高中数学第三章 §1 第1课时 求值问题

合集下载

高中数学第三章基本初等函数(ⅰ)3.1.1实数指数幂及其运算bb高一数学

高中数学第三章基本初等函数(ⅰ)3.1.1实数指数幂及其运算bb高一数学
12/10/2021
第二十六页,共四十三页。
计算:
(1)(-1.8)0+32-2·3
3382-
1+ 0.01
93;
(2)14-12·0.1(-2·4(aba-31b)-33)12(a>0,b>0).
12/10/2021
第二十七页,共四十三页。
解:(1)原式=1+232·28732-10+923 =1+232·322-10+27=29-10=19. (2)原式=412·0.12·23·a32·a32·b-b32 -32
12/10/2021
第三十一页,共四十三页。
条件求值问题的解法 (1)求解此类问题应注意分析已知条件,通过将已知条件中的 式子变形(如平方、因式分解等),寻找已知式和待求式的关系, 可考虑使用整体代换法. (2)利用整体代换法解决分数指数幂的计算问题,常常运用完 全平方公式及其变形公式.
12/10/2021
4 (-3)4×2. A.0 个 C.2 个
B.1 个 D.3 个
12/10/2021
第十三页,共四十三页。
解析:选 A.3 6a3=3 6·a≠2a;3 -2<0,而6 (-2)2>0; -34 2<0,而4 (-3)4×2>0.
12/10/2021
第十四页,共四十三页。
3.把根式 a a化成分数指数幂是( )
12/10/2021
第二十一页,共四十三页。
2.把下列根式表示为分数指数幂的形式,把分数指数幂表示 为根式的形式:
3
(1)(a-b)-4(a>b);(2)
5
(ab)2;(3)
3
(x-1)5;
(4) 1 ;(5)(a-b)37. 3 a2
12/10/2021

