安徽省定远重点中学2017_2018学年高二数学上学期第三次月考试题文

合集下载

安徽狮远重点中学2017_2018学年高二数学上学期第三次月考试题理20171221015

安徽狮远重点中学2017_2018学年高二数学上学期第三次月考试题理20171221015

安徽定远重点中学2017-2018学年上学期第三次月考高二数学(理)试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将选择题答案用2B铅笔正确填写在答题卡上;请将非选择题答案黑色中性笔正确填写在答案纸上。

第I卷(选择题70分)一、选择题(共12小题,每小题5.0分,共70分)1.在x,y轴上的截距分别是-3,4的直线方程是()A.=1 B.=1 C.=1 D.=12.直线3ax-y-1=0与直线(a-)x+y+1=0垂直,则a的值是()A.-1或B.1或C.- 或-1 D.- 或13.直线l1:ax+3y+1=0,l2:2x+(2a+1)y+1=0,若l1∥l2,则a的值为()A.B.2 C.或2 D.或-24.已知正方体ABCD-A1B1C1D1中,点P在线段A1B1上,点Q在线段B1C1上,且B1P=B1Q,给出下列结论:①A、C、P、Q四点共面;②直线PQ与AB1所成的角为60°;③PQ⊥CD1;④VP-ABCD=.其中正确结论的个数是()A.1 B.2 C.3 D.45.在正方体ABCD-A1B1C1D1中,直线A1C1与平面AD1C1B所成的角为()A.90°B.45°C.60°D.30°6.已知两定点A(-3,5),B(2,15),动点P在直线3x-4y+4=0上,则|PA|+|PB|的最小值为()A.5 B.C.15 D.5+107.在等腰三角形AOB中,AO=AB,点O(0,0),A(1,3),点B在x轴的正半轴上,则直线AB的点斜式方程为()A.y-1=3(x-3) B.y-1=-3(x-3) C.y-3=3(x-1) D.y-3=-3(x-1)8.直线y=2x-3的斜率和在y轴上截距分别等于()A.2,3 B.-3,-3 C.-3,2 D.2,-3下列命题中,错误的是()A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一个平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面10.一个长方体被一个平面截去一部分后所剩几何体的三视图如图所示(单位:cm),则该几何体的体积为()A.120 cm3 B.80 cm3 C.100 cm3 D.60 cm311.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积等于()A.20 B.5 C.4( +1) D.412.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为64+80π,则r等于()A.1 B.2 C.4 D.8第II卷(选择题80分)二、填空题(共4小题,每小题5.0分,共20分)13.直线3x-4y+5=0关于y轴的对称直线为________.14.斜三棱柱ABC-A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1,则A1B的长度为________.15.一直线过点A(-3,4),且在两轴上的截距之和为12,则此直线方程是________.16.若一个圆锥的侧面展开图是半圆,则这个圆锥的底面面积与侧面积的比是________.三、解答题(共6小题,17题10分,其余每小题12.0分,共70分)17.一个圆台的母线长为12 cm,两底面面积分别为4πcm2和25πcm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.18.直线l过点P(4,1),(1)若直线l过点Q(-1,6),求直线l的方程;(2)若直线l在y轴上的截距是在x轴上的截距的2倍,求直线l的方程.19. 如图,已知α∥β,点P是平面α、β外的一点(不在α与β之间),直线PB,PD分别与α,β相交于点A,B和C,D.(1)求证:AC∥BD;(2)已知PA=4,AB=5,PC=3,求PD的长.20.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.21.如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.求证:(1)AP∥平面BEF;(2)CD⊥平面PAC.22. 如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC =,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.安徽定远重点中学2017-2018学年上学期第三次月考高二数学理试题答案解析1.【答案】A【解析】由直线的截距式方程易得=1.2.【答案】D【解析】由3a(a-)+(-1)×1=0,得a=-或a=1.3.【答案】D【解析】直线l1:ax+3y+1=0的斜率为- ,直线l1∥l2,所以l2:2x+(2a+1)y+1=0的斜率也为,所以=,且,解得a=或a=-2,均满足题意,故选D.4.【答案】B【解析】如图所示,①∵B1P=B1Q,∴PQ∥A1C1,∴A、C、P、Q四点共面,因此正确;②连接AC,CB1,可得△ACB1是等边三角形,又AC∥A1C1,∴直线PQ与AB1所成的角为60°;③由②PQ⊥CD1不正确;④VP-ABCD=,=××A 1B1=××A1B1=V正方体.∴VP-ABCD≠.其中正确结论的个数为2.故选B.5.【答案】D【解析】如图所示,连接A1D,AD1交于点O,连接OC1,在正方体ABCD-A1B1C1D1中,∵AB⊥平面AD1,∴AB⊥A1D,又A1D⊥AD1,且AD1∩AB=A,∴A1D⊥平面AD1C1B,所以∠A1C1O即为所求角,在Rt△A1C1O中,- 5 -sin∠A1C1O==.所以∠A1C1O=30°,即直线A1C1与平面AD1C1B所成的角为30°,故选D.6.【答案】A【解析】设点A(-3,5)关于直线3x-4y+4=0的对称点A′(m,n).则解得即A′(3,-3).连接A′B与直线相交于点P,则|PA|+|PB|的最小值为|A′B|==5 .故选A.7.【答案】D【解析】因为AO=AB,所以直线AB的斜率与直线AO的斜率互为相反数,所以kAB=-kOA=-3,所以直线AB的点斜式方程为y-3=-3(x-1).故选D.8.【答案】D【解析】直线的斜率为2,且在y轴上截距为-3,故选D.10.【答案】C【解析】由三视图知该几何体是长方体截去了一个角所得,V=6×5×4-×6×5×4=100 cm3,故选C.11.【答案】D【解析】由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,其底面棱长为2,高h=2,故侧面的侧高为=,故该四棱锥侧面积S=4××2×=4 ,故选D.12.【答案】C【解析】由几何体的三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球和一个半圆柱,所以其表面积为S=×4πr2+πr2+2πr2+2r×2r+πr2=5πr2+4r2,又因为该几何体的表面积为64+80π,即5πr2+4r2=64+80π,解得r=4.13.【答案】3x+4y-5=0【解析】设点(x,y)为所求直线上任意点,则该点关于y轴的对称点为(-x,y),∴(-x,y)在直线3x-4y+5=0上,代入得-3x-4y+5=0,即3x+4y-5=0.14.【答案】【解析】取CC1的中点M,连接A1M与BM,∵在斜三棱柱ABC-A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,∴△A1CC1是等边三角形,四边形ACC1A1≌四边形CBB1C1,∴A1M⊥CC1,∴BM⊥CC1,∴A1M=BM=.又平面ACC1A1⊥平面BCC1B1,∴∠A1MB是二面角的平面角,∴∠A1MB=90°∴在直角三角形A1MB中,由勾股定理可算得A1B=.- 7 -15.【答案】x+3y-9=0或4x-y+16=0【解析】设横截距为a,则纵截距为12-a,直线方程为=1,把A(-3,4)代入,得=1,解得a=-4或a=9.a=9时,直线方程为=1,整理可得x+3y-9=0.a=-4时,直线方程为=1,整理可得4x-y+16=0,综上所述,此直线方程是x+3y-9=0或4x-y+16=0.16.【答案】1∶2【解析】设该圆锥体的底面半径为r,母线长为l,根据题意得2πr=πl,所以l=2r,所以这个圆锥的底面面积与侧面积的比是πr2∶πl2=r2∶(2r)2=1∶2.故答案为1∶2.17.【答案】(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得O1A=2 cm,OB=5 cm.又由题意知腰长为12 cm,所以高AM=(cm).(2)如图所示,延长BA,OO1,CD,交于点S,设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得=,解得l=20(cm).即截得此圆台的圆锥的母线长为20 cm.【解析】18.【答案】(1)直线l的方程为=,化简,得x+y-5=0.(2)设直线l的方程为y-1=k(x-4),l在y轴上的截距为1-4k,在x轴上的截距为4-,故1-4k=2(4-),得k=或k=-2,直线l的方程为y=x或y=-2x+9,即x-4y=0 或2x+y-9=0.19【解析】略20.【答案】(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8,因为EHGF是正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,其体积的比值即为两底面积的比值,所以其体积的比值为( 也正确).【解析】21.【答案】(1)设AC∩BE=O,连接OF,EC,由已知可得AE∥BC,AE=AB=BC,所以四边形ABCE为菱形,因为O为AC的中点,F为PC的中点,所以AP∥OF,因为AP⊄平面BEF,OF⊂平面BEF,所以AP∥平面BEF.(2)由题知,ED∥BC,ED=BC,所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD.因为四边形ABCE为菱形,所以BE⊥AC,所以CD⊥AC.又AP∩AC=A,AP,AC⊂平面PAC,所以CD⊥平面PAC.22.略。

