分式方程

合集下载

分式方程

分式方程

分式方程分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

(验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。

)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

知识点一:解分式方程例1、解分式方程的一般步骤:1、回顾一元一次方程的解法:315242 +=2236 x x x-+--去分母:去括号:移项:合并同类项:系数化为一:2、类比一元一次方程的解法,解方程212 33xx x-=---去分母:去括号:移项:合并同类项:系数化为一:检验:一般地,解分式方程时,去分母后所得整式方程的解有可能使原分式方程的分母为0,所以解分式方程必须检验.★关于增根:将分式方程变形为整式方程,方程两边同时乘以一个含有未知数的整式,并约去分母,有时可能产生不适合原分式方程的根,这种根通常称为增根.注意:分式方程的解要检验!例1、解下列分式方程(1)114112=---+x x x ; (2)x x x x -+=++4535;(3)4441=+++x x x x ; (4)61244444402222y y y y y y y y +++---++-=2例2、(2011湖北襄阳)关于x 的分式方程1131=-+-x x m 的解为正数,则m 的取值范围是随堂练习1.(浙江嘉兴)解方程x x -=-22482的结果是( ) A .2-=x B .2=x C .4=x D .无解2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .53.一件工作,甲单独做a 天完成,乙单独做b 天完成,两人合作,共需( )A .a+b 天B .1a +1b 天C .1a b +天D .ab a b+天4.(四川宜宾)方程xx 527=+的解是 . 5.(浙江杭州)已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为______. 6.(浙江台州)在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .7、当k 为何值时,关于x 的方程1)2)(1(23++-=++x x k x x 的解为非负数.8、若分式方程122-=-+x a x 的解是正数,求a 的取值范围.知识点二:分式方程的增根解分式方程时,去掉分母后得到一个整式方程,若整式方程的解使得公分母的值为0,那么这个解就是方程的增根。

分式方程

分式方程

中小学教育资源站 1.25222345326235221224563522142451,得解这个整式方程)()()(,得)(方程两边同时乘以)()()(=+=-+---+=+---+=+--x x x x x x x x x x x x x 的值。

,即可求出然后再令,的字母系数方程,得。

可解关于根为原方程有增根,说明增m x m mx x x 11341=-==分式方程【知识要点】1、分式方程的定义2、解法3、为什么验根4、解分式方程与分式的化简要区别开来,切不可混为一体。

5、分式方程的应用 【典型例题】例1(1)05131=-+-x x (2)41451-=--+x x x 分析:去分母把分式方程转化成整式方程,求解后验根. 解:(1)方程两边同乘以)3(5+x ,得 0)3()1(5=+--x x ,解得 x =2 检验:把x=2代入方程左边, 得 . ∵左边=右边,∴x=2是原方程的解. (2)方程两边同乘以(x-4).∴检验:把x=5代入方程左边, 得 ; 把x=5代入方程右边, 得145141=-=-x . ∵左边=右边,∴x=5是原方程的解.点评: 1.解分式方程的思想是转化为整式方程.其一般方法是方程两边同乘以各2.所得结果是否为原方程的解,需要检验. 例2、解下列方程.25615251583263522142451222-=--+++-+=+--x x x x x x x x x )(;)(分析:解分式方程的关键是去分母,所以化分式方程为整式方程时,要找出各分母的最简公分母,找最简公分母时,要注意把各分母按同一个字母作降幂排列,能因式分解的一定要先进行因式分解。

解: .4.063)55344365553553556535533256152515832222是原方程的解()()时,(检验:当,得解这个整式方程)()()(,得)()()方程两边同乘以()()()()()()()(=∴≠-=-++==+=++--++-+=-++++-=--+++x x x x x x x x x x x x x x x x x x x x x x x点评:检验是解分式方程的必要步骤,检验的方法是将整式方程得到的根代入最简公分母检验,使最简公分母不等于0的根是原方程的根,使最简公分母等于零的根是原方程的增根,应舍去。