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册

3.1 函数的概念与性质 3.1.1 函数及其表示方法第1课时 函数的概念课程标准在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域.新知初探·自主学习——突出基础性教材要点知识点一 函数的概念1.函数的概念一般地,给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数集A)称为这个函数的定义域,所有函数值组成的集合{y|y=f(x),x∈A}称为函数的值域.状元随笔 对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f ”表示对应关系,在不同的函数中f的具体含义不一样.知识点二 同一函数一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.知识点三 常见函数的定义域和值域函数一次函数反比例函数二次函数a<0基础自测1.下列从集合A到集合B的对应关系f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积2.函数f(x)=√x−1x−2的定义域为( )A.(1,+∞) B.[1,+∞)C.[1,2) D.[1,2)∪(2,+∞) 3.下列各组函数表示同一函数的是( )A.y=x2−9x−3与y=x+3B.y=√x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=x+1,x∈Z与y=x-1,x∈Z4.若函数f(x)=√x+6x−1,求f(4)=________.课堂探究·素养提升——强化创新性题型1 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;状元随笔 从本题可以看出函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,也可以是集合B的子集.(2)A={1,2,3},B={4,5,6},对应关系如图所示;状元随笔 判断从集合A到集合B的对应是否为函数,一定要以函数的概念为准则,另外也要看A中的元素是否有意义,同时,一定要注意对特殊值的分析.(3)A=R,B={y|y>0},f:x→y=|x|;(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.方法归纳(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:①A,B必须都是非空数集;②A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个(1)①x∈[0,1]取不到[1,2].③y∈[0,3]超出了N∈[0,2]范围.④可取一个x值,y有2个对应,不符合题意.(2)关键是否符合函数定义.①x→3x,x≠0,x∈R;②x→y,其中y2=x,x∈R,y∈R.(2)下列对应是否是函数?题型2 求函数的定义域[教材P87例题1]例2 求下列函数的定义域:(1)f(x)=1√(2)g(x)=1x+1x+2.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域:(1)f(x)=6x2−3x+2;(2)f(x)=0√||(3)f(x)=√2x+3-√1 x .(1)分母不为0(2){偶次根式被开方数≥0(x+1)0底数不为0分母不为0 (3){偶次根式被开方数≥0分母不为0题型3 同一函数例3 下面各组函数中为相同函数的是( )A .f (x )=√(x −1)2,g (x )=x -1B .f (x )=√x 2−1,g (x )=√x +1·√x−1C .f (x )=x ,g (x )=x 2xD .f (x )=x 0与g (x )=1x 0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形;②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2−xx ,g (x )=x -1;(2)f(x)=√xx,g(x)√(3)f(x)=x2,g(x)=(x+1)2;(4)f(x)=|x|,g(x)=√x2.状元随笔 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型4 求函数的值域[经典例题]状元随笔 求函数值域的注意事项①数形结合求值域一定要注意函数的定义域;②值域一定要用集合或区间来表示.例4 求下列函数的值域.(1)y=3-4x,x∈(-1,3];(2)f(x)=1x,x∈[3,5];(3)y=2xx+1;(4)y=x2-4x+5,x∈{1,2,3};(5)y=x2-2x+3,x∈[0,3);(6)y=2x-√x−1;(7)f(x)=1x2+2.状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x的取值范围,再求3-4x的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域.(3)将自变量x=1,2,3代入解析式求值,即可得值域.(4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”观察函数的值域.如函数y=11+x2的值域为{y|0<y≤1}.(2)配方法:求形如F(x)=a[f(x)]2+bf(x)+c的函数的值域可用配方法,但要注意f(x)的取值范围.如求函数y=x-2√x+3的值域,因为y=(√x-1)2+2≥2,故所求值域为{y|y≥2}.对于形如y=ax2+bx+c(a≠0)的函数,尤其要注意在给定区间上二次函数最值的求法.