题意可得12AB ·BC ·sin B =12,又AB =1,BC =2,所以sin B =22,所以B=45°或B =135°.当B =45°时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B =1,此时AC =AB =1,BC =2,易得A =90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B = 5.答案: 5B 组——能力小题保分练1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C =( )A.34 B .43 C .-43D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,即sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.2.(2017·合肥质检)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是( )A .(5,6]B .(3,5)C .(3,6]D .[5,6]解析:选A 由正弦定理可得,(a -b )(a +b )=(c -b )c ,即b 2+c 2-a 2=bc ,所以cos A=b 2+c 2-a 22bc =12,则A =π3.又b sin B =c sin C =a sinπ3=2,所以b =2sin B ,c =2sin C ,所以b2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4 ⎩⎪⎨⎪⎧1-cos 2B 2+1-A +B2⎭⎪⎬⎪⎫=3sin 2B -cos 2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4.又△ABC 是锐角三角形,所以B ∈⎝ ⎛⎭⎪⎫π6,π2,则2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤12,1,所以b 2+c 2的取值范围是(5,6],故选A.3.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________m.解析:在三角形ABC 中,AC =1002,在三角形MAC 中,MA sin 60°=ACsin 45°,解得MA=1003,在三角形MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m .答案:1504.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =________.解析:如图,AD 为△ABC 中BC 边上的高.设BC =a ,由题意知AD =13BC =13a ,B =π4,易知BD =AD =13a ,DC =23a .在Rt △ABD 中,AB = ⎝ ⎛⎭⎪⎫13a 2+⎝ ⎛⎭⎪⎫13a 2=23a . 在Rt △ACD 中,AC = ⎝ ⎛⎭⎪⎫13a2+⎝ ⎛⎭⎪⎫23a 2=53a .∵S △ABC =12AB ·AC ·sin∠BAC =12BC ·AD ,即12×23a ×53a ·sin∠BAC =12a ·13a , ∴sin ∠BAC =31010.答案:310105.如图,在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos ∠C =255,则AC =________.解析:因为BD =2DC ,设CD =x ,AD =y ,则BD =2x ,因为cos ∠DAC =31010,cos ∠C =255,所以sin ∠DAC =1010,sin ∠C =55,在△ACD 中,由正弦定理可得AD sin ∠C =CDsin ∠DAC ,即y55=x 1010,即y =2x .又cos ∠ADB =cos(∠DAC +∠C )=31010×255-1010×55=22,则∠ADB =π4.在△ABD 中,AB 2=BD 2+AD 2-2BD ×AD cos π4,即2=4x 2+2x 2-2×2x ×2x ×22,即x 2=1,所以x =1,即BD =2,DC =1,AD =2,在△ACD 中,AC 2=CD 2+AD 2-2CD ×AD cos 3π4=5,得AC = 5.答案: 56.(2017·成都模拟)已知△ABC 中,AC =2,BC =6,△ABC 的面积为32.若线段BA 的延长线上存在点D ,使∠BDC =π4,则CD =________.解析:因为S △ABC =12AC ·BC ·sin∠BCA ,即32=12×2×6×sin∠BCA ,所以sin ∠BCA =12.因为∠BAC >∠BDC =π4,所以∠DAC <3π4,又∠DAC =∠ABC +∠ACB ,所以∠ACB <3π4,则∠BCA =π6,所以cos ∠BCA=32.在△ABC 中,AB 2=AC 2+BC 2-2AC ·BC ·cos∠BCA =2+6-2×2×6×32=2,所以AB =2=AC ,所以∠ABC =∠ACB =π6,在△BCD 中,BCsin ∠BDC =CD sin ∠ABC ,即622=CD 12,解得CD = 3.答案: 3。
2018届高考数学(理)二轮专题复习:规范练5-2-4 含答案

大题规范练(四)(满分70分,押题冲刺,70分钟拿到主观题高分)解答题:解答应写出文字说明、证明过程或演算步骤.1.(本小题满分12分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积S 满足S =12[c 2-(a -b )2].(1)求cos C ;(2)若c =4,且2sin A cos C =sin B ,求b 的长.解:(1)由S =12[c 2-(a -b )2]=12[-(a 2+b 2-c 2)+2ab ]=-ab cos C +ab ,又S =12ab sin C ,于是12ab sin C =-ab cos C +ab ,即sin C =2(1-cos C ),结合sin 2C +cos 2C =1,可得5cos 2C -8cos C +3=0,解得cos C =35或cos C =1(舍去),故cos C =35.(2)由2sin A cos C =sin B 结合正、余弦定理,可得2·a ·a 2+b 2-c 22ab=b ,即(a -c )(a +c )=0,解得a =c ,又c =4,所以a =4,由c 2=a 2+b 2-2ab cos C ,得42=42+b 2-2×4×35b ,解得b =245.2.(本小题满分12分)如图,在三棱柱ABC A 1B 1C 1中,B 1B =B 1A =AB =BC ,∠B 1BC =90°,D 为AC 的中点,AB ⊥B 1D .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)求直线B 1D 与平面ACC 1A 1所成角的正弦值. 解:(1)取AB 的中点O ,连接OD ,OB 1. 因为B 1B =B 1A ,所以OB 1⊥AB .又AB ⊥B 1D ,OB 1∩B 1D =B 1,所以AB ⊥平面B 1OD , 因为OD ⊂平面B 1OD ,所以AB ⊥OD .由已知,BC ⊥BB 1,又OD ∥BC ,所以OD ⊥BB 1,因为AB ∩BB 1=B ,所以OD ⊥平面ABB 1A 1. 