2017-2018学年安徽省滁州市定远县西片三校联考高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市定远县西片三校联考高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市定远县西片三校联考高二(上)期末数学试卷(文科)一、选择题1.(5分)已知l表示空间一条直线,α、β表示空间两个不重合的平面,有以下三个语句:①l⊥α;②l∥β;③α⊥β.以其中任意两个作为条件,另外一个作为结论,可以得到三个命题,其中正确命题的个数是()A.0B.1C.2D.32.(5分)一个体积为12的正三棱柱的三视图,如图所示,则此正三棱柱的侧视图面积为()A.12B.8C.8D.63.(5分)已知三棱锥的正视图与俯视图如图,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为()A.B.C.D.4.(5分)正四棱锥所有棱长均为2,则侧棱和底面所成的角是()A.30°B.45°C.60°D.90°5.(5分)已知二面角α﹣AB﹣β的平面角是锐角,C是平面α内一点(它不在棱AB上),点D是点C在面β上的射影,点E是棱AB上满足∠CEB为锐角的任一点,那么()A.∠CEB>∠DEBB.∠CEB=∠DEBC.∠CEB<∠DEBD.∠CEB与∠DEB的大小关系不能确定6.(5分)若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交7.(5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.24+12πB.28+12πC.20+12πD.20+8π8.(5分)如图,正三棱柱ABC﹣A1B1C1的主视图(又称正视图)是边长为4的正方形,则此正三棱柱的侧视图(又称左视图)的面积为()A.16B.C.D.9.(5分)如图所示为一个简单几何体的三视图,则其对应的几何体是()A.B.C.D.10.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.11.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.2B.4C.6D.1212.(5分)等腰直角三角形ABC中,AB=BC=1,M为AC中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C﹣BM﹣A的大小为()A.30°B.60°C.90°D.120°二、填空题13.(5分)如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=.14.(5分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.15.(5分)要做一个无盖型容器,将长为15cm,宽为8cm的长方形铁皮先在四角分别截去一个相同的小正方形后再进行焊接,当该容器容积最大时高为cm.16.(5分)如图是正方体的平面展开图,则在这个正方体中,以下四个判断中,正确的序号是.①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN是异面直线.三、解答题17.(10分)如图,三棱柱ABC﹣A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(I)求证:平面AA1B1B⊥平面BB1C1C;(II)求二面角B﹣AC﹣A1的余弦值.18.(12分)如图,AB是⊙O的直径,点P是⊙O圆周上异于A,B的一点,AD⊥⊙O所在的平面P AB,四边形ABCD是边长为2的正方形,连结P A,PB,PC,PD.(1)求证:平面PBC⊥平面P AD;(2)若P A=1,求四棱锥P﹣ABCD的体积.19.(12分)如图,在底面是直角梯形的四棱锥S﹣ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=.(Ⅰ)求四棱锥S﹣ABCD的体积;(Ⅱ)求面SCD与面SBA所成的二面角的正切值.20.(12分)如图,平面SAB为圆锥的轴截面,O为底面圆的圆心,M为母线SB的中点,N为底面圆周上的一点,AB=4,SO=6.(1)求该圆锥的侧面积;(2)若直线SO与MN所成的角为30°,求MN的长.21.(12分)如图,三棱锥P﹣ABC中,平面P AC⊥平面ABC,AB⊥BC,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥平面PBC.(1)证明:EF∥BC(2)证明:AB⊥平面PEF(3)若四棱锥P﹣DFBC的体积为7,求线段BC的长.22.(12分)如图,在几何体ABCDE中,AB⊥平面BCE,且△BCE是正三角形,四边形ABCD为正方形,G是线段BE的中点,AB=2,(Ⅰ)若F是线段CD上的中点,求证:GF∥平面ADE(Ⅱ)若F是线段CD上的动点,求三棱锥F﹣ABE的体积.2017-2018学年安徽省滁州市定远县西片三校联考高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题1.【解答】解:由①l⊥α;②l∥β;③α⊥β,可得三个命题:①②⇒③,①③⇒②,②③⇒①.由l⊥α,l∥β,过l的平面γ与β交于m,由线面平行的性质定理可得l∥m,即有m⊥α,由m⊂β,可得α⊥β,①②⇒③正确;由l⊥α,α⊥β,可得l⊂β或l∥β,①③⇒②错误;由l∥β,α⊥β,可得l⊂α或l∥α或l与α相交,②③⇒①错误.故选:B.2.【解答】解:根据几何体的三视图,得;该几何体是正三棱柱,且底面正三角形一边上的高为2,∴底面三角形的边长为=4,∴三棱柱的体积为V三棱柱=×4×2h=12,三棱柱的高为h=3;∴侧视图的面积为S侧视图=2×3=6.故选:D.3.【解答】解:由俯视图可知三棱锥的底面是个边长为2的正三角形,由正视图可知三棱锥的一条侧棱垂直于底面,且其长度为2故其侧视图为直角边长为2和的直角三角形,故选:B.4.【解答】解:如图,四棱锥P﹣ABCD中,过P作PO⊥平面ABCD于O,连接AO,则AO是AP在底面ABCD上的射影,∴∠P AO即为所求线面角,∵AO=,P A=2,∴cos∠P AO==,∵0°≤∠P AO≤180°∴∠P AO=45°,即所求线面角为45°.故选:B.5.【解答】解:过C向AB做垂线交AB于F,连接DF,因为CD⊥AB又CF⊥AB,所以AB⊥面CDF,所以CF垂直于AB在直角三角形CDF中,CF为斜边DF为直角边,所以CF>DF易知tan∠CEF=tan∠DEB=由CF>DF知,∠CEB>∠DEB故选:A.6.【解答】解:由a、b是异面直线,直线c∥a知c与b的位置关系是异面或相交,故选:D.7.【解答】解:由三视图可知:该几何体是由上下两部分组成,上面是一个半径为2的半球,下面是一个长方体,其长宽高分别为2,2,3.∴该几何体的表面积=2π×22+π×22+4×2×3=24+12π.故选:B.8.【解答】解:由题意可知:左视图的高与主视图的高一样为4,左视图的宽度与俯视图的宽度一样都是底面正三角形的高2.因此左视图的面积=4×2=8.故选:D.9.【解答】解:对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意故选:A.10.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.11.【解答】解:由几何体的三视图得该向何体是如图所示的三棱柱ABC﹣A1B1C1,其中,AA1⊥平面ABC,四边形AA1C1C是边长为2的正方形,AB⊥AC,AB=3,∴该几何体的体积:V=S△ABC×AA1===6.故选:C.12.【解答】解:在等腰直角三角形ABC中,∵AB=BC=1,M为AC中点,∴AM=CM=BM=,AM⊥BM,CM⊥BM,所以沿BM把它折成二面角后,∠AMC就是二面角的平面角.在△AMC中,∵AM=CM=,AC=1,由余弦定理,知cos∠AMC==0,∴∠AMC=90°.故选:C.二、填空题13.【解答】解:∵平面ABCD∥平面A1B1C1D1,MN⊂平面A1B1C1D1∴MN∥平面ABCD,又PQ=面PMN∩平面ABCD,∴MN∥PQ.∵M、N分别是A1B1、B1C1的中点∴MN∥A1C1∥AC,∴PQ∥AC,又AP=,ABCD﹣A1B1C1D1是棱长为a的正方体,∴CQ=,从而DP=DQ=,∴PQ===a.故答案为:a14.【解答】解:如图所示,取B1C1的中点F,连接EF,ED1,∴CC1∥EF,又EF⊂平面D1EF,CC1⊄平面D1EF,∴CC1∥平面D1EF.∴直线C1C上任一点到平面D1EF的距离是两条异面直线D1E与CC1的距离.过点C1作C1M⊥D1F,∵平面D1EF⊥平面A1B1C1D1.∴C1M⊥平面D1EF.过点M作MP∥EF交D1E于点P,则MP∥C1C.取C1N=MP,连接PN,则四边形MPNC1是矩形.可得NP⊥平面D1EF,在Rt△D1C1F中,C1M•D1F=D1C1•C1F,得=.∴点P到直线CC1的距离的最小值为.故答案为15.【解答】解:设容器的高为x,(0<x<4),则当该容器容积V=(15﹣2x)(8﹣2x)x=4x3﹣46x2+120x,V′=12x2﹣92x+120,由V′=0,得x=或x=6(舍),∵x∈(0,)时,V′>0;x∈(,4)时,V′<0.∴当x=cm时,该容器容积最大.故答案为:.16.【解答】解:展开图复原的正方体如图,不难看出:①BM与ED平行;错误的,是异面直线;②CN与BE是异面直线,错误;是平行线;③CN与BM成60°;正确;④DM与BM是异面直线.正确.判断正确的答案为③④故答案为:③④三、解答题17.【解答】证明:(Ⅰ)由侧面AA1B1B为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,∴AB⊥平面BB1C1C,又AB⊂平面AA1B1B,∴平面AA1B1B⊥BB1C1C.(Ⅱ)由题意,CB=CB1,设O是BB1的中点,连接CO,则CO⊥BB1.由(Ⅰ)知,CO⊥平面AB1B1A.建立如图所示的坐标系O﹣xyz.其中O是BB1的中点,Ox∥AB,OB1为y轴,OC为z轴.不妨设AB=2,则A(2,﹣1,0),B(0,﹣1,0),C(0,0,),A1(2,1,0).=(﹣2,0,0),=(﹣2,1,),.设=(x1,y1,z1)为面ABC的法向量,则•=0,•=0,即取z1=﹣1,得=(0,,﹣1).设=(x2,y2,z2)为面ACA1的法向量,则•=0,•=0,即取x2=,得=(,0,2).所以cos〈n1,n2>==﹣.因此二面角B﹣AC﹣A1的余弦值为﹣.18.【解答】(1)证明:∵AD⊥⊙O所在的平面P AB,PB⊂⊙O所在的平面P AB,∴AD⊥PB,∵P A⊥PB,P A∩AD=A,∴PB⊥平面P AD,∵PB⊂平面PBC,∴平面PBC⊥平面P AD;(2)解:在平面P AB内过P作PE⊥AB于E,∵AD⊥⊙O所在的平面P AB,PE⊂⊙O所在的平面P AB,∴AD⊥PE,∵AD∩AB=A,∴PE⊥平面ABCD,直角△P AB中,AB=2,P A=1,∴PB=,∴PE==,∴四棱锥P﹣ABCD的体积V==.19.【解答】解:(Ⅰ)直角梯形ABCD的面积是M底面==(2分)∴四棱锥S﹣ABCD的体积是;(4分)(Ⅱ)延长BA、CD相交于点E,连接SE,则SE是所求二面角的棱(6分)∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB∵SA⊥面ABCD,得面SEB⊥面EBC,EB是交线.又BC⊥EB,∴BC⊥面SEB,故SB是SC在面SEB上的射影,∴CS⊥SE,所以∠BSC是所求二面角的平面角(10分)∵SB=∴tan∠BSC=即所求二面角的正切值为.(12分)20.【解答】解:(1)由题意知,SO⊥平面ABN,在RT△SOB中,OB=AB=2,SO=6,∴BS==,∴该圆锥的侧面积S=π•OB•BS=;(2)取OB的中点C,连接MC、NC,∵M为母线SB的中点,∴MC为△SOB的中位线,∴MC∥SO,MC=SO=3,∵SO⊥平面ABN,∴MC⊥平面ABN,∵NC⊂平面ABN,∴MC⊥NC,∵直线SO与MN所成的角为30°,∴∠NMC=30°,在RT△MCN中,,∴MN===.21.【解答】证明:(1)∵EF∥平面PBC,BC⊂平面PBC,∴EF与BC不相交,∵E在线段AC上,点F在线段AB上,∴EF⊂平面ABC,又BC⊂平面ABC,∴EF∥BC.(2)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,PE⊂平面P AC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为AB⊥BC,EF∥BC,故AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,所以AB⊥平面PEF.解:(3)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB•BC=x,由EF∥BC知==,得△AFE∽△ABC,故=()2=,即S△AFE=S△ABC,由AD=AE,S△AFD=S△AFE==,从而四边形DFBC的面积为:S DFBC=S△ABC﹣S AFD=×=x.由(2)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,故体积V P﹣DFBC=S DFBC•PE=x=7,故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.22.【解答】(Ⅰ)证明:法一、取AE的中点H,连接HG,DH,∵G是线段BE的中点,∴HG∥AB,且HG=,∵四边形ABCD为正方形,F是线段CD上的中点,∴DF∥AB,且DF=,∴HG∥DF且HG=DF,∴四边形DFGH是平行四边形,得GF∥DH,∵GF⊄平面ADE,DH⊂平面ADE,∴GF∥平面ADE;解法二、取CE的中点H,连接FH,GH,∵G是线段BE的中点,∴GH∥BC,∵四边形ABCD为正方形,∴BC∥AD,则GH∥AD,∵GH⊄平面ADE,AD⊂平面ADE,∴GH∥平面ADE,又∵F是线段CD上的中点,∴HF∥DE,∵HF⊄平面ADE,DE⊂平面ADE,∴HG∥平面ADE,∵GH∩/HF=H,∴平面FHG∥平面ADE,∵FG⊂平面FHG,∴GF∥平面ADE;(Ⅱ)解:∵四边形ABCD为正方形,∴AB∥CD,∵CD⊄平面ABE,AB⊂平面ABE,∴CD∥平面ABE,∴点F到平面ABE的距离=点C到平面ABE的距离,∴V F﹣ABE=V C﹣ABE=V A﹣BCE=.。