(3)分离常数法:此方法主要是针对分子分母同次的分式,即将分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:形如y=ax+b+√cx+d的函数常用换元法求值域,即先令t=√cx+d,求出x,并注明t的取值范围,再代入上式表示成关于t的二次函数,最后用配方法求值域.注意:分离常数法的目的是将分式函数变为反比例函数类,换元法的目的是将函数变为二次函数类.即将函数解析式变为已经熟悉的简单函数类型求值域.(5)反表示法:根据函数解析式反解出x,根据x的取值范围转化为关于y的不等式求解.(6)中间变量法:根据函数解析式确定一个已知范围的中间变量(如x2),用y表示出该中间变量,根据中间变量的取值范围转化为关于y的不等式求解.跟踪训练4 求下列函数的值域:(1)y=2x+1,x∈{1,2,3,4,5};(2)y=√x+1;(3)y=1−x21+x2;先分离再求值域(4)y=-x2-2x+3(-5≤x≤-2);配方法求值域(5)f(x)=5x+4 x−1.第三章 函数3.1 函数的概念与性质3.1.1 函数及其表示方法第1课时 函数的概念新知初探·自主学习[教材要点]知识点三{x|x≠0} R {y|y≤4ac−b24a}[基础自测]1.解析:对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.答案:A2.解析:使函数f(x)=√x−1x−2有意义,则{x−1≥0,x−2≠0,即x≥1,且x≠2.所以函数的定义域为{x|x≥1且x≠2}.故选D.答案:D3.解析:A中两函数定义域不同;B中两函数值域不同;D中两函数对应法则不同.答案:C4.解析:f(4)=√4+64−1=2+2=4.答案:4课堂探究·素养提升例1 【解析】 (1)(4)对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.跟踪训练1 解析:(1)图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性②√同时满足任意性与唯一性③×x=2时,对应元素y=3∉N,不满足任意性④×x=1时,在N中有两个元素与之对应,不满足唯一性解析:(2)①是函数.因为任取一个非零实数x,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x=1时,y=±1,即一个非零自然数x,对应两个y的值,不符合函数的概念.答案:(1)B (2)①是函数②不是函数例2 【解析】 (1)因为函数有意义当且仅当{x+1≥0,√x+1≠0,解得x>-1,所以函数的定义域为(-1,+∞).(2)因为函数有意义当且仅当{x≠0,x+2≠0,解得x≠0且x≠-2,因此函数的定义域为(-∞,-2)∪(−2,0)∪(0,+∞).跟踪训练2 解析:(1)要使函数有意义,只需x2-3x+2≠0,即x≠1且x≠2,故函数的定义域为{x|x≠1且x≠2}.(2)要使函数有意义,则{x+1≠0,|x|−x>0,解得x<0且x≠-1.所以定义域为(-∞,-1)∪(−1,0).(3)要使函数有意义,则{2x +3≥0,2−x >0,x≠0,解得-32≤x <2,且x ≠0.故定义域为[−32,0)∪(0,2).例3 【解析】 函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.【答案】 D跟踪训练3 解析:所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7).(2)因为f (x )=1x 在[3,5]上单调递减,所以其值域为[15,13].(3)因为y =2x x +1=2(x +1)−2x +1=2-2x +1≠2,所以函数y =2x x +1的值域为{y |y ∈R 且y ≠2}. (4)函数的定义域为{1,2,3},当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2,所以这个函数的值域为{1,2},(5)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(6)设t =√x −1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t =2(t -14)2+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为[158,+∞).【解析】(7)方法一 因为x 2+2≥2,所以0<1x 2+2≤12,所以f (x )的值域为(0,12].方法二 设t 是所求值域中的元素,则关于x 的方程1x 2+2=t 应该有解,即x 2=1t -2应该有解,所以1t -2≥0,即1−2t t ≥0,解得0<t ≤12,所以所求值域为(0,12].跟踪训练4 解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}.(2)因为√x ≥0,所以√x +1≥1,即所求函数的值域为[1,+∞).(3)因为y =1−x 21+x 2=-1+21+x 2,所以函数的定义域为R ,因为x 2+1≥1,所以0<21+x2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1].(4)y =-x 2-2x +3=-(x +1)2+4.因为-5≤x≤-2,所以-4≤x+1≤-1.所以1≤(x+1)2≤16.所以-12≤4-(x+1)2≤3.所以所求函数的值域为[-12,3].解析:(5)函数f(x)=5x+4x−1=5(x−1)+9x−1=5+9x−1,因为x≠1,所以9x−1≠0,所以f(x)≠5,所以函数f(x)=5x+4x−1的值域为(-∞,5)∪(5,+∞).。