又OD ⊂平面ABC ,所以平面ABC ⊥平面ABB 1A 1.(2)由(1)知,OB ,OD ,OB 1两两垂直,以O 为坐标原点,OB →的方向为x 轴的正方向,|OB →|为单位长度1,建立如图所示的空间直角坐标系O xyz .由题设知B 1(0,0,3),D (0,1,0),A (-1,0,0),C (1,2,0),C 1(0,2,3). 则B 1D →=(0,1,-3),AC →=(2,2,0),CC 1→=(-1,0,3).设平面ACC 1A 1的法向量为m =(x ,y ,z ),则m ·AC →=0,m ·CC 1→=0,即x +y =0,-x +3z =0,可取m =(3,-3,1).设直线B 1D 与平面ACC 1A 1所成角为θ,故cos 〈B 1D →,m 〉=B 1D →·m|B 1D →|·|m |=-217.则sin θ=217. ∴直线B 1D 与平面ACC 1A 1所成角的正弦值为217. 3.(本小题满分12分)2017年1月6日,国务院法制办公布了《未成年人网络保护条例(送审稿)》,条例禁止未成年人在每日的0:00至8:00期间打网游,强化网上个人信息保护,对未成年人实施网络欺凌,构成犯罪的,将被依法追究刑事责任.为了解居民对实施此条例的意见,某调查机构从某社区内年龄(单位:岁)在[25,55]内的10 000名居民中随机抽取了100人,获得的所有样本数据按照年龄区间[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]进行分组,同时对这100人的意见情况进行统计得到频率分布表.(1)完成抽取的这100人的频率分布直方图,并估计这100人的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,根据样本估计总体的思想,若从这10 000名居民中任选4人进行座谈,求至多有1人的年龄在[50,55]内的概率;(3)若按分层抽样的方法从年龄在区间[25,40),[40,45)内的居民中共抽取10人,再从这10人中随机抽取3人进行座谈,记抽取的3人的年龄在[40,45)内的人数为X ,求X 的分布列与数学期望.分组 持赞同意见的人数占本组的频率[25,30) 4 0.80 [30,35)80.80[35,40) 12 0.80 [40,45) 19 0.95 [45,50) 24 0.80 [50,55]170.85解:(1)根据题意可得年龄在[25,30)内的人数为40.80=5,其频率为5100=0.05;年龄在[30,35)内的人数为80.80=10,其频率为10100=0.1;年龄在[35,40)内的人数为120.80=15,其频率为15100=0.15;年龄在[40,45)内的人数为190.95=20,其频率为20100=0.2;年龄在[45,50)内的人数为240.80=30,其频率为30100=0.3;年龄在[50,55]内的人数为170.85=20,其频率为20100=0.2.作出频率分布直方图如图所示.根据频率分布直方图估计这100人的平均年龄为25+302×0.05+30+352×0.1+35+402×0.15+40+452×0.2+45+502×0.3+50+552×0.2=1.375+3.25+5.625+8.5+14.25+10.5=43.5.(2)由(1)知随机抽取的这100人中,年龄在[25,50)内的人数为80,年龄在[50,55]内的人数为20,任选1人,其年龄恰在[50,55]内的频率为20100=15,将频率视为概率,故从这10 000名居民中任选1人,其年龄恰在[50,55]内的概率为15,设“从这10 000名居民中任选4人进行座谈,至多有1人的年龄在[50,55]内”为事件A ,则P (A )=C 04×⎝ ⎛⎭⎪⎫1-154×⎝ ⎛⎭⎪⎫150+C 14×⎝ ⎛⎭⎪⎫1-153×15=512625.(3)由(1)得年龄在[25,40)内的人数为30,年龄在[40,45)内的人数为20,则分层抽样的抽样比为30∶20=3∶2,故从年龄在[25,40)内的居民中抽取6人,从年龄在[40,45)内的居民中抽取4人,则抽取的3人的年龄在[40,45)内的人数X 的所有可能取值为0,1,2,3,P (X =0)=C 36C 04C 310=16,P (X =1)=C 26C 14C 310=12,P (X =2)=C 16C 24C 310=310,P (X =3)=C 06C 34C 310=130.故X 的分布列为X 0 1 2 3 P16 12310130E (X )=0×16+1×12+2×10+3×30=5.4.(本小题满分12分)设椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点为A ,B ,C 是椭圆上关于原点对称的两点(B ,C 均不在x 轴上),线段AC 的中点为D ,且B ,F ,D 三点共线.(1)求椭圆E 的离心率;(2)设F (1,0),过F 的直线l 交E 于M ,N 两点,直线MA ,NA 分别与直线x =9交于P ,Q 两点.证明:以PQ 为直径的圆过点F .解:(1)解法一:由已知A (a,0),F (c,0),设B (x 0,y 0),C (-x 0,-y 0),则D ⎝⎛⎭⎪⎫a -x 02,-y 02,∵B ,F ,D 三点共线,∴BF →∥BD →,又BF →=(c -x 0,-y 0),BD →=⎝ ⎛⎭⎪⎫a -3x 02,-3y 02,∴-32y 0(c -x 0)=-y 0·a -3x 02,∴a =3c ,从而e =13.解法二:设直线BF 交AC 于点D ,连接OD ,由题意知,OD 是△CAB 的中位线, ∴OD ═∥12AB ,∴AB →∥OD →, ∴△OFD ∽△AFB .∴ca -c =12,解得a =3c ,从而e =13. (2)证明:∵F 的坐标为(1,0), ∴c =1,从而a =3,∴b 2=8. ∴椭圆E 的方程为x 29+y 28=1.设直线l 的方程为x =ny +1,由⎩⎪⎨⎪⎧x =ny +1x 29+y28=1⇒(8n 2+9)y 2+16ny -64=0,∴y 1+y 2=-16n 8n 2+9,y 1y 2=-648n 2+9,其中M (ny 1+1,y 1),N (ny 2+1,y 2). ∴直线AM 的方程为y y 1=x -3ny 1-2,∴P ⎝⎛⎭⎪⎫9,6y 1ny 1-2,同理Q ⎝ ⎛⎭⎪⎫9,6y 2ny 2-2, 从而FP →·FQ →=⎝ ⎛⎭⎪⎫8,6y 1ny 1-2·⎝ ⎛⎭⎪⎫8,6y 2ny 2-2=64+36y 1y 2n 2y 1y 2-2n y 1+y 2+4=64+36×-648n 2+9-64n 28n 2+9+32n28n 2+9+4 =64+36×-6436=0.∴FP ⊥FQ ,即以PQ 为直径的圆恒过点F .5.(本小题满分12分)已知函数f (x )=12x 2-x +a ln x (a >0).(1)若a =1,求f (x )的图象在(1,f (1))处的切线方程; (2)讨论f (x )的单调性;(3)若f (x )存在两个极值点x 1,x 2,求证:f (x 1)+f (x 2)>-3-2ln 24.解:(1)a =1时,f (x )=12x 2-x +ln x ,f ′(x )=x -1+1x ,f ′(1)=1,f (1)=-12,∴y -⎝ ⎛⎭⎪⎫-12=x -1,即y =x -32.∴f (x )的图象在(1,f (1))处的切线方程为2x -2y -3=0.(2)f ′(x )=x -1+a x =x 2-x +ax(a >0).