安徽省定远重点中学高二上学期第三次月考语文试题

安徽省定远重点中学高二上学期第三次月考语文试题

安徽定远重点中学2017-2018学年上学期第三次月考高二语文试题第I卷(选择题70分)一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成文后各题。

1877年,德国地理学家李希霍芬在他《中国》一书中使用“丝绸之路”这个词语。

自此,这条联通中国与世界的大道以这样一个美丽的名字,镌刻进历史的书卷中。

早期的丝绸之路主要是为方便沿途各国互通有无,到汉唐时达到鼎盛,无数商贾携带香料、药物等来到中国,又将中国的丝绸、瓷器、茶叶等远销海外。

在唐朝中期以前,陆上丝绸之路是中国对外贸易的首选,郑和下西洋后,海上丝绸之路逐渐兴起。

数千年来,商人、教徒、外交家和学术考察者等在这条“流淌着牛奶与蜂蜜”的道路上来来往往,通商、旅行、互动,在推动物质交流丰富性的同时,带来了文化交流的多样性。

佛教、伊斯兰教、基督教及西方的天文、历法、医药陆续传入中国,中国的四大发明、养蚕技术也从这里开始走向世界。

不论是出使西域的张骞、投笔从戎的班超、西天取经的玄奘,还是七下西洋的郑和,他们的故事与丝路密不可分。

而陕西历史博物馆珍藏的“鎏金铜蚕”,在印度尼西亚发现的千年沉船“黑石号”等出土文物,则是这段历史最好的见证者。

以至于瑞典著名探险家斯文·赫定这样感慨道:“世界上历史悠久、地域广阔、自成体系、影响深远的文化体系只有四个—一中国、印度、希腊、伊斯兰,此外再没有第五个。

而这四个文化体系汇流的地方只有一个,那就是中国自敦煌至喀什的环塔克拉玛干古代文明区,此外再没有第二个。

”作为多种文化的混合体,丝路文化依托于文化交流的实际过程,产生了一系列文化交融的丰硕成果。

首先,它本身就是文人墨客进行艺术创作的重要题材。

不论是“大漠孤烟直,长河落日圆”的感慨,还是木卡姆乐曲的悠扬,都让人们对丝路文化有了更直观的认识。

几千年来,那些行走于丝路上的各色人等及其所经历的悲欢离合,都通过不同民族和地域的各种艺术形式记录下来。

安徽省定远重点中学高三数学上学期第三次月考试题文

安徽省定远重点中学高三数学上学期第三次月考试题文

2018-2019 学年度高三上学期第三次月考试卷数学(文科)试题姓名:座位号:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150 分,考试时间120 分钟。