2021_2022年高中数学第三章直线与方程1

2021_2022年高中数学第三章直线与方程1

2.两条直线垂直的条件也是在两条直线 的斜率都存在的条件下得出的,即在此条件 下有 l1⊥l2⇔k1·k2=-1;若一条直线的斜率不 存在,而另一条直线的斜率等于 0,则两条直 线也垂直.
3.在两条直线平行或垂直关系的判断中 体会分类讨论的思想.
当堂双基达标
1.下列说法中正确的是( ) A.平行的两条直线的斜率一定存在且相等 B.平行的两条直线的倾斜角一定相等 C.垂直的两直线的斜率之积为-1 D.只有斜率相等的两条直线才一定平行
【解析】 A 不正确,平行的两条直线可能斜率都不存 在;B 正确;C 不正确,当一条直线斜率为零,另一条直线 斜率不存在时,它们也垂直;D 不正确,斜率都不存在的两 条直线也平行.
【答案】 B
2.已知直线 l1 的斜率 k1=-85,直线 l2 的斜率 k2=58,则 l1 与 l2 的位置关系为( )
A.(-1,0)
B.(0,-1)
C.(1,0)
D.(0,1)
【解析】 设 D(x,y),则 kCD=yx- -03=x-y 3,kAD=yx+-11, 又 kAB=22+ -11=3,kCB=22- -03=-2,CD⊥AB,CB∥AD,

kCD·kAB=x-y 3·3=-
kCB=kAD
,∴
3y=3-x
【提示】 α1=α2,因为两直线平行,同位角相等.反之 不成立,当 α1=α2 时,直线 l1 与 l2 可能平行或重合.
2.若直线 l1∥l2,则其斜率 k1=k2.这种说法对吗?
【提示】 不对,只有在直线 l1 与 l2 都存在斜率时,由 l1∥l2 可以得出 k1=k2,如图当直线 l1 与 l2 都与 x 轴垂直时, 虽然 l1∥l2 但斜率都不存在.