八年级数学分式方程

八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。

分式方程与分式不等式

分式方程与分式不等式

分式方程与分式不等式通常情况下,分式方程与分式不等式是我们在初中数学学习过程中需要掌握的重要知识点。

本文将对分式方程与分式不等式进行详细介绍,包括定义、求解方法以及一些应用实例。

一、分式方程分式方程是指方程中含有分式的等式。

通常表现为分式中含有未知数,并且需要求解该未知数的值。

在解分式方程时,首先需要将方程中的分式转化为通分式,然后将等式两边进行化简,最后得到未知数的值。

举例说明:1. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{6}$首先,通分得到 $\frac{3}{6}x - \frac{9}{12} = \frac{2}{12}x$化简得到 $\frac{3}{6}x - \frac{2}{12}x = \frac{9}{12}$进一步计算得到 $\frac{1}{6}x = \frac{9}{12}$最后得到 $x = \frac{9}{12} \cdot \frac{6}{1} = \frac{3}{2}$因此,方程的解为 $x = \frac{3}{2}$2. 解方程:$\frac{1}{x} + \frac{3}{2} = \frac{5}{4}$首先,通分得到 $\frac{2}{2x} + \frac{3x}{2x} = \frac{5}{4}$化简得到 $\frac{2 + 3x}{2x} = \frac{5}{4}$进一步计算得到 $8 + 12x = 10x$移项得到 $12x - 10x = -8$最后得到 $x = -8$因此,方程的解为 $x = -8$二、分式不等式分式不等式是指方程中含有分式的不等式。

通常表现为分式中含有未知数,并且需要求解该未知数的取值范围。

在解分式不等式时,首先需要将不等式中的分式转化为通分式,然后将不等式两边进行化简,最后得到未知数的取值范围。

举例说明:1. 解不等式:$\frac{2}{3}x + \frac{1}{2} < \frac{5}{4}$首先,通分得到 $\frac{8}{12}x + \frac{6}{12} < \frac{15}{12}$化简得到 $\frac{8x + 6}{12} < \frac{15}{12}$进一步计算得到 $8x + 6 < 15$移项得到 $8x < 9$最后得到 $x < \frac{9}{8}$因此,不等式的解为 $x < \frac{9}{8}$2. 解不等式:$\frac{x}{4} - \frac{1}{3} \geq \frac{5}{6}$首先,通分得到 $\frac{3x}{12} - \frac{4}{12} \geq \frac{10}{12}$化简得到 $\frac{3x - 4}{12} \geq \frac{10}{12}$进一步计算得到 $3x - 4 \geq 10$移项得到 $3x \geq 14$最后得到 $x \geq \frac{14}{3}$因此,不等式的解为 $x \geq \frac{14}{3}$三、分式方程与分式不等式的应用实例1. 实例一:某公司的总资产为450万元,其中固定资产占总资产的四分之一,流动资产为总资产的三分之一。

分式方程

分式方程

分式方程考点一:分式方程的概念:分母中含有未知数的方程叫做分式方程。

如71=x,452600480=-xx 都是分式方程。

注:一个式子是分式方程必须满足:①是方程;②分式的分母中含有未知数例一、下列哪些是分式方程?(1)032=-y x (2)72321x x =-+ (3)xx 523=-(4)321+-+x x (5)161222-=-+x x x考点二:分式方程的解法:(重点)1、解分式方程的基本思想:将分式方程转化为整式方程,方法是方程两边都乘最简公分母,去掉分母。

2、解分式方程的一般步骤:(1)去分母:在分式方程的两边都乘最简公分母,把分式方程转化为整式方程。

{注意:一定是化为一元一次方程,否则就是出错了} (2)解这个整式方程,求出整式方程的根。

(3)检验。

有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,那么这个根是原来方程的增根;如果最简公分母不等于0,那么这个根是原方程的根。