请在答题卷上作答。

第 I卷(选择题共 60分)一、选择题 ( 共 12 小题 , 每题 5分 , 共 60 分。

在每题给出的四个选项中只有一项切合题目要求。

)1. 已知全集U1,2,3,4,5,会合 A x x 1x 20, B x x a21, a A ,则会合C U A B 等于()A.1,2,5B.3,4C.3,4,5D.1,22.已知z是纯虚数,若a i z3i,则实数 a 的值为()1A. 1B. 3C.- 1D.-33. 已知a R ,则“ a 1 ”是“ a1a12”的()A.充足不用要条件B.必需不充足条件C. 充足必需条件D.既不充足也不用要条件4. 函数f xe x 1x2f x1的解集为() {x 1 x2,则不等式log 3A.1,2B., 4C.1,4D. 332,x5. 函数y x a 与 y xa( a0且 a 1 )在同一坐标系中的图象可能为()xA. B. C. D.6. 已知双曲线C的两个焦点F1 , F2都在 x 轴上,对称中心为原点,离心率为3.若点M 在C 上,且MF1MF2, M到原点的距离为 3 ,则C的方程为()A.x2y21B.y2x21C.x2y21D.48482y2x2127. 在等差数列a n中,已知 a6a100 ,且公差d0 ,则其前n项和取最小值时的n 的值为()A.6B.7 或 8C.8D.98. 已知椭圆和双曲线有共同焦点F1 ,F2, P是它们的一个交点,且F1 PF2,记椭圆和3双曲线的离心率分别为e1 ,e2,则1的最大值为()e1e2A.23B.43C. 2 33D. 39. 在ABC 中,角A, B,C 的对边分别为a,b, c ,且ABC 的面积S 2 5cosC ,且a1,b 2 5,则 c()A.15B.17C.19D.2110. 已知0 ,a0 ,f x asin x3acos x ,g x2cos ax,6h x f x这 3 个函数在同向来角坐标系中的部分图象以下列图所示,则函数 g x h x g x的图象的一条对称轴方程能够为( )A.xB.13C.x23D.29 x612x61211. 把函数y sin2x6cos2 x6的图像向右平移(0)个单位就获得了一个奇函数的图像,则的最小值是()A. B.6C.3D.5121212. 已知函数f x lnx ax2x 有两个零点,则实数 a 的取值范围是()A.,1B.0,1C.1e,e2D.1 e0,e2第 II 卷(非选择题共90分)二、填空题 ( 本大题共4小题,每题 5分,共20分 )13.若命题“ ?x0∈R,使得x2+ mx+2m-3<0”为假命题,则实数m 的取值范围是______________.14.已知函数f x xe x,若对于 x 的方程f2x2tf x 3 0 t R 有两个不等实数根,则 t 的取值范围为__________.15.已知 sinπcos 1,则 cos 2π__________ .63316.奇函数 f x是 R 上单一函数, g x f ax 3 f 13x 有独一零点,则 a 的取值会合为 ____________.三、解答题 ( 共 6 小题 , 共 70 分。

2017-2018年安徽省滁州市定远县重点中学高二上学期期中数学试卷及答案(理科)

2017-2018年安徽省滁州市定远县重点中学高二上学期期中数学试卷及答案(理科)