高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第1课时 函数奇偶性的概念精品

高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第1课时 函数奇偶性的概念精品

第1课时 函数奇偶性的概念必备知识基础练知识点一函数奇偶性的判断1.判断下列函数的奇偶性: (1)f (x )=2-|x |;(2)f (x )=x 2-1+1-x 2; (3)f (x )=xx -1;(4)f (x )=⎩⎪⎨⎪⎧2x +1,x >0,-2x +1,x <0.知识点二奇偶函数的图象2.已知函数y =f (x )是偶函数,且图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是( )A .4B .2C .1D .03.函数f (x )=4x3+x 3的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称知识点三利用函数的奇偶性求值4.若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________;5.若函数f (x )=x +1x +ax为奇函数,则a =________.6.已知f (x )=ax 5+bx 3+cx -8,且f (d )=10,则f (-d )=________.3.2.2 奇偶性第1课时函数奇偶性的概念必备知识基础练1.解析:(1)∵函数f(x)的定义域为R,关于原点对称,又f(-x)=2-|-x|=2-|x|=f(x),∴f(x)为偶函数.(2)∵函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0,又∵f(-x)=-f(x),f(-x)=f(x),∴f(x)既是奇函数又是偶函数.(3)∵函数f(x)的定义域为{x|x≠1},不关于原点对称,∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-2x)=1+2x=f(x);当x<0时,-x>0,f(-x)=1+(-2x)=1-2x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.2.解析:因为f(x)是偶函数,且图象与x轴有四个交点,所以这四个交点每组两个关于y轴一定是对称的,故所有实根之和为0.选D.答案:D3.解析:∵f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f(-x)=-4x3-x 3=-f (x ),∴f (x )是奇函数,图象关于原点对称.答案:C4.解析:∵函数f (x )在[a -1,2a ]上是偶函数, ∴a -1+2a =0,得a =13.又f (-x )=f (x ),即13x 2-bx +1+b =13x 2+bx +1+b对x ∈⎣⎢⎡⎦⎥⎤-23,23均成立,∴b =0. 答案:135.解析:∵f (x )为奇函数,∴f (-x )=-f (x ), 即-x +1-x +a-x=-x +1x +ax.显然x ≠0,整理得x 2-(a +1)x +a =x 2+(a +1)x +a , 故a +1=0,得a =-1. 答案:-16.解析:令g (x )=ax 5+bx 3+cx ,则g (x )为奇函数.f (d )=g (d )-8=10,∴g (d )=18, f (-d )=g (-d )-8=-g (d )-8=-26.答案:-26关键能力综合练1.解析:A 、D 两项,函数均为偶函数,B 项中函数为非奇非偶,而C 项中函数为奇函数.答案:C2.解析:∵函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x +x =-f (x ),∴f (x )=1x-x 是奇函数,所以f (x )的图象关于原点对称,故选C.答案:C3.解析:由f (x )=x 5+ax 3+bx -2,得f (x )+2=x 5+ax 3+bx . 令G (x )=x 5+ax 3+bx =f (x )+2, ∵G (-x )=(-x )5+a (-x )3+b (-x ) =-(x 5+ax 3+bx )=-G (x ), ∴G (x )是奇函数.∴G (-3)=-G (3), 即f (-3)+2=-f (3)-2,又f (-3)=10, ∴f (3)=-f (-3)-4=-10-4=-14. 答案:D4.解析:∵f (x )=ax 2+bx +c (c ≠0)是偶函数,∴b =0, ∴g (x )=ax 3+cx ,∴g (-x )=-g (x ),∴g (x )是奇函数,故选A. 答案:A5.解析:F (-x )=f (-x )+f (x )=F (x ). 又x ∈(-a ,a )关于原点对称,∴F (x )是偶函数. 答案:B6.解析:∵函数f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=2-2=0,f (0)=0+1=1.∴f [f (-2)]=f (0)=1.故选A.答案:A7.解析:∵f (x )是定义在R 上的奇函数,∴f (-x )=-f (x )且f (0)=0,∴f (-2)=-f (2)=-5,∴f (-2)+f (0)=-5.答案:-58.解析:依题意有⎩⎪⎨⎪⎧4-x 2≥0,2-|x +2|≠0,解得-2≤x ≤2且x ≠0,∴f (x )的定义域为[-2,0)∪(0,2].∵f (x )=4-x 22-|x +2|=4-x 2-x =-4-x2x ,定义域关于原点对称,∴f (-x )=4-x2x=-f (x ),∴f (x )为奇函数. 答案:[-2,0)∪(0,2] 奇9.解析:在f (x )-g (x )=x 3+x 2+1中,令x =-1,得f (-1)-g (-1)=1,又f (x ),g(x)分别是定义在R上的偶函数和奇函数,所以f(1)+g(1)=1.答案:110.解析:(1)f(x)=1x-1的定义域是(-∞,1)∪(1,+∞),不关于原点对称,所以f(x)为非奇非偶函数.(2)f(x)=-3x2+1的定义域是R,f(-x)=f(x),所以f(x)为偶函数.(3)f(x)=1-x·1+x|x+2|-2的定义域是[-1,0)∪(0,1],所以f(x)的解析式可化简为f(x)=1-x·1+xx,满足f(-x)=-f(x),所以f(x)是奇函数.(4)函数的定义域为R.当x>0时,-x<0,则f(-x)=-(-x)+1=x+1=f(x);当x=0时,f(-x)=f(x)=1;当x<0时,-x>0,f(-x)=-x+1=f(x).综上,对任意x∈R,都有f(-x)=f(x),所以f(x)为偶函数.学科素养升级练1.解析:A正确;B错误,仅两个特殊的函数值相等不足以确定函数的奇偶性,需要满足“任意”;C正确;D错误,反例:f(x)=0满足条件,该函数既是奇函数,又是偶函数.答案:AC2.解析:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,∴f(-x)=f(x),g(-x)=-g(x).对于选项A,|f(-x)|-g(-x)=|f(x)|+g(x)≠±(|f(x)|-g(x)),故其不具有奇偶性;对于选项B,f(-x)-|g(-x)|=f(x)-|g(x)|,故函数为偶函数;对于选项C,|f(-x)|+g(-x)=|f(x)|-g(x)≠±(|f(x)|+g(x)),故其不具有奇偶性;对于选项D,f(-x)+|g(-x)|=f(x)+|g(x)|,故函数为偶函数.综上,选D.答案:D3.解析:(1)证明:由已知f(x+y)=f(x)+f(y),令y=-x得f(0)=f(x)+f(-x),令x=y=0得f(0)=2f(0),所以f(0)=0.所以f(x)+f(-x)=0,即f(-x)=-f(x),故f(x)是奇函数.(2)因为f(x)为奇函数.所以f(-3)=-f(3)=a,所以f(3)=-a.又f(12)=f(6)+f(6)=2f(3)+2f(3)=4f(3),所以f(12)=-4a.。