①若a ≥14,x 2-x +a ≥0,f ′(x )≥0,∴f (x )在(0,+∞)上单调递增.②若0<a <14,由x 2-x +a >0得0<x <1-1-4a 2或x >1+1-4a 2;由x 2-x +a <0得1-1-4a 2<x <1+1-4a 2. ∴f (x )在⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减,在⎝ ⎛⎭⎪⎫0,1-1-4a 2和⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增.综上,当a ≥14时,f (x )在(0,+∞)上单调递增;当0<a <14时,f (x )在⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减,在⎝ ⎛⎭⎪⎫0,1-1-4a 2和⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增.(3)由(2)知0<a <14时,f (x )存在两个极值点x 1,x 2,且x 1,x 2是方程x 2-x +a =0的两个根,∴x 1+x 2=1,x 1·x 2=a .∴f (x 1)+f (x 2)=12x 21-x 1+a ln x 1+12x 22-x 2+a ln x 2=12(x 1+x 2)2-x 1·x 2-(x 1+x 2)+a ln(x 1·x 2)=12-a -1+a ln a =a ln a -a -12.令g (x )=x ln x -x -12⎝⎛⎭⎪⎫0<x <14,则g ′(x )=ln x <0.∴g (x )在⎝ ⎛⎭⎪⎫0,14上单调递减,∴g (x )>g ⎝ ⎛⎭⎪⎫14=-3-2ln 24.∴f (x 1)+f (x 2)>-3-2ln 24.请考生在第6、7题中任选一题作答,如果多做,则按所做的第一题计分. 6.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C的参数方程为⎩⎪⎨⎪⎧x =2cos φy =2+2sin φ(φ为参数).以O 为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C 的普通方程;(2)直线l 的极坐标方程是2ρsin ⎝ ⎛⎭⎪⎫θ+π6=53,射线OM :θ=π6与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)因为圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos φy =2+2sin φ(φ为参数),所以圆心C 的坐标为(0,2),半径为2,圆C 的普通方程为x 2+(y -2)2=4.(2)将x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4,得圆C 的极坐标方程为ρ=4sin θ.设P (ρ1,θ1),则由⎩⎪⎨⎪⎧ρ=4sin θθ=π6,解得ρ1=2,θ1=π6.设Q (ρ2,θ2),则由⎩⎪⎨⎪⎧2ρsin ⎝⎛⎭⎪⎫θ+π6=53θ=π6,解得ρ2=5,θ2=π6.所以|PQ |=3.7.(本小题满分10分)选修4-5:不等式选讲 已知f (x )=|2x -1|-|x +1|.(1)将f (x )的解析式写成分段函数的形式,并作出其图象;(2)若a +b =1,对∀a ,b ∈(0,+∞),1a +4b≥3f (x )恒成立,求x 的取值范围.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧-x +2,x <-1-3x ,-1≤x <12,x -2,x ≥12作函数f (x )的图象如图所示.(2)∵a,b∈(0,+∞),且a+b=1,∴1a+4b=⎝⎛⎭⎪⎫1a+4b(a+b)=5+⎝⎛⎭⎪⎫ba+4ab≥5+2ba·4ab=9,当且仅当ba=4ab,即a=13,b=23时等号成立.∴1a+4b≥3(|2x-1|-|x+1|)恒成立,∴|2x-1|-|x+1|≤3,结合图象知-1≤x≤5.∴x的取值范围是[-1,5].。
2018年高考数学课标通用理科一轮复习课时跟踪检测48

课时跟踪检测(四十八)[高考基础题型得分练]1.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案:B解析:解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得交点为⎝⎛⎭⎪⎫k k -1,2k -1k -1.因为0<k <12,所以kk -1<0,2k -1k -1>0.故交点在第二象限.2.[2017·山东济南模拟]已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =( )A .-1B .2C .0或-2D .-1或2答案:D解析:若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或2.3.[2017·河南郑州质量预测]“a =1”是“直线ax +y +1=0与直线(a +2)x -3y -2=0垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 答案:B解析:∵ax +y +1=0与(a +2)x -3y -2=0垂直, ∴a (a +2)-3=0,∴a =1或a =-3.∴“a =1”是两直线垂直的充分不必要条件.4.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( )A .19x -9y =0B .9x +19y =0C .19x -3y =0D .3x +19y =0答案:D解析:由⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为y =37-197x =-319x ,即3x +19y =0.5.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( )A .0B .2 C.13 D .4答案:B解析:∵63=m 4≠-143,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.6.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)答案:B解析:直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).7.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为( ) A .11 B .10 C .9 D .8答案:B解析:依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y =0,2x +y =10,则A (4,8),B (-4,2),∴|AB |=(4+4)2+(8-2)2=10.8.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( )A.522 B .5 2 C.1522 D .15 2答案:B解析:由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =102=5 2.9.