2017-2018学年安徽省滁州市定远县重点中学高二(上)期中数学试卷(理科)一、选择题(每小题5分,共60分)1.(5分)如图,一几何体的三视图如图:则这个几何体是()A.圆柱B.空心圆柱C.圆D.圆锥2.(5分)过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A.1:2:3 B.1:3:5 C.1:2:4 D.1:3:93.(5分)已知水平放置的△ABC的平面直观图△A'B'C'是边长为a的正三角形,那么△ABC的面积为()A.B.a2C.D.a24.(5分)如图,有一个几何体的三视图及其尺寸(单位:cm)则该几何体的表面积和体积分别为()A.24πcm2,12πcm3B.15πcm2,12πcm3C.24πcm2,36πcm3D.以上都不正确5.(5分)一个球的外切正方体的全面积等于6cm2,则此球的体积为()A.B.C.D.6.(5分)正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()A.B.18πC.36πD.7.(5分)在棱长均为2的正四面体A﹣BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是()A.B.C.D.8.(5分)下列结论正确的是()A.平行于同一平面的两直线平行B.直线l与平面α不相交,则l∥平面αC.A,B是平面α外两点,C,D是平面α内两点,若AC=BD,则AB∥平面αD.同时与两条异面直线平行的平面有无数个9.(5分)若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A.1:2:3 B.2:3:4 C.3:2:4 D.3:1:210.(5分)如图为一个几何体的三视图,其中俯视图为正三角形,A1B1=2,AA1=4,则该几何体的表面积为()A.6+B.24+C.24+2D.3211.(5分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C112.(5分)如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线以上四个命题中,正确的命题序号是()A.①②③B.②④C.③④D.②③④二、填空题(每小题5分,共20分)13.(5分)如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成.14.(5分)三棱锥三条侧棱两两互相垂直,三个侧面积分别为1.5cm2、2cm2、及6cm2,则它的体积为cm3.15.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为.16.(5分)在三棱锥P﹣ABC中,已知PA=PB=PC=2,∠BPA=∠BPC=∠CPA=30°,一绳子从A点绕三棱锥侧面一圈回到点A的距离中,绳子最短距离是.三、解答题(共70分)17.(10分)有一个正四棱台形状的油槽,可以装油190L,假如它的两底面边长分别等于60cm和40cm,求它的深度为多少cm?()18.(12分)如图,在正方体中,求下列异面直线所成的角.(1)BA'和CC';(2)B'D'和C'A.19.(12分)如图:一个圆锥的底面半径为2,高为6,在其中有一个半径为x 的内接圆柱.(1)试用x表示圆柱的高;(2)当x为何值时,圆柱的侧面积最大.20.(12分)已知空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC,CH=DC.求证:①E、F、G、H四点共面;②三直线FH、EG、AC共点.21.(12分)四边形ABCD是矩形,E,F是AB、PD的中点,求证:AF∥面PCE.22.(12分)如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.2017-2018学年安徽省滁州市定远县重点中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.(5分)如图,一几何体的三视图如图:则这个几何体是()A.圆柱B.空心圆柱C.圆D.圆锥【解答】解:A、因圆柱的俯视图是一个圆,故A不对;B、因俯视图为两个同心圆,故B正确;C、圆是平面图形,故C不对;D、圆锥的主视图和左视图是等腰三角形,故D不对.故选:B.2.(5分)过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A.1:2:3 B.1:3:5 C.1:2:4 D.1:3:9【解答】解:由此可得到三个圆锥,根据题意则有:底面半径之比:r1:r2:r3=1:2:3,母线长之比:l1:l2:l3=1:2:3,侧面积之比:S1:S2:S3=1:4:9,所以三部分侧面面积之比:S1:(S2﹣S1):(S3﹣S2)=1:3:5故选:B.3.(5分)已知水平放置的△ABC的平面直观图△A'B'C'是边长为a的正三角形,那么△ABC的面积为()A.B.a2C.D.a2【解答】:如图所示,在直观图中,正△A′B′C′的边长为a,故点A′到底边B′C′的距离是a,作A′D′⊥x′轴于点D′,则△A′D′O′是等腰直角三角形,故可得O'A′=a,由此可得在平面图中△ABC的高为a,原△ABC的面积为×a×a=a2.故选:A.4.(5分)如图,有一个几何体的三视图及其尺寸(单位:cm)则该几何体的表面积和体积分别为()A.24πcm2,12πcm3B.15πcm2,12πcm3C.24πcm2,36πcm3D.以上都不正确【解答】解:由三视图可得该几何体为圆锥,且底面直径为6,即底面半径为r=3,圆锥的母线长l=5=π•r2=9π则圆锥的底面积S底面侧面积S=π•r•l=15π侧面故几何体的表面积S=9π+15π=24πcm2,又由圆锥的高h==4•h=12πcm3故V=•S底面故选:A.5.(5分)一个球的外切正方体的全面积等于6cm2,则此球的体积为()A.B.C.D.【解答】解:∵正方体的全面积为6cm2,∴正方体的棱长为1cm,又∵球内切于该正方体,∴这个球的直径为1cm,则这个球的半径为,∴球的体积V==(cm3),故选:C.6.(5分)正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()A.B.18πC.36πD.【解答】解:如图所示:设正四面体ABCE的棱长等于a,D为边CE的中点,球的半径等于r,作AH垂直于平面BCD,H为垂足.则BH===a,故AH===.再由AH=4,可得=4,∴a=.Rt△BOH中,由勾股定理可得,解得r=3.故球的表面积为4πr2=36π,故选:C.7.(5分)在棱长均为2的正四面体A﹣BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是()A.B.C.D.【解答】解:由题意可知:左视图是一个三角形,三个边长分别为:2,,;所以是一个等腰直角三角形,高为为,面积为:,故选:C.8.(5分)下列结论正确的是()A.平行于同一平面的两直线平行B.直线l与平面α不相交,则l∥平面αC.A,B是平面α外两点,C,D是平面α内两点,若AC=BD,则AB∥平面αD.同时与两条异面直线平行的平面有无数个【解答】解:在A中,平行于同一平面的两直线平行、相交或异面,故A错误;在B中,直线l与平面α不相交,则l∥平面α或l⊂α,故B错误;在C中,A,B是平面α外两点,C,D是平面α内两点,若AC=BD,则AB∥平面α或AB与平面α相交,故C错误;在D中,过空间任一点,分别作两条异面直线的平行线,这两条相交直线确定一个平面,这个平面和两条异面直线平行,空间中的点有无数个,∴作出的平面也有无数个,故D正确.故选:D.9.(5分)若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A.1:2:3 B.2:3:4 C.3:2:4 D.3:1:2【解答】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,=则球的体积V球=2πR3圆柱的体积V圆柱圆锥的体积V=圆锥故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选:D.10.(5分)如图为一个几何体的三视图,其中俯视图为正三角形,A1B1=2,AA1=4,则该几何体的表面积为()A.6+B.24+C.24+2D.32【解答】解:三视图复原的几何体是一个底面是正三角形,边长为:2,棱柱的高为:4的正三棱柱,所以它的表面积为:2×=24+2故选:C.11.(5分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1【解答】解:根据异面直线的概念可看出直线AA1,A1B1,A1D1都和直线EF为异面直线;B1C1和EF在同一平面内,且这两直线不平行;∴直线B1C1和直线EF相交,即选项D正确.故选:D.12.(5分)如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线以上四个命题中,正确的命题序号是()A.①②③B.②④C.③④D.②③④【解答】解:根据展开图,画出立体图形,BM与ED垂直,不平行,CN与BE是平行直线,CN与BM成60°,DM与BN是异面直线,故③④正确.故选:C.二、填空题(每小题5分,共20分)13.(5分)如图为长方体积木块堆成的几何体的三视图,此几何体共由4块木块堆成.【解答】解:由图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成.故答案为:4.14.(5分)三棱锥三条侧棱两两互相垂直,三个侧面积分别为1.5cm2、2cm2、及6cm2,则它的体积为2cm3.【解答】解:三棱锥三条侧棱两两互相垂直,设三条棱长分别为a,b,c,三个侧面积分别为1.5cm2、2cm2、及6cm2,所以:ab=3,bc=4,ac=12,所以abc=12三棱锥的体积为:=故答案为:215.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为.【解答】解:如图,设正四面体的棱长为2,则CE=;∴cos===;∴异面直线CE与BD所成角的余弦值为.故答案为:.16.(5分)在三棱锥P﹣ABC中,已知PA=PB=PC=2,∠BPA=∠BPC=∠CPA=30°,一绳子从A点绕三棱锥侧面一圈回到点A.【解答】解:设过点A作截面AEF与PB、PC侧棱分别交于E、F两点,将三棱锥由PA展开,则∠APA1=90°,AA1为绳子从点A沿侧面到棱PB上的点E处,再到棱PC上的点F处,然后回到点A的最短距离,∵PA=2,∴由勾股定理可得AA1==2.故答案为:.三、解答题(共70分)17.(10分)有一个正四棱台形状的油槽,可以装油190L,假如它的两底面边长分别等于60cm和40cm,求它的深度为多少cm?()【解答】解:由于,则h===75cm.故它的深度为75cm.18.(12分)如图,在正方体中,求下列异面直线所成的角.(1)BA'和CC';(2)B'D'和C'A.【解答】解:(1)正方体中,CC′∥BB′,∴∠A′BB′是异面直线BA′与CC′所成的角,又四边形ABB′A′是正方形,∴∠A′BB′=45°,即异面直线BA'和CC'所成的角是45°;(2)连接A′C′,∵四边形A′B′C′D′是正方形,∴A′C′⊥B′D′,又AA′⊥平面A′B′C′D′,∴AA′⊥B′D′,且A′C′∩AA′=A′,∴B′D′⊥平面AA′C′,∴B'D'⊥C'A,∴异面直线B′D′和C′A所成的角为90°.19.(12分)如图:一个圆锥的底面半径为2,高为6,在其中有一个半径为x 的内接圆柱.(1)试用x表示圆柱的高;(2)当x为何值时,圆柱的侧面积最大.【解答】解:(1)∵圆锥的底面半径为2,高为6,∴内接圆柱的底面半径为x时,它的上底面截圆锥得小圆锥的高为3x因此,内接圆柱的高h=6﹣3x;∴圆柱的体积V=πx2(6﹣3x)(0<x<2)(2)由(1)得,圆柱的侧面积为S侧=2πx(6﹣3x)=6π(2x﹣x2)(0<x<2)令t=2x﹣x2,当x=1时t max=1.可得当x=1时,(S侧)max=6π∴当圆柱的底面半径为1时,圆柱的侧面积最大,侧面积有最大值为6π.20.(12分)已知空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC,CH=DC.求证:①E、F、G、H四点共面;②三直线FH、EG、AC共点.【解答】证明:①∵E、F分别是AB、AD的中点,∴EF BD,∵G、H分别是BC、CD上的点,且CG=BC,CH=DC.∴GH BD,∴EF∥GH,∴E、F、G、H四点共面.②∵E、F分别是AB、AD的中点,∴EF BD,∵G、H分别是BC、CD上的点,且CG=BC,CH=DC.∴GH BD,∴EF∥GH,且EF≠GH,∴四边形EFHG是梯形,设两腰EG,FH相交于一点T.∵EG⊂平面ABC,FH⊂平面ACD,∴T∈平面ABC,且T∈平面ACD,又平面ABC∩平面ACD=AC,∴T∈AC,即直线EG,FH,AC相交于一点T.21.(12分)四边形ABCD是矩形,E,F是AB、PD的中点,求证:AF∥面PCE.【解答】证明:取PC的中点M,连接ME、MF,则FM∥CD,且FM=CD.又∵AE∥CD,且AE=CD,∴FM∥AE,且FM=AE,即四边形AFME是平行四边形.∴AF∥ME,又∵AF⊄平面PCE,EM⊂平面PCE,∴AF∥平面PCE.22.(12分)如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.【解答】(12分)解:四边形ABCD绕AD旋转一周形成的几何体是一个圆台挖去一个圆锥所得的组合体,S表面=S圆台底面+S圆台侧面+S圆锥侧面=π×52+π×(2+5)×5+π×2×2=(4+60)π.V=V圆台﹣V圆锥=π(+r1r2+)h﹣πr2h′=π(25+10+4)×4﹣π×4×2=π赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.EB4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。

安徽省定远重点中学2017-2018学年高一数学上学期第三次月考试题

安徽省定远重点中学2017-2018学年高一数学上学期第三次月考试题

安徽定远重点中学2017-2018学年上学期第三次月考高一数学试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将第I卷(选择题)答案用2B铅笔正确填写在答题卡上;请将第II卷(非选择题)答案黑色中性笔正确填写在答案纸上。