从而得出原方程的解。

②直接代入原方程中,看其是否成立。

例二:解方程:1、215x x =+2、111=+-x x x3、11122--=-x x4、1262=++-x x x5、2213211x x x x --=--对应练习:1、6352-=-x x2、625--=-x x x x3、225122+=++x x x x 4、3323-+=-x x x 5、 1416222=--+-x x x 6、2221422--+=-x x x x 7、01722=-++x x x x 8、125552=-+-x x x9、32121--+=-x x x 10、87178=----xx x11、2163524245--+=--x x x x 12、()16141022-=--x x x x13、211222++=+x x x x 14、x x x -=---91891015、x x x x x -=----+119132222 16、xx x x x ---+-=-+41341216965217、2244168222-=+-+-x xx x x x 18、41312111---=---x x x x考点三:增根的应用(难点)如果由变形后的方程求得的根不适合原方程,那么这种根叫做原方程的增根。

分式方程

分式方程

分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.注: 解分式方程必须检验,验根时把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。

步骤:(1)去分母(两边同时乘以最简公分母)(2)去括号(3)移项(一般般含未知数的项移到左边,常数项移到右边) (4)合并同类项(5)系数化一(两边同时除以未知数的系数) (6)检验(将所求的未知数的值代入最简公分母) (7)做结论3.确定最简公分母的方法(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母因式的最高次幂的积. 4.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.例题讲解:1. 已知关于x 的方程81=+x mx 的解为41=x ,则m =_________ 2. 已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围为___________3. 若分式 的值为零,则 的值为________.4. 某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天.5. 若方程322x mx x-=--无解,则m =______. 解下列分式方程:14143=-+--x x x 212423=---x x xa a 1+222334a a a a ----144222=-++-x x x . 013132=--+--xx x.231-=x xx()()31112x x x x -=--+已知:关于x 的方程xx x a --=-+3431无解,求a 的值。

分式方程

分式方程

x 1
x2 1
解:原方程可化为 2 x 1
3 x3
6
x 1 x1
两边都乘以最简公分母 (x+1)(x-1) 得,
2( x 1) 3( x 1) 6
解这个整式方程得,
x 1
------究竟是不是原方程的根?
把x=1代入原方程检验
当x=1时,
3

x 1
6 x2 1
没有意义
∴ x=1不是原方程的根,(舍去) ------叫做原方程的增根
数学世界应该是一个让你感到幸福 和快乐的世界,希望你能体会到数学 给你带来得快乐!
16、4可化为一元一次方程的分式方程
问题:
情景
轮船在顺水中航行80千米所需的时间和逆水航行 60千米所需的时间相同.已知水流的速度是3千米/时,求 轮船在静水中的速度。
解:设轮船在静水中的速度为x千米/时,根据题意,得
80 60 x3 x3
一、分式方程的概念:
含有分式,并且分母中含有未知数的方程叫做分式方程.
探究
80 60
x 3
x 3
两边都乘以最简公分母 (x+3)(x-3) 得,
80( x 3) 60( x 3)
解这个整式方程得,
x 21
二、解分式方程的思路和方法:
转化法
2
3
6
例、解方程: x 1
3 6 x m 的解是正数? x x -1 x( x 1)
注意:
1.去分母时,先确定最简公分母;---如果分母是多项式, 则要因式分解,故要对原方程转化变形;
2.去分母时,不要漏乘不含分母的项;
3.最后切记要验根; 4. 验根最简捷的办法是“代入最简公分母中”;