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。

高中数学北师大版必修四教学案第三章 §1 第1课时 求值问题 Word版含答案

高中数学北师大版必修四教学案第三章 §1 第1课时 求值问题 Word版含答案

第课时求值问题
[核心必知]
同角三角函数基本关系式
[问题思考]
.如何理解同角三角函数关系中“同角”的含义?
提示:“同角”有两层含义.一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,与角的表达式无关,如α+α=,+=等.
.平方关系对任意α∈均成立,对吗?商数关系呢?
提示:正确.因为对任意α∈,α,α都有意义,所以α+α=对任意角α∈都成立.而商数关系,αα)=α则不然,需保证α≠,则α有意义,所以商数关系,只对α∈,且α≠π+(∈)成立.
讲一讲
.()已知α=,α是第二象限角,求α,α;()若α=-,试求α,α的值.
[尝试解答] ()∵α+α=,
∴α=-α=-()=.
又∵α是第二象限角,
∴α<,α=-.
∴α=αα)=×(-)=-.
()∵α=-<,且α≠-,
∴α是第二或第三象限的角.
当α是第二象限角时,α>.
∴α===,
α=αα)=×(-)=-.
当α是第三象限角时,α<,
则α=-,α=.
.同角三角函数基本关系式揭示了“同角不同名”的三角函数的运算规律,其最基本的应用是“知一求二”.
.知弦求值时,一般需用到平方关系,这时涉及开方运算,应注意角的取值范围.当角所在的象限不确定时,要注意就角所在的象限分类讨论.
练一练
.[多维思考] 若本讲()条件改为“α=(≠)”,结果如何?
解:当=±时,α=,α=αα)=;。

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?