点(2,1)关于直线x -y +1=0的对称点为________. 答案:(0,3)解析:设对称点为(x 0,y 0),则⎩⎨⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0,解得⎩⎪⎨⎪⎧x 0=0,y 0=3,故所求对称点为(0,3).10.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.答案:35解析:由两直线垂直的条件,得2a +3(a -1)=0, 解得a =35.11.[2017·河北秦皇岛检测]已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.答案:2x +3y -18=0或2x -y -2=0解析:显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, 解得k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 12.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________.答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大. 因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率均为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.[冲刺名校能力提升练]1.[2017·福建泉州一模]若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3答案:C解析:因为点(m ,n )在直线4x +3y -10=0上, 所以4m +3n -10=0.欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值,而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m+3n-10=0垂直时,原点到点(m,n)的距离最小为2.所以m2+n2的最小值为4.2.如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到点P,则光线所经过的路程是()A.210 B.6C.3 3 D.2 5答案:A解析:易得AB所在的直线方程为x+y=4,由于点P关于直线AB对称的点为A1(4,2),点P关于y轴对称的点为A2(-2,0),则光线所经过的路程即A1(4,2)与A2(-2,0)两点间的距离.于是|A1A2|=(4+2)2+(2-0)2=210.3.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .x +y -7=0答案:D解析:由|P A |=|PB |知,点P 在AB 的垂直平分线上.由点P 的横坐标为3,且P A 的方程为x -y +1=0,得P (3,4).直线P A ,PB 关于直线x =3对称,直线P A 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0.4.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解:解法一:如图,由⎩⎪⎨⎪⎧ x -2y +5=0,3x -2y +7=0, 得⎩⎪⎨⎪⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0), 设P 关于直线l 的对称点P ′(x 0,y 0), 由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又点Q 在l 上, ∴3·x 0-52-2·y 02+7=0.由⎩⎨⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0,得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得,所求反射光线所在直线的方程为29x -2y +33=0.解法二:设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23,又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上, ∴3×x +x 02-2×y +y 02+7=0,由⎩⎨⎧y 0-y x 0-x=-23,3×x +x2-(y +y 0)+7=0,可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测:(二十三)圆锥曲线有解析

课时跟踪检测(二十三) 圆锥曲线1.(2018届高三·石家庄摸底)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围. 解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0), 设直线TA 的斜率为k 1,直线TB 的斜率为k 2, 则k 1=y x +4,k 2=yx -4. 由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.(2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),联立方程⎩⎪⎨⎪⎧x 216+y 212=1,y =kx +2消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP ―→·OQ ―→+MP ―→·MQ ―→=x 1x 2+y 1y 2+x 1x 2+(y 1-2)(y 2-2)=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3. 所以-20<OP ―→·OQ ―→+MP ―→·MQ ―→≤-523.当直线PQ 的斜率不存在时,OP ―→·OQ ―→+MP ―→·MQ ―→的值为-20. 综上,OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围为⎣⎡⎦⎤-20,-523. 2.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM ―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·PQ ―→=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0). 由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ), 则OQ ―→=(-3,t ),PF ―→=(-1-m ,-n ), OQ ―→·PF ―→=3+3m -tn ,OP ―→=(m ,n ),PQ ―→=(-3-m ,t -n ). 由OP ―→·PQ ―→=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ ―→·PF ―→=0,即OQ ―→⊥PF ―→. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2018届高三·西安八校联考)设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上的点T (2,2)到点F 1,F 2的距离之和等于4 2.