第I卷(选择题60分)一、选择题(共12小题,每小题5.0分,共60分)1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A.y= B.y=e-xC.y=-x2+1 D.y=lg|x|2.设函数f(x)=则f(-2)+f(log212)等于( )A. 3 B. 6C. 9 D. 123.函数f(x)=ln(x2+1)的图象大致是( )A.选项A B.选项BC.选项C D.选项D4.已知幂函数f(x)=(n2+2n-2)xn2-3n(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为( )A.-3 B. 1C. 2 D. 1或25.已知幂函数f(x)的图象经过点(2,),则f(4)的值等于( )A. 16 B.C. 2 D.6.用二分法判断方程2x3+3x-3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421 875,0.6253=0.244 14)( )A. 0.25 B. 0.375C. 0.635 D. 0.8257.下列函数①y=lg x;②y=2x;③y=x2;④y=|x|-1,其中有2个零点的函数是( ) A.①② B.③④C.②③ D.④8.若角α是第二象限角,且=-cos,则角是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角9.下列与的终边相同的角的表达式中,正确的是( )A. 2kπ+45°(k∈Z) B.k·360°+(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)10.若三角形的两内角α,β满足:sinα·cosβ<0,则此三角形的形状为( )A.锐角三角形 B.钝角三角形C.直角三角形 D.不能确定11.点P(sin 3-cos 3,sin 3+cos 3)所在的象限为( )A.第一象限 B.第二象限C.第三象限 D.第四象限12.若函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x +k)的图象是( )A.选项A B.选项BC.选项C D.选项D第II卷(选择题90分)二、填空题(共4小题,每小题5.0分,共20分)13.如果圆心角为的扇形所对的弦长为2,则扇形的面积为________.14.不等式tanα+>0的解集是________.15.已知幂函数y=(m∈N*)的图象与x轴、y轴均无交点,且关于原点对称,则m=________.16.不等式>0的解集为________.三、解答题(共6小题,共70分)17.计算:(1)()2+log0.25+9log5-1;(2).18.化简下列各式:(1)sinπ+cosπ+cos(-5π)+tan;(2)a2sin 810°-b2cos 900°+2ab tan 1 125°.19.已知一扇形的圆心角是α,所在圆的半径是R.(1)若α=60°,R=10 cm,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?20.已知函数y=.(1)求定义域;(2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.21.已知函数f(x)= (-x2+2x).(1)求函数f(x)的值域;(2)求f(x)的单调性.22.如图,A,B,C是函数y=f(x)=x图象上的三点,它们的横坐标分别是t,t+2,t +4(t≥1).(1)设△ABC的面积为S,求S=g(t);(2)若函数S=g(t)<f(m)恒成立,求m的取值范围.安徽定远重点中学2017-2018学年上学期第三次月考高一数学试题答案1.【答案】C【解析】A项,y=是奇函数,故不正确;B项,y=e-x为非奇非偶函数,故不正确;C,D两项中的两个函数都是偶函数,且y=-x2+1在(0,+∞)上是减函数,y=lg|x|在(0,+∞)上是增函数,故选C.2.【答案】C【解析】因为-2<1,log212>log28=3>1,所以f(-2)=1+log2[2-(-2)]=1+log24=3,f(log212)=2log212-1=2log212×2-1=12×=6,故f(-2)+f(log212)=3+6=9,故选C.3.【答案】A【解析】本题考查的是对数函数的图象.由函数解析式可知f(x)=f(-x),即函数为偶函数,排除C;由函数过(0,0)点,排除B、D.4.【答案】B【解析】由于f(x)为幂函数,所以n2+2n-2=1,解得n=1或n=-3,经检验只有n=1适合题意,故选B.5.【答案】D【解析】6.【答案】C【解析】令f(x)=2x3+3x-3,f(0)<0,f(1)>0,f(0.5)<0,f(0.75)>0,f(0.625)<0,∴方程2x3+3x-3=0的根在区间(0.625,0.75)内,∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.7.【答案】D【解析】分别作出这四个函数的图象(图略),其中④y=|x|-1的图象与x轴有两个交点,即有2个零点,故选D.8.【答案】C【解析】由角α是第二象限角,易得是第一、三象限角.又=-cos,所以角是第三象限角.9.【答案】C【解析】A,B中弧度与角度混用,不正确.=2π+,所以与的终边相同.-315°=-360°+45°,所以-315°也与45°的终边相同.故选C.10.【答案】B【解析】因为三角形的两内角α,β满足:sinα·cosβ<0,又sinα>0,所以cosβ<0,所以90°<β<180°,故β为钝角.11.【答案】D【解析】因为π<3<π,作出单位圆如图所示.设MP,OM分别为a,b.sin 3=a>0,cos 3=b<0,所以sin 3-cos 3>0.因为|MP|<|OM|,即|a|<|b|,所以sin 3+cos 3=a+b<0.故点P(sin 3-cos 3,sin 3+cos 3)在第四象限.12.【答案】A【解析】方法一f(x)=(k-1)ax-a-x(a>0,a≠1)在R上是奇函数,∴f(-x)=-f(x),即(k-1)a-x-ax=-[(k-1)ax-a-x],∴(k-2)(ax+a-x)=0,∴k=2.又f(x)是减函数,∴0<a<1,则g(x)=log a(x+k)的图象,如选项A所示.方法二∵f(x)=(k-1)ax-a-x(a>0,a≠1)在R上是奇函数,∴f(0)=0,∴k=2.又f(x)是减函数,∴0<a<1,则g(x)=log a(x+2),观察题干四个选项,只有A符合题意.13.【答案】【解析】如图,作BF⊥AC.已知AC=2,∠ABC=,则AF=,∠ABF=.∴AB==2,即R=2.∴弧长l=|α|R=,∴S=lR=.14.【答案】【解析】不等式的解集如图所示(阴影部分),15.【答案】2【解析】∵幂函数y=(m∈N*)的图象与x轴、y轴均无交点,且关于原点对称,∴m2-2m-3<0,且m2-2m-3为奇数,即-1<m<3且m2-2m-3为奇数.又m∈N*,∴m=2.16.【答案】(-∞,log2(-1))【解析】由>0,得4x+2x+1<1,即(2x)2+2·2x<1,配方得(2x+1)2<2,所以2x<-1,两边取以2为底的对数,得x<log2(-1).17.【答案】(1) ()2+log0.25+9log5- 1=2+1+9×-0=+1+=.(2)====1.【解析】18.【答案】解(1)原式=sinπ+cos+cos π+1=-1+0-1+1=-1.(2)原式=a2sin 90°-b2cos 180°+2ab tan(3×360°+45°)=a2+b2+2ab tan 45°=a2+b2+2ab=(a+b)2.【解析】19.【答案】(1)设弧长为l,弓形面积为S弓,∵α=60°=,R=10,∴l=αR=(cm).S弓=S扇-S△=××10-×10×10×sin=50(cm2).(2)扇形周长c=2R+l=2R+αR,∴α=,∴S扇=αR2=·R2=(c-2R)R=-R2+cR=-2+.当且仅当R=,即α=2时,扇形面积最大,且最大面积是. 【解析】20.【答案】(1)y==,定义域为实数集R.(2)令y==f(x),∵f(-x)===f(x),且定义域关于坐标原点对称,∴函数y=为偶函数.(3)∵已知函数为偶函数,则作出它在第一象限的图象关于y轴的对称图象,即可得函数y=的图象,如图.根据图象易知,函数y=在区间(0,+∞)上是增函数,在区间(-∞,0]上是减函数.【解析】21.【答案】(1)由题意得-x2+2x>0,∴x2-2x<0,由二次函数的图象知,0<x<2.当0<x<2时,y=-x2+2x=-(x2-2x)∈(0,1],∴(-x2+2x)≥1=0.∴函数y=(-x2+2x)的值域为[0,+∞).(2)设u=-x2+2x(0<x<2),v=u,∵函数u=-x2+2x在(0,1)上是增函数,在(1,2)上是减函数,v=u是减函数,∴由复合函数的单调性得到函数f(x)=(-x2+2x)在(0,1)上是减函数,在(1,2)上是增函数.【解析】22.【答案】(1)S=g(t)==log2=log2(1+).(2)∵函数g(t)在区间[1,+∞)上单调递减,∴g(t)max=g(1)=log2.∴g(t)max=log2<f(m)=m=log2. ∴>,∴0<m<.【解析】。

安徽省定远重点中学2018-2019学年高二上学期第三次月考数学(文)试题(解析版)

安徽省定远重点中学2018-2019学年高二上学期第三次月考数学(文)试题(解析版)

2018-2019学年度上学期第三次月考高二文科数学试题本试卷满分150分,考试时间120分钟。

请在答题卷上作答。

第I卷选择题(共60分)一、选择题(本大题共12题,每题5分,满分60分,每小题只有一个正确答案)1.已知命题,,命题q:若恒成立,则,那么( )A. “”是假命题B. “”是真命题C. “”为真命题D. “”为真命题【答案】D【解析】【分析】分别判断命题的真假性,然后再判断每个选项的真假【详解】,即不存在,命题是假命题若恒成立,⑴时,,即符合条件⑵时,则解得,则命题为真命题故是真命题故选【点睛】本题考查了含有“或”“且”“非”命题的真假判定,只需将命题的真假进行判定出来即可,需要解答一元二次不等式,属于基础题。

2.已知,,是的充分条件,则实数的取值范围是( )A. B. C. D.【答案】A【解析】【分析】p是q的充分条件,,所以p⇒q,则p是q的子集,由此得出集合的包含关系,再解不等式即可。

【详解】由≤0,得0<x≤1,即p:0<x≤1.由4x+2x-m≤0,得4x+2x≤m.因为4x+2x=(2x)2+2x,要使p 是q的充分条件,则当0<x≤1时,m大于等于4x+2x的最大值,又当x=1时,4x+2x有最大值6,所以m≥6.故选A.【点睛】在判断充分不必要条件,必要不充分条件,充分必要条件时转化为集合的关系。

等价于是的子集。

3.已知椭圆的离心率是,过椭圆上一点作直线,分别交椭圆于,两点,且斜率分别为,,若点,关于原点对称,则的值为( )A. B. C. D.【答案】【解析】设点,则。