输出x

2019-2020年高中数学 第三章《三角恒等变换》教学设计 新人教A版必修4

2019-2020年高中数学 第三章《三角恒等变换》教学设计 新人教A版必修4

2019-2020年高中数学第三章《三角恒等变换》教学设计新人教A版必修4【教学目标】进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:新授课阶段1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式.你能根据下图回顾推导过程吗?2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围.4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等.5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,==tan (450+300)等.例1 知),2(,61)4sin()4sin(ππ∈α=α-πα+π,求sin4α的值. 解:∵61)4sin()4sin(=α-πα+π ∴31)4cos()4sin(2=α+πα+π∴ ∴cos2α = 又∵ ∴2α∈ (π, 2π)∴sin2α = 322)31(12cos 122-=--=α-- ∴sin4α = 2sin2αcos2α =例2 已知θ是三角形中的一个最小的内角,且12sin 2cos 2sin 2cos 2222+=θ-θ-θ+θa a a ,求a 的取值范围. 解:原式变形:1)2sin 2(cos )2sin 2(cos 2222+=θ-θ-θ-θa a即,显然 (若,则 0 = 2) ∴ 又∵,∴ 即: 解之得:例3 求证:)6(sin )3cos(cos sin 22α-π-α+πα+α的值是与α无关的定值. 证:)3cos(cos )]23cos(1[21)2cos 1(21α+πα+α-π--α-=原式)sin 3sin cos 3(cos cos ]2cos )23[cos(21απ-απα+α-α-π=211(cos cos 2sin sin 2cos 2)cos sin 23322ππαααααα=+-+-1111cos 22cos 2(1cos 2)24244ααααα=+-++-= ∴)6(sin )3cos(cos sin 22α-π-α+πα+α的值与α无关 例4 已知331cos 2sin 2cos(), , 45221tan πππααααα-++=≤<-求的值.解:由得解方程组223sin 225sin cos 1αααα-=⎪⎨⎪+=⎩得sin 10cos 10αα⎧=-⎪⎪⎨⎪=-⎪⎩或sin 10cos 10αα⎧=⎪⎪⎨⎪=⎪⎩sin 310cos 0 22cos 10αππααα⎧=-⎪⎪≤<∴≤∴⎨⎪=-⎪⎩ 21cos 2sin22sin 2sin cos 1tan 1tan ααααααα-++∴=--22(2(281010101775⨯+⨯==--例5 求值:02210sin 21)140cos 1140sin 3(⋅-.解:原式=0020*******sin 21140cos 140sin 140sin 140cos 3⋅- 16160sin 200sin 1680cos 80sin 200sin 810sin 2180sin 41200sin 80sin 410sin 21)40cos 40sin ()140sin 140cos 3)(140sin 140cos 3(0000002000200000=-=-=⋅⋅-=⋅-+-=例6 .已知函数1)4()cos x f x xπ-=. (Ⅰ)求的定义域;(Ⅱ)设的第四象限的角,且,求的值. 解:(Ⅰ)由 得,故在定义域为(Ⅱ)因为,且是第四象限的角, 所以故1)4()cos f πααα-=12(sin 22)22cos ααα--=.例7 已知sin (-x )=,0<x <,求的值.分析:角之间的关系:(-x )+(+x )=及-2x =2(-x ),利用余角间的三角函数的关系便可求之.解:∵(-x )+(+x )=,∴cos(+x )=sin (-x ).又cos2x =sin (-2x )=sin2(-x )=2sin (-x )cos (-x ), ∴=2cos(-x )=2×=.例8 求证:(sin cos 1)(sin cos 1)tan sin 22x x x x x x +--+=解:原式=22(sin 12sin 1)(sin 12sin 1)22sin 2x xx x x+---++ =22(2sin cos 2sin )(2sin cos 2sin )2222224sin cos cos 22x x x x x x x xx-+ =(cos sin )(cos sin )sin 22222cos cos 2x x x x x x x-+⋅ =x x x x x cos 2cos 2sin 2sin 2cos 22⋅-)(=x x x x cos 2cos 2sincos ⋅⋅=tan.例9 已知,,都是锐角,求 的值. 解:由得3sin 2α=1-2sin 2β=cos2β.由得sin2β=sin2α.∴cos(α+2β)=cos αcos2β-sin αsin2β =3cos αsin 2α-sin α·sin2α=0.∵α、β∈(0,),∴α+2β∈(0,). ∴α+2β=. 课堂小结三角恒等式的证明方法有:从等式一边推导变形到另一边,一般是化繁为简. 等式两边同时变形成同一个式子.将式子变形后再证明. 作业 见同步练习 拓展提升 1.若,则等于 (A ) (B ) (C ) (D )2.函数y=sin2x+sinx,x 的值域是( ) (A)[-,] (B) [] (C) [-,] (D)[]3.已知x ∈(-,0),cos x =,则tan2x 等于 ( ) A.B.-C.D.-4.已知tan=,则的值为( ) A .B .-C .D .-5..,则 . 6.已知,若,则. 若 , 则.7.若,则的值为_______.8.已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A 求 的值.9. ()41,cos ,tan , cos .53αβααββ=-=-已知、为锐角求的值10.设函数()cos 2cos ()f x x x x x R =+∈的最大值为M ,最小正周期为T . (1) 求M ,T ;(2) 若有10个互不相等的正数满足M ,且(i=1,2,…10), 求…的值.参考答案 1.C2.B 提示:用二倍角公式及两角和与差的正弦或余弦公式3.D 4.A 提示:222sin 2sin cos1cos sin 222tan 1cos sin 22cos 2sin cos 222θθθθθθθθθθθ+-+==+++ 5.. 提示:由已知得,22sin 2cos 22sin cos cos sin αααααα+=+-2222222sin cos cos sin 2tan 1tan 7sin cos tan 15ααααααααα+-+-===-++ 6. 提示:2(sin cos )12sin cos θθθθ-=-= 当0,sin cos 4πθθθ⎛⎫∈< ⎪⎝⎭时,当,sin cos 42ππθθθ⎛⎫∈> ⎪⎝⎭时, 7. 提示:去分母后两边平方可得 8 解:,51)sin(,53)sin(=-=+B A B A .