(1)求椭圆C 的方程;(2)若直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,A 为椭圆C 的左顶点,直线AE ,AF 分别与y 轴交于点M ,N .问:以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解:(1)由椭圆上的点T (2,2)到点F 1,F 2的距离之和是42,可得2a =42,a =2 2. 又T (2,2)在椭圆上,因此4a 2+2b 2=1,所以b =2,所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A , 所以点A 的坐标为(-22,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于E ,F 两点,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).由⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2, 所以x 0=221+2k 2,则y 0=22k 1+2k 2, 所以直线AE 的方程为y =k1+1+2k 2(x +22).因为直线AE ,AF 分别与y 轴交于点M ,N , 令x =0,得y =22k1+1+2k 2,即点M 0,22k1+1+2k 2.同理可得点N ⎝ ⎛⎭⎪⎫0,22k 1-1+2k 2.所以|MN |=⎪⎪⎪⎪⎪⎪22k 1+1+2k 2-22k 1-1+2k 2=22(1+2k 2)|k |.设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k . 则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+22k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0).4.(2017·安徽二校联考)已知焦点为F 的抛物线C 1:x 2=2py (p >0),圆C 2:x 2+y 2=1,直线l 与抛物线相切于点P ,与圆相切于点Q .(1)当直线l 的方程为x -y -2=0时,求抛物线C 1的方程; (2)记S 1,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.解:(1)设点P ⎝⎛⎭⎫x 0,x 22p ,由x 2=2py (p >0)得, y =x 22p ,求得y ′=xp ,因为直线PQ 的斜率为1, 所以x 0p =1且x 0-x 202p -2=0,解得p =2 2.所以抛物线C 1的方程为x 2=42y .(2)点P 处的切线方程为y -x 202p=x 0p (x -x 0),即2x 0x -2py -x 20=0,OQ 的方程为y =-px 0x . 根据切线与圆相切,得|-x 20|4x 20+4p2=1,化简得x 40=4x 20+4p 2,由方程组⎩⎪⎨⎪⎧2x 0x -2py -x 20=0,y =-px 0x , 解得Q ⎝⎛⎭⎫2x 0,4-x 202p .所以|PQ |=1+k 2|x P -x Q |=1+x 20p 2⎪⎪⎪⎪x 0-2x 0= p 2+x 20p ·⎪⎪⎪⎪x 20-2x 0,又点F ⎝⎛⎭⎫0,p2到切线PQ 的距离 d 1=|-p 2-x 20|4x 20+4p2=12x 2+p 2, 所以S 1=12|PQ |d 1=12·p 2+x 20p ·⎪⎪⎪⎪x 20-2x 0·12x 20+p 2=x 20+p 24p ⎪⎪⎪⎪x 20-2x 0, S 2=12|OF ||x Q |=p 2|x 0|,而由x 40=4x 20+4p 2知,4p 2=x 40-4x 20>0,得|x 0|>2, 所以S 1S 2=x 20+p 24p ⎪⎪⎪⎪x 20-2x 0·2|x 0|p=(x 20+p 2)(x 20-2)2p 2=(4x 20+x 40-4x 20)(x 20-2)2(x 40-4x 20) =x 20(x 20-2)2(x 20-4) =x 20-42+4x 20-4+3≥22+3,当且仅当x 20-42=4x 20-4时取等号,即x 20=4+22时取等号,此时p =2+2 2. 所以S 1S 2的最小值为22+3.。
2018届高考理科数学二轮复习课时跟踪检测试卷及答案(26份)

课时跟踪检测(一)集合、常用逻辑用语1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m =3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D 全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D 因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.7.(2017·唐山模拟)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎪⎫0,π2,且tan x =sin xcos x, ∴0<cos x <1,tan x >sin x , ∴q 为真命题,选C.9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x-m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x有正实数解,因为当x >0时,2x>1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q真,所以⎩⎪⎨⎪⎧m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1,所以m <-2或1<m ≤10.12.(2017·石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错; B 中,若a ⊥b ,则m +m (2m -1)=0, 解得m =0,故B 错;C 中,命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.(2018届高三·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1814.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)15.(2017·广东中山一中模拟)已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)3216.(2017·张掖模拟)下列说法中不正确的是________.(填序号) ①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件;②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件; ③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确. 答案:②④课时跟踪检测(二) 平面向量与复数1.