则。

由题意得,∴,∴,又,∴,解得,∴答案:点睛:关于点与椭圆的位置关系有以下结论:①点在椭圆内;②点在椭圆上;③点在椭圆外.特别是根据点在椭圆上,可得点的横纵坐标之间的等量关系,以便进行两坐标间的转化。

4.已知,则等于()A. B. C. D.【答案】C【解析】试题分析:令,则,,因此,则根据求导公式有考点:导数的求法;换元法;5.设双曲线的两条渐近线与直线分别交于A,B两点,F为该双曲线的右焦点.若,则该双曲线的离心率的取值范围是( )A. B. C. D.【答案】B【解析】试题分析:由双曲线方程可知其渐近线方程为,将代入上式可得即。

2017-2018学年安徽省滁州市定远重点中学高二数学上第三次月考(文)试题(含答案)

2017-2018学年安徽省滁州市定远重点中学高二数学上第三次月考(文)试题(含答案)

安徽定远重点中学2017-2018学年上学期第三次月考高二数学(文)试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将选择题答案用2B铅笔正确填写在答题卡上;请将非选择题答案黑色中性笔正确填写在答案纸上。

第I卷(选择题60分)一、选择题(共12小题,每小题5.0分,共60分)1.直线y=2x-3的斜率和在y轴上截距分别等于()A.2,3 B.-3,-3 C.-3,2 D.2,-32.一只小狗在如图所示的方砖上走来走去,则最终停在阴影方砖上的概率为()A.B.C.D.53.为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:则这15户家庭的月用水量的众数与中位数分别为()A.9,6 B.6,6 C.5,6 D.5,54.直线l1:ax-y+b=0,l2:bx-y+a=0(a≠0,b≠0,a≠b)在同一坐标系中的图形大致是()5.1.5,1.5,1.6,1.6,1.7的中位数和平均数是()A.1.5,1.65 B.1.6,1.58 C.1.65,1.7 D.1.7,1.76.若图中直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k27.已知直线kx-y+1-3k=0,当k变化时,所有的直线恒过定点()A.(1,3) B.(-1,-3) C.(3,1) D.(-3,-1)8.下列说法中,正确的是()(1)数据4、6、6、7、9、4的众数是4;(2)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势;(3)平均数是频率分布直方图的“重心”;(4)频率分布直方图中各小长方形的面积等于相应各组的频数.A.(1)(2)(3) B.(2)(3) C.(2)(4) D.(1)(3)(4)9.函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0∈[-5,5],使f(x0)≤0的概率是()A.1 B.C.D.10.执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s属于()A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]11.阅读如图的程序框图,则输出的S等于()A.40 B.38 C.32 D.2012.下列抽样试验中,最适宜用系统抽样法的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样第II卷(选择题90分)二、填空题(共4小题,每小题5.0分,共20分)13.在总体中抽取了一个样本,为了便于统计,将样本中的每个数据乘以100后进行分析,得出新样本的平均数为3,则估计总体的平均数为________.14.某商品在5家商场的售价x(元)和销售量y(件)之间的一组数据如下表所示:由散点图可知,销售量y与价格x之间有较好的线性相关关系,且线性回归方程是=-3.2x +4a,则a=________.15.倾斜角为60°,与y轴的交点到坐标原点的距离为3的直线的斜截式方程是_________________.16.某人5次上班途中所花费的时间(单位:分钟)分别为x,y,7,8,9,若这组数据的平均数为8,方差为4,则|x-y|的值为________.三、解答题(共6小题,17题10分,其余每小题12.0分,共70分)17.直线l过点P(4,1),(1)若直线l过点Q(-1,6),求直线l的方程;(2)若直线l在y轴上的截距是在x轴上的截距的2倍,求直线l的方程.18.将200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.表1和表2分别是注射药物A和药物B后的实验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小.19.未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查了某校100名学生寒假中零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据形成了频数分布表和频数分布直方图.如下表和图所示:请结合图形完成下列问题:(1)补全频数分布表;(2)在频数分布直方图中,如果将矩形ABCD底边AB长度视为1,则这个矩形的面积是多少?这次调查的样本容量是多少?20.甲、乙两位学生参加某知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加知识竞赛,从统计学的角度考虑(即计算平均数、方差),你认为选派哪位学生参加合适?请说明理由.21.如图,在平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标:A(0,0),B(3,),C(4,0).(1)求边CD所在直线的方程;(2)证明平行四边形ABCD为矩形,并求其面积.22.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n≥m+2的概率.安徽定远重点中学2017-2018学年上学期第三次月考高二数学(文)试题答案解析1.【答案】D【解析】直线的斜率为2,且在y轴上截距为-3,故选D.2.【答案】C【解析】由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为=,故选C.3.【答案】C【解析】数据5出现的次数最多,为众数;数据6处在第8位,中间位置,所以这组数据的中位数是6.4.【答案】C【解析】将l1与l2的方程化为斜截式得:y=ax+b,y=bx+a,根据斜率和截距的符号可得选C.5.【答案】B【解析】1.5,1.5,1.6,1.6,1.7的中位数是1.6,平均数=(1.5+1.5+1.6+1.6+1.7)=1.58.6.【答案】D【解析】由题图可知,k1<0,k2>0,k3>0,且l2比l3的倾斜角大.∴k1<k3<k2.8.【答案】B【解析】数据4、6、6、7、9、4的众数是4和6,故(1)不正确;平均数、众数与中位数从不同的角度描述了一组数据的集中趋势,(2)正确;平均数是频率分布直方图的“重心”,故(3)正确,频率分布直方图中各小长方形的面积等于相应各组的频率而不是频数,故(4)不正确,综上可知(2)(3)正确.9.【答案】C【解析】将问题转化为与长度有关的几何概型求解,当x0∈[-1,2]时,f(x0)≤0,则所求概率P==.10.【答案】A【解析】由程序框图得分段函数s=.所以当-1≤t<1时,s=3t∈[-3,3);当1≤t≤3时,s=4t-t2=-(t-2)2+4,所以此时3≤s≤4.综上,函数的值域为[-3,4],即输出的s属于[-3,4].11.【答案】B【解析】第一次循环,S=0+4×5=20,i=3;第二次循环,S=20+3×4=32,i=2;第三次循环,S=32+2×3=38,i=1,结束循环,输出S=38.12.【答案】C【解析】A总体有明显层次,不适宜用系统抽样法;B样本容量很小,适宜用随机数法;D 总体容量很小,适宜用抽签法.13.【答案】0.03【解析】一组数据乘以100后得到的新的平均数3应是原平均数的100倍,∴原来样本平均数为0.03,因此估计总体平均数为0.03.14.【答案】10【解析】根据题意得,==10,==+6,因为回归直线过样本中心点(,),所以+6=-3.2×10+4a,解得a=10.15.y=根号三x+3 或.y=根号三x-316.【答案】6【解析】由题意可得:x+y+7+8+9=40,x+y=16,(x-8)2+(y-8)2=18,设x=8+t,y=8-t,则2t2=18,解得t=±3,∴|x-y|=2|t|=6.17.【答案】(1)直线l的方程为=,化简,得x+y-5=0.(2)设直线l的方程为y-1=k(x-4),l在y轴上的截距为1-4k,在x轴上的截距为4-,故1-4k=2(4-),得k=或k=-2,直线l的方程为y=x或y=-2x+9,即x-4y=0或2x+y-9=0.【解析】18.【答案】解可以看出注射药物A后的疱疹面积的中位数在[65,70)之间,而注射药物B后的疱疹面积的中位数在[70,75)之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.【解析】19.【答案】解(1)②中应填50.5+50=100.5,①中的频数是10,③中的频数是25,又总的频率之和是1,所以④中应填1;故答案为:①10,②100.5,③25,④1;所以频数、频率表如下:(2)由分析知:矩形ABCD的面积为25,样本容量为100.【解析】20.【答案】解(1)作出茎叶图如图所示:(2)甲=(12+11+9+8+25+18+23+14)=15,=(22+25+10+5+13+10+20+15)=15,乙=[(12-15)2+(11-15)2+(9-15)2+(8-15)2+(25-15)2+(18-15)2+(23-15)2+(14-15)2]=,=[(22-15)2+(25-15)2+(10-15)2+(5-15)2+(13-15)2+(10-15)2+(20-15)2+(15-15)2]=,∵甲=乙,<,∴甲的成绩较稳定,∴派甲参赛比较合适.【解析】21.【答案】由于平行四边形ABCD的三个顶点坐标:A(0,0),B(3,),C(4,0).则kAB==,kBC==-.(1)由于AB∥CD,则直线CD的方程为:y=(x-4),(2)由于kAB==,kBC==-,则直线AB与BC的斜率之积为-1,即AB⊥BC,故平行四边形ABCD为矩形,又由AB==2,BC==2,则矩形ABCD的面积为4.【解析】22.【答案】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P==.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件有:(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽定远重点中学2017-2018学年上学期第三次月考高二数学(文)试题注意事项:1.答题前在答题卡、答案纸上填写好自己的姓名、班级、考号等信息2.请将选择题答案用2B铅笔正确填写在答题卡上;请将非选择题答案黑色中性笔正确填写在答案纸上。