分式方程

分式方程

1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.【例1】在3253x +=;11(1)(1)432x x ++-=;21x-=;2371x x x ++=-;1(37)x x -中,分式方程有( ).A .1个B .2个C .3个D .4个【例2】分式方程2227381x x x x x +=+--的最简公分母是____________. 【例3】直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________; (3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【例4】用换元法解方程221165380x x x x ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭,设1y x x =+,则方程变为( )A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【例5】解方程: (1)3363142x x -=-+;(2)43252x xx x =++; (3)23312222x x x x x ++=--+-.【例6】解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【例7】已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【例8】已知关于x 的方程7155x m xx x--=---无解,求m 的值.【例9】已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【例10】解方程:(1)2220383x x x x+-=+;(2)2191502x x x x ⎛⎫⎛⎫+-++= ⎪ ⎪⎝⎭⎝⎭.【例11】解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【例12】解方程组:(1)413538x y x y x y x y ⎧+=⎪+-⎪⎨⎪-=⎪+-⎩;(2)132013251x y x y ⎧+=⎪-⎪⎨⎪-=-⎪-⎩.【例13】解方程组:(1)253489156x x x x +=+++++; (2)11212736x x x x x x ++-=-++++.【例14】解方程:226205x x +-=+.【例15】a 为何值时,关于x 的方程211a a x +=+无解?【例16】已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【例17】解关于x 的方程:22112()3()1x x x x+-+=【例18】解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【例19】已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.【例20】要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【例21】某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【例22】甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【例23】登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【例24】甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【例25】甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【例26】某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【习题1】已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x ⎛⎫-= ⎪⎝⎭;(43x -=,其中是分式方程的有_____________.【习题2】当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【习题3】分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【习题4】解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【习题5】解方程:221313x x x x ++=+.【习题6】解方程组311332412463324x y x y x y y x⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【习题7】若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【习题8】甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米, 因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【习题9】某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市 政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年 完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩, 求原计划平均每年的绿化面积.【习题10】解方程:221114(4)12()12433x x x -=-++.【习题11】解方程:596841922119968x x x x x x x x ----+=+----.【习题12】已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【习题13】已知:关于x 的方程227()72120a ax x a x x+--++=只有一个实数根,求a .【作业1】下列哪个分式方程( )的根是2x =.A .2321x x -=+ B .3221x x-=+ C .3101x -=+ D .222x x x =--【作业2】用换元法解方程组56111211x y xy ⎧-=⎪+⎪⎨⎪=-⎪+⎩时,如果设___________=u ,___________=v ,那 么原方程组可以化为二元一次方程组____________________.【作业3】已知方程22113()()40x x x x +++-=,若设1x y x +=,则原方程化为( ). A .23540y y +-=B .23100y y +-=;C .23520y y -+=D .23520y y ++= 【作业4】如果24410x x -+=,那么2x 的值是 .【作业5】解方程:(1)21421242x x x x++=+--; (2)2154111x x x x --=+--.【作业6】解方程: (1)223121x x x x +-=+; (2)2322x x x x --=-.【作业7】解下列方程组: (1)22125134x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩; (2)53327235572x y y x ⎧+=⎪+-⎪⎨⎪+=⎪-+⎩.【作业8】当m 为何值时,关于x 的方程22111x m x x x x --=+--无实根?【作业9】甲、乙两艘旅游客轮同时从台湾某港出发来厦门.甲沿直线航行180海里到达厦门,乙沿原来航线绕道香港后来厦门共航行720海里,结果比甲晚20小时到达厦门,已知乙速比甲速每小时快6海里,求甲客轮的速度.(其中两客轮的速度都大于16海里 /小时)【作业10】如图所示,A B 、两港中间有C D 、两岛,AB AC AD 、、的距离分别为72海里,18海里,27海里,有甲、乙两艘军舰分别从A B 、两港同时出发,水流由A 流到B ,流速为2海里/时,第一次任务是到达C 岛,甲比乙早到2小时;第二次任务是到达D 岛, 甲又比乙早到1小时.求甲、乙在静水中的速度.【作业11】解方程:11111726x x x x +=+----.【作业12】若关于x 的方程22111x m x x x x --=+--无实数根,求m 的取值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程知识导航1.分式方程的概念分母中含未知数的方程叫做分式方程.谈重点 分式方程与整式方程的区别 从分式方程的定义可以看出分式方程有两个重要特征:一是方程;二是分母中含未知数.因此整式方程和分式方程的根本区别就在于分母中是否含未知数. 2.分式方程的解法(1)解分式方程的基本思路:分式方程――→去分母转化整式方程. (2)解分式方程的一般方法和步骤:①去分母:即在方程两边同乘最简公分母,把分式方程转化为整式方程; ②解这个整式方程;③验根:把整式方程的根代入最简公分母,使最简公分母不等于0的根是原方程的根,使最简公分母等于0的根不是原方程的根,必须舍去.(3)对分式方程解法的理解:①解分式方程的基本思想是转化,即把分式方程转化为整式方程,通过解整式方程从而确定分式方程的解;②将分式方程转化为整式方程时,是将分式方程两边同乘最简公分母,当所乘的整式不为零时,所得整式方程与原分式方程同解;当所乘整式为零时,所求出的未知数的值就不是原分式方程的解;③在解分式方程时,方程两边约去含有未知数的公因式时,若该公因式的值为零,会造成原方程失根,所以在解分式方程时,两边不能同时除以含有未知数的公因式;④验根的方法:代入原分式方程,看左右两边是否相等,但这种方法较麻烦,直接代入最简公分母验根较为简捷.解技巧 分式方程验根的方法 把解得的未知数的值代入最简公分母较为简捷,但是不能检查解方程的过程中出现的计算错误,我们可以采用另一种验根的方法,即把求得的未知数的值代入原方程进行检验,这种方法可以检查解方程时有无计算错误. 3.分式方程的应用分式方程的应用主要是列方程解应用题,它与列一元一次方程解应用题的基本思路和方法是一样的. 列分式方程解应用题的一般步骤: ①审:审清题意; ②找:找出相等关系; ③设:设未知数; ④列:列出方程;⑤解:解这个分式方程;⑥验:既要检验根是否是所列分式方程的根,又要检验根是否符合题意; ⑦答:写出答案.解技巧 构建分式方程的方法 (1)在实际问题中,有时题目中包含多个相等的数量关系,在列方程时一定要选择一个能够体现全部(或大部分)题意的相等关系列方程;(2)在一些实际问题中,有时直接设出题中所求的未知数可能比较麻烦,需要间接地设出未知数,或设出一个未知数不好表示相等关系,还可设多个未知数,即设辅助未知数. 4.分式方程无解型问题解答分式方程无解型问题的方法是:首先将分式方程转化为整式方程,然后再将分式方程的增根(使分式方程的分母为零的未知数的值)代入整式方程(因为方程若有增根,则增根是通过解整式方程而得到的,故它满足整式方程),从而求出方程中的参数值. 5.生活中的分式方程列分式方程解实际问题时,关键是从实际问题中找出等量关系.另外,还要注意对方程的根进行检验.检验时,要注意双重检验:既要根据所列方程进行检验,又要根据实际问题进行检验. 6.分式方程中的阅读题在解分式方程中的阅读题时,首先要认真阅读题意,仔细观察列举的条件,观察比较所给各方程的特点和它的解与原方程的关系,发现解答过程的错误或探究得出其中的规律,然后根据题目的要求改正题目中的错误或者根据发现的规律解答提出的问题.阅读理解题是新课标理念下的创新题型,应予以重视. 7.分式方程中的开放型问题分式方程中的开放型问题,其答案一般不唯一.有两种类型:一是条件开放型问题,二是结论开放型问题.解答这类题目的一般方法是:通过条件,联想有关概念或法则,探求结论. 8.列分式方程解答综合性问题解答应用题的关键是弄清题目中的数量关系,选择合适的关系式列出分式方程,求出方程的解来解决问题.如果涉及用其他知识的综合题,应认真分析题意建立适当的数学模型来解答。