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i1+i =-+-=i(1-i)=1+i ,所以|z |= 2.3.(2017·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( ) A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(2018届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(2017·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=2+32=2.6.(2017·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(2018届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB―→2-29AD ―→2=12×82-29×62=24. 8.(2018届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i=+2+-=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322解析:选 A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(2018届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(2017·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCD S △ABD=( )A.16B.13C.12D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠⎝ ⎛⎭⎪⎫1-12-13S近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =△ABC=16S △ABC ,所以S △BCD S △ABD =13. 12.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(2017·成都模拟)若复数z =a i1+i (其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i=a-+-=a 2+a 2i 的虚部为-1,所以a2=-1,解得a =-2. 答案:-214.(2017·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=+2m2+m -2=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(2018届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1,∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1),∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m-n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m (m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当2a =22b,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x-2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x-2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x -x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max=|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( )A.63 B.233 C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x-0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +yxy的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +yxy=1x +4y =3(x +y )⎝ ⎛⎭⎪⎫1x +4y=3⎝ ⎛⎭⎪⎫1+4+y x+4x y ≥3⎝⎛⎭⎪⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x得⎩⎪⎨⎪⎧ x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0);由⎩⎪⎨⎪⎧y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a=b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎢⎡⎭⎪⎫24,+∞. 答案:⎣⎢⎡⎭⎪⎫24,+∞ 16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2. 综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x -e x)ln 2,由于函数g (x )=e -x与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x-1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=x x2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=x x2=f (x ),∴f (x )为偶函数,排除C 、D ; 当x =1时,f (1)=cos π1=-1<0,排除B ,故选A. 7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -12+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数, ∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,cosx2=设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12,则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以 1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S=f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A. 3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x-f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b-a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1xf 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)课时跟踪检测(五) 基本初等函数、函数与方程[A 级——“12+4”保分小题提速练]1.