第I卷(选择题60分)一、选择题(共12小题,每小题5.0分,共60分)1.直线y=2x-3的斜率和在y轴上截距分别等于( )A. 2,3 B.-3,-3 C.-3,2 D. 2,-32.一只小狗在如图所示的方砖上走来走去,则最终停在阴影方砖上的概率为( )A. B. C. D. 53.为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:则这15户家庭的月用水量的众数与中位数分别为( )A. 9,6 B. 6,6 C. 5,6 D. 5,54.直线l1:ax-y+b=0,l2:bx-y+a=0(a≠0,b≠0,a≠b)在同一坐标系中的图形大致是( )5.1.5,1.5,1.6,1.6,1.7的中位数和平均数是( )A. 1.5,1.65 B. 1.6,1.58 C. 1.65,1.7 D. 1.7,1.76.若图中直线l1、l2、l3的斜率分别为k1、k2、k3,则( )A.k1<k2<k3 B.k3<k1<k2 C.k3<k2<k1 D.k1<k3<k27.已知直线kx-y+1-3k=0,当k变化时,所有的直线恒过定点( )A. (1,3) B. (-1,-3) C. (3,1) D. (-3,-1)8.下列说法中,正确的是( )(1)数据4、6、6、7、9、4的众数是4;(2)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势;(3)平均数是频率分布直方图的“重心”;(4)频率分布直方图中各小长方形的面积等于相应各组的频数.A. (1)(2)(3) B. (2)(3) C. (2)(4) D. (1)(3)(4)9.函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0∈[-5,5],使f(x0)≤0的概率是( )A. 1 B. C. D.10.执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s属于( )A. [-3,4] B. [-5,2]C. [-4,3] D. [-2,5]11.阅读如图的程序框图,则输出的S等于( )A. 40 B. 38 C. 32 D. 2012.下列抽样试验中,最适宜用系统抽样法的是( )A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样第II卷(选择题90分)二、填空题(共4小题,每小题5.0分,共20分)13.在总体中抽取了一个样本,为了便于统计,将样本中的每个数据乘以100后进行分析,得出新样本的平均数为3,则估计总体的平均数为________.14.某商品在5家商场的售价x(元)和销售量y(件)之间的一组数据如下表所示:由散点图可知,销售量y与价格x之间有较好的线性相关关系,且线性回归方程是=-3.2x+4a,则a=________.15.倾斜角为60°,与y轴的交点到坐标原点的距离为3的直线的斜截式方程是_________________.16.某人5次上班途中所花费的时间(单位:分钟)分别为x,y,7,8,9,若这组数据的平均数为8,方差为4,则|x-y|的值为________.三、解答题(共6小题,17题10分,其余每小题12.0分,共70分)17.直线l过点P(4,1),(1)若直线l过点Q(-1,6),求直线l的方程;(2)若直线l在y轴上的截距是在x轴上的截距的2倍,求直线l的方程.18.将200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.表1和表2分别是注射药物A和药物B后的实验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小.19.未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查了某校100名学生寒假中零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据形成了频数分布表和频数分布直方图.如下表和图所示:请结合图形完成下列问题:(1)补全频数分布表;(2)在频数分布直方图中,如果将矩形ABCD底边AB长度视为1,则这个矩形的面积是多少?这次调查的样本容量是多少?20.甲、乙两位学生参加某知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加知识竞赛,从统计学的角度考虑(即计算平均数、方差),你认为选派哪位学生参加合适?请说明理由.21.如图,在平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标:A(0,0),B(3,),C(4,0).(1)求边CD所在直线的方程;(2)证明平行四边形ABCD为矩形,并求其面积.22.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n≥m+2的概率.安徽定远重点中学2017-2018学年上学期第三次月考高二数学(文)试题答案解析1.【答案】D【解析】直线的斜率为2,且在y轴上截距为-3,故选D.2.【答案】C【解析】由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为=,故选C.3.【答案】C【解析】数据5出现的次数最多,为众数;数据6处在第8位,中间位置,所以这组数据的中位数是6.4.【答案】C【解析】将l1与l2的方程化为斜截式得:y=ax+b,y=bx+a,根据斜率和截距的符号可得选C.5.【答案】B【解析】1.5,1.5,1.6,1.6,1.7的中位数是1.6,平均数=(1.5+1.5+1.6+1.6+1.7)=1.58.6.【答案】D【解析】由题图可知,k1<0,k2>0,k3>0,且l2比l3的倾斜角大.∴k1<k3<k2.8.【答案】B【解析】数据4、6、6、7、9、4的众数是4和6,故(1)不正确;平均数、众数与中位数从不同的角度描述了一组数据的集中趋势,(2)正确;平均数是频率分布直方图的“重心”,故(3)正确,频率分布直方图中各小长方形的面积等于相应各组的频率而不是频数,故(4)不正确,综上可知(2)(3)正确.9.【答案】C【解析】将问题转化为与长度有关的几何概型求解,当x0∈[-1,2]时,f(x0)≤0,则所求概率P==.10.【答案】A【解析】由程序框图得分段函数s=.所以当-1≤t<1时,s=3t∈[-3,3);当1≤t≤3时,s=4t-t2=-(t-2)2+4,所以此时3≤s≤4.综上,函数的值域为[-3,4],即输出的s属于[-3,4].11.【答案】B【解析】第一次循环,S=0+4×5=20,i=3;第二次循环,S=20+3×4=32,i=2;第三次循环,S=32+2×3=38,i=1,结束循环,输出S=38.12.【答案】C【解析】A总体有明显层次,不适宜用系统抽样法;B样本容量很小,适宜用随机数法;D总体容量很小,适宜用抽签法.13.【答案】0.03【解析】一组数据乘以100后得到的新的平均数3应是原平均数的100倍,∴原来样本平均数为0.03,因此估计总体平均数为0.03.14.【答案】10【解析】根据题意得,==10,==+6,因为回归直线过样本中心点(,),所以+6=-3.2×10+4a,解得a=10.15.y=根号三x+3 或 .y=根号三x-316.【答案】6【解析】由题意可得:x+y+7+8+9=40,x+y=16,(x-8)2+(y-8)2=18,设x=8+t,y=8-t,则2t2=18,解得t=±3,∴|x-y|=2|t|=6.17.【答案】(1)直线l的方程为=,化简,得x+y-5=0.(2)设直线l的方程为y-1=k(x-4),l在y轴上的截距为1-4k,在x轴上的截距为4-,故1-4k=2(4-),得k=或k=-2,直线l的方程为y=x或y=-2x+9,即x-4y=0或2x+y-9=0.【解析】18.【答案】解可以看出注射药物A后的疱疹面积的中位数在[65,70)之间,而注射药物B后的疱疹面积的中位数在[70,75)之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.【解析】19.【答案】解(1)②中应填50.5+50=100.5,①中的频数是10,③中的频数是25,又总的频率之和是1,所以④中应填1;故答案为:①10,②100.5,③25,④1;所以频数、频率表如下:(2)由分析知:矩形ABCD的面积为25,样本容量为100.【解析】20.【答案】解(1)作出茎叶图如图所示:(2)甲=(12+11+9+8+25+18+23+14)=15,=(22+25+10+5+13+10+20+15)=15,乙=[(12-15)2+(11-15)2+(9-15)2+(8-15)2+(25-15)2+(18-15)2+(23-15)2+(14-15)2]=,=[(22-15)2+(25-15)2+(10-15)2+(5-15)2+(13-15)2+(10-15)2+(20-15)2+(15-15)2]=,∵甲=乙,<,∴甲的成绩较稳定,∴派甲参赛比较合适.【解析】21.【答案】由于平行四边形ABCD的三个顶点坐标:A(0,0),B(3,),C(4,0).则kAB==,kBC==-.(1)由于AB∥CD,则直线CD的方程为:y=(x-4),(2)由于kAB==,kBC==-,则直线AB与BC的斜率之积为-1,即AB⊥BC,故平行四边形ABCD为矩形,又由AB==2,BC==2,则矩形ABCD的面积为4.【解析】22.【答案】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P==.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m +2的事件有:(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=.。

相关文档
最新文档