例题精讲【例1】 下列方程:①x -35=1,②3x =2,③1+x 5+x =12,④x 2+2x =5.其中是分式方程的有( ).A .①②B .②③C .③④D .②③④【例2】 解下列方程:(1)7x 2+x +3x 2-x =6x 2-1; (2)x 2x -5-1=55-2x.【例3】 今年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1 800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?【例4】甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等.已知甲、乙两人每天共加工35个玩具,问甲、乙两人每天各加工多少个玩具?【例5】 已知关于x 的分式方程a -1x +2=1有增根,则a =________.【例6】 若关于x 的方程x -2x -3=mx -3+2无解,求m 的值.【例7】 某文化用品商店用2 000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6 300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【例8】请根据所给方程6x +6x -5=1联系生活实际,编一道应用题.(要求题目完整,题意清楚,不要求解方程). 【例9】:从甲地到乙地共50千米,其中开始的10千米是平路,中间的20千米是上坡路,余下的20千米又是平路.小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度(假设小明在平路和上坡路上保持匀速).【例10】 先阅读下列一段文字,然后解答问题:已知方程x -1x =112的解是x 1=2,x 2=-12.方程x -1x =223的解是x 1=3,x 2=-13.方程x -1x =334的解是x 1=4,x 2=-14.方程x -1x =445的解是x 1=5,x 2=-15.问题:观察上述方程及其解,再猜想出方程x -1x =101011的解.把你解题得到的收获用语言表述出来,和你的同伴互相交流.【例11】 请选择一组a ,b 的值,写出一个形如ax +2=b 的关于x 的分式方程,使它的解为x =2,这样的分式方程可以是__________.【例12】 某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.基础训练1、方程2332x x =--的解是 , 2、若x =2是关于x 的分式方程2372a x x+=的解,则a 的值为 3,已知31x y x -=-,试用含y 的代数式表示x =4.如果关于x 的方程7766x mx x--=--有增根,则增根为 , 5.分式方程()2933x x x x x =+--出现增根,那么增根一定是( )。