若f (x )是幂函数,且满足f f=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由ff=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.(2017·云南模拟)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b . 3.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出两函数的图象,如图. 由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.4.(2017·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:选C 由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.5.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x =-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故g (x )=-2x,x <0,选D.6.已知f (x )=a x和g (x )=b x是指数函数,则“f (2)>g (2)”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由题可得,a >0,b >0且a ≠1,b ≠1. 充分性:f (2)=a 2,g (2)=b 2, 由f (2)>g (2)知,a 2>b 2,再结合y =x 2在(0,+∞)上单调递增, 可知a >b ,故充分性成立; 必要性:由题可知a >b >0,构造函数h (x )=f x g x =a x b x =⎝ ⎛⎭⎪⎫a b x ,显然ab>1,所以h (x )单调递增,故h (2)=a 2b2>h (0)=1,所以a 2>b 2,故必要性成立.7.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 法一:∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),选C.法二:函数f (x )=e x+x -2的零点,即函数y =e x的图象与y =-x+2的图象的交点的横坐标,作出函数y =e x与直线y =-x +2的图象如图所示,由图可知选C.8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( ) A .0 B .2 C .5D .7解析:选 C ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.9.(2018届高三·湖南四校联考)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g ⎝ ⎛⎭⎪⎫-14的值为( )A .-14B.14 C .-2D .2解析:选D 法一:当x >0时,f (x )=log 2x , ∵f (x )为奇函数,∴当x <0时,f (x )=-log 2(-x ), 即g (x )=-log 2(-x ), ∴g ⎝ ⎛⎭⎪⎫-14=-log 214=2. 法二:g ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫-14=-f ⎝ ⎛⎭⎪⎫14=-log 214=-log 22-2=2.10.(2017·杭州二模)已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案
1.C
【解析】∵直线l1:x+2ay-1=0,l2:(a+1)x-ay=0,l1∥l2,∴=2a(a+1),
∴a=- 或0,
点睛:本题主要考查直线和圆的位置关系,点到直线的距离公式,绝对值不等式的解法,属于基础题;由题意可得圆心 到直线 : 的距离 满足 ,根据点到直线的距离公式求出 ,再解绝对值不等式求得实数 的取值范围.
6.C
【解析】
圆x2+y2-2x-4y=0化成标准方程为(x-1)2+(y-2)2=5,因为直线ax+by-6=0(a>0,b>0)被圆x2+y2-2x-4y=0截得的弦长为2 ,故直线ax+by-6=0(a>0,b>0)经过圆心(1,2),即a+2b=6.又6=a+2b≥2 ,即ab≤ ,当且仅当a=2b=3时取等号,故ab的最大值为 .选C.
故选:C.
2.B
【解析】
由题意得圆心(0,1)与点P(1,2)的连线垂直于直线AB,所以kAB· =-1,解得kAB=-1.而直线AB过点P,所以直线AB的方程为y-2=-(x-1),即x+y-3=0.选B.
3.D
【解析】试题分析:圆 的圆心为点 ,又因为直线 与直线 垂直,所以直线 的斜率 .由点斜式得直线 ,化简得 ,故选D.
A. B. C.4D.8
10.在平面直角坐标系xOy中,设直线y=-x+2与圆x2+y2=r2(r>0)交于A,B两点,O为坐标原点,若圆上一点C满足 ,则r=( )
A. B. C. D.
11.已知圆O:x2+y2=4,若不过原点O的直线l与圆O交于P,Q两点,且满足直线OP,PQ,OQ的斜率依次成等比数列,则直线l的斜率为( )
绝密★启用前
2018-2019学年度学校5月月考卷
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
1.已知直线l1:x+2ay-1=0,l2:(a+1)x-ay=0,若l1∥l2,则实数a的值为( )
又|AC|2+|BD|2≥2|AC|·|BD|,则|AC|·|BD|≤10,
∴S四边形ABCD= |AC|·|BD|≤ ×10=5,
当且仅当|AC|=|BD|= 时等号成立,
∴四边形ABCD面积的最大值为5.故选A.
13. 或
【解析】
由题意知线段AB的中点C(3,-2),kAB=-1,故直线l的方程为y+2=x-3,即x-y-5=0.
9.B
【解析】
∵f(x)= + = + ,∴f(x)的几何意义为点M(x,0)到两定点A(-2,4)与B(-1,3)的距离之和,设点A(-2,4)关于x轴的对称点为A′,则A′为(-2,-4).要求f(x)的最小值,可转化为|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|≥|A′B|= =5 ,即f(x)= + 的最小值为5 .选B.
A. B.0
C. 或0D.2
2.在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为( )
A.x-y-3=0B.x+y-3=0
C.x+y-1=0D.x-y+1=0
3.已知直线 过圆 的圆心,且与直线 垂直,则直线 的方程为()
A. B.
7.A
【解析】
将圆的方程化为(x-1)2+(y-1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x-y=2的距离d= = ,故圆上的点到直线x-y=2距离的最大值为d+1= +1.选A.
8.C
【解析】
设P(x,y),则由|PA|2-|PB|2=4,得(x+1)2+y2-x2-(y-1)2=4,所以x+y-2=0.求满足条件的点P的个数即为求直线与圆的交点个数,圆心到直线的距离d= = <2=r,所以直线与圆相交,交点个数为2.故满足条件的点P有2个.选C.
则x1+x2=- ,x1x2= ,
kOP·kOQ= · =
=k2+kb +
=k2+kb +
= ,
由kOP·kOQ=k2,得 =k2,
解得k=±1.选A.
12.A
【解析】
如图,作OP⊥AC于P,OQ⊥BD于Q,
则|OP|2+|OQ|2=|OM|2=3,∴|AC|2+|BD|2=4(4-|OP|2)+4(4-|OQ|2)=20.
考点:1、两直线的位置关系;2、直线与圆的位置关系.
视频
4.A
【解析】
圆(x-1)2+y2=1的圆心为(1,0),半径为1.圆心到直线的距离d= = ,所以较短弧所对的圆心角为 ,较长弧所对的圆心角为 ,故两弧长之比为1∶2.选A.
5.A
【解析】由圆的方程可知圆心为 ,半径为2,因为圆上的点到直线 的距离等于1的点至少有2个,所以圆心到直线 的距离 ,即 ,解得 ,故选C.
记AB中点为D,则D ,
所以CD⊥AB,所以 =- .②
联立①②,解得
可得点D坐标为 ,
所以圆心C到直线l的距离为
|CD|= = .
16.
【解析】
依题意知,动圆C的半径不小于 |AB|= ,即当圆C的面积最小时,AB是圆C的一条直径,此时点C是线段AB的中点,即点C(2,-1),点M的坐标为(1,-2),且|CM|= = < ,所以点M位于圆C内,当点M为线段EF的中点(过定圆内一定点作圆的弦,以该定点为中点的弦最短)时,|EF|最小,其最小值等于2 =2 .
14.在平面直角坐标系xOy中,若直线ax+y-2=0与圆C:(x-1)2+(y-a)2=16相交于A,B两点,且△ABC为直角三角形,则实数a的值是________.
15.在平面直角坐标系xOy中,已知过原点O的动直线l与圆C:x2+y2-6x+5=0相交于不同的两点A,B,若点A恰为线段OB的中点,则圆心C到直线l的距离为________.
设P(x,x-5),则2= ,
解得x=1或x= .
即点P的坐标是(1,-4)或 .
14.-1
【解析】试题分析:由题设可知圆心 到直线 的距离是 ,即 ,解之得 ,故应填答案 .
考点:直线与圆的位置关系及运用.
15.
【解析】圆C的标准方程为(x-3)2+y2=4,圆心C(3,0),半径r=2,设过原点O的动直线l的方程为y=kx,由题意,设A(a,ka),B(2a,2ka),将A点坐标代入圆C的方程得(1+k2)a2-6a+5=0.①
A. B. C. D.
7.圆:x2+y2-2x-2y+1=0上的点到直线x-y=2距离的最大值是( )
A. B. C. D.
8.在平面直角坐标系xOy中,已知A(-1,0),B(0,1),则满足|PA|2-|PB|2=4且在圆x2+y2=4上的点P的个数为( )
A.0B.1
C.2D.3
9.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如: 可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得 的最小值为( )
A.-1或1B.0或
C.1D.-1
12.已知AC,BD为圆O:x2+y2=4的两条互相垂直的弦,且垂足为M(1, ),则四边形ABCD面积的最大值为( )
A.5B.10
C.15D.20
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
13.已知点A(4,-3)与B(2,-1)关于直线l对称,在l上有一点P,使点P到直线4x+3y-2=0的距离等于2,则点P的坐标是________.
C. D.
4.已知圆(x-1)2+y2=1被直线x- y=0分成两段圆弧,则较短弧长与较长弧长之比为( )
A.1∶2B.1∶3
C.1∶4D.1∶5
5.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为( )
A. B.
C. D.
6.已知直线ax+by-6=0(a>0,b>0)被圆x2+y2-2x-4y=0截得的弦长为 ,则ab的最大值为( )
10.B
【解析】
已知= + ,
两边平方化简得·=- r2,
所以cos∠AOB=- ,所以cos = ,
又圆心O(0,0)到直线的距离为 = ,
所以 = ,解得r= .选B.
11.A
【解析】
设直线l:y=kx+b(b≠0),代入圆的方程,化简得(1+k2)x2+2kbx+b2-4=0,
设P(x1,y1),Q(x2,y2),