A .0 B .3 C .0或3 D .16.对于分式方程3233x x x =+--有以下几种说法:①最简公分母为()23x -;②转化为整式方程23x =+,解得5x =;③原方程的解为3x =;④原方程无解,其中正确的说法的个数为( )A .4个B .3个C .2个D .1个7、下列分式方程中,一定有解的是( )A .103x =-B 1=-C .2111x x x =-- D .2211x x =+-8、解方程 2373226x x +=++ 2512552x x x +=+- 3233x x x =--- 2211566x x x x =+-++63041x x -=+- 2536111x x x -=+--扩展训练1.满足方程2211-=-x x 的x 值是( ) A .1 B . 2 C .0 D . 没有 2.已知an am e --=(e ≠1),则a 等于( ) A .en m --1 B .e me n --1 C .e nem --1 D .以上答案都不对.3.分式方程23416242+-=---x x x 的解为( )A .x = 0B .x = − 2C .x = 2D .无解4.若分式方程xx k x x x k +-=----2225111有增根x = −1,那么k 的值为( ) A .1 B . 3 C .6 D . 95.某校用420元钱到商场去购买“ 84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( ) A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx 6.甲、乙两人同时从A 地出发,骑自行车行30千米到B 地,甲比乙每小时少走3千米,结果乙先到40分钟.若设乙每小时走x 千米,则可列方程( ) A .3233030=--x x x B .3233030=+-x x x C .3230330=-+x x x D .3230330=--x x x 7.为了适应国民经济持续快速协调的发展,自 2004年4月18日起,全国铁路实施第五次提速,提速后,火车由天津到上海的时间缩短了7.42小时.若天津到上海的路程为1326千米,提速前火车的平均速度为x 千米/时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式( )A .42.71326=-y x B .42.71326=-x y C .42.713261326=-y x D .42.713261326=-xy 8.若方程kx x +=+233有负数根,则k 的取值范围是__________. 9.当x_______时,分式x x ++51的值等于21. 10.若使23--x x 与232+-x x互为倒数,则x 的值是________. 11.已知方程531)1()(2-=-+x a a x 的解为51-=x ,则a =_________.12.甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的_______倍.13.甲、乙两人组成一队参加踢毽子比赛,甲踢m 次用时间t 1(s),乙在t 2(s)内踢n 次,现在二人同时踢毽子,共N 次,所用的时间是T(s),则T 是________. 14.解下列分式方程:(1)3115+=-x x , (2)1637222-=-++x x x x x .15.解关于x 的方程 (1)2=--+b a a b x b a (a+b ≠0), (2)1=++-bx aa x x (a ≠0).16.已知关于x 的方程323-=--x mx x 解为正数,求m 的取值范围. 17.解方程:41615171---=---x x x x .18.当m 为何值时,解方程115122-=-++x m x x 会产生增根?19.甲、乙两人在相同时间内各加工168个零件和144个零件,已知每小时甲比乙多加工8个零件,求甲、乙两人每小时各加工多少个零件?。

相关文档
最新文档