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A 9 解:43,cos , sin .55ααα=∴=是锐角.,22 π<β-α<π-∴βα为锐角、又 ()可求出,31tan -=-βα ()(),1010sin ,10103cos -=-=-βαβα()cos cos βααβ∴=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-10 解:(1)()cos 222sin(2)6f x x x x π=+=+(2):,22,62i x k k Z πππ+=+∈故即 ,又是互不相等的正数且(i=1,2,…10), 故 0,1,…9.所以…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 求 值 问 题[核心必知]同角三角函数基本关系式[问题思考]1.如何理解同角三角函数关系中“同角”的含义?提示:“同角”有两层含义.一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,与角的表达式无关,如sin 22α+cos 22α=1,sin2α2+cos 2α2=1等. 2.平方关系对任意α∈R 均成立,对吗?商数关系呢?提示:正确.因为对任意α∈R ,sin α,cos α都有意义,所以sin 2α+cos 2α=1对任意角α∈R 都成立.而商数关系,sin αcos α=tan α则不然,需保证cos α≠0,则tan α有意义,所以商数关系,只对α∈R ,且α≠k π+π2(k ∈Z )成立.讲一讲1.(1)已知sin α=45,α是第二象限角,求cos α,tan α;(2)若cos α=-817,试求sin α,tan α的值.[尝试解答] (1)∵sin 2α+cos 2α=1, ∴cos 2α=1-sin 2α=1-(45)2=925.又∵α是第二象限角, ∴cos α<0,cos α=-35.∴tan α=sin αcos α=45×(-53)=-43.(2)∵cos α=-817<0,且cos α≠-1,∴α是第二或第三象限的角. 当α是第二象限角时,sin α>0. ∴sin α=1-cos 2α=1-(-817)2=1517,tan α=sin αcos α=1517×(-178)=-158.当α是第三象限角时,sin α<0, 则sin α=-1517,tan α=158.1.同角三角函数基本关系式揭示了“同角不同名”的三角函数的运算规律,其最基本的应用是“知一求二”.2.知弦求值时,一般需用到平方关系,这时涉及开方运算,应注意角的取值范围.当角所在的象限不确定时,要注意就角所在的象限分类讨论.练一练1.[多维思考] 若本讲(2)条件改为“cos α=m (m ≠0)”,结果如何? 解:当m =±1时,sin α=0,tan α=sin αcos α=0;当m ≠±1时,由于m ≠0,所以角α为象限角.若α为第一或第二象限角,则sin α=1-cos 2α=1-m 2, ∴tan α=sin αcos α=m1-m 2. 若α为第三或第四象限角,则 sin α=-1-cos 2α=-1-m 2, ∴tan α=sin αcos α=-m1-m 2.讲一讲2.已知tan α=2.试求: (1)sin α的值;(2)sin α-cos αsin α+cos α和sin αcos α的值. [尝试解答] (1)∵tan 2α=sin 2αcos 2α=1-cos 2αcos 2α=1cos 2α-1, ∴1cos 2α=1+tan 2α. ∴cos 2α=11+tan 2α=11+22=15. ∵tan α=2>0,∴α是第一或第三象限角. 当α是第一象限角时,cos α>0, ∴cos α=55, ∴sin α=cos αtan α=55×2=255. 当α是第三象限角时,cos α<0, ∴cos α=-55,∴sin α=cos αtan α=-255.(2)sin α-cos αsin α+cos α=sin αcos α-cos αcos αsin αcos α+cos αcos α=tan α-1tan α+1=2-12+1=23. sin αcos α=sin αcos αsin 2α+cos 2α=sin αcos αcos 2αsin 2α+cos 2αcos 2α=tan αtan 2α+1=222+1=25.1.已知角α的正切值在求角α的正弦值时,应尽量少用平方关系,一般按以下思路求解: cos 2α=11+tan 2α――→开方cos α――→用sin α=tan αcos αsin α. 2.本讲(2)是已知角α的正切值,求关于sin α,cos α的齐次式值的问题.解决该类问题通常是利用商数关系和平方关系,将原式化为关于tan α的表达式,然后整体代入tan α的值求解,体现了“整体化”的思想,可减少运算量并避免讨论.练一练2.已知tan(π-α)=12,求:(1)sin α+cos α的值; (2)2sin 2α-12cos 2α的值.解:(1)由已知得tan α=-12<0,∴α是第二或第四象限的角,则cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1=1(-12)2+1=45.当α是第二象限角时,cos α=-255,∴sin α=tan αcos α=-12×(-255)=55,sin α+cos α=-55;当α是第四象限角时,cos α=255,∴sin α=tan αcos α=-55,sin α+cos α=55. (2)2sin 2α-12cos 2α=2sin 2α-12cos 2αsin 2α+cos 2α =2tan 2α-12tan 2α+1=2×(-12)2-12(12)2+1=0.讲一讲3.(1)已知sin α=12cos α,则sin 4α-cos 4α=________.(2)若sin α+cos α=15,且0<α<π,则tan α=________.[尝试解答] (1)由sin α=12cos α,得tan α=12.∴cos 2α=cos 2αsin 2α+cos 2α=11+tan 2α=45. ∴sin 2α=1-cos 2α=15.∴sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α) =sin 2α-cos 2α=15-45=-35.(2)由sin α+cos α=15,得1+2sin αcos α=125.∴sin αcos α=-1225<0.又0<α<π,∴sin α>0,cos α<0, ∴sin α-cos α>0,∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α =1-2×(-1225)=75. ②可得sin α=45,cos α=-35,∴tan α=sin αcos α=-43.[答案] (1)-35 (2)-431.已知角α的某一个三角函数值,求其他三角函数式的值时,一般先利用公式将其化简,再利用同角三角函数的基本关系求解.2.sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α,利用此关系求sin α+cos α或sin α-cos α的值时,要注意判断它们的符号.练一练3.已知sin θ,cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ). (1)求sin 3θ+cos 3θ的值; (2)求tan θ+1tan θ的值. 解:∵sin θ,cos θ是方程x 2-ax +a =0的两个根, ∴sin θ+cos θ=a ,且sin θcos θ=a , (sin θ+cos θ)2=1+2sin θcos θ.即a 2=1+2a ,解得a =1±2,而当a =1+2时, Δ=(1+2)2-4(1+2)=-1-22<0, ∴a =1-2,则(1)sin 3θ+cos 3θ=(sin θ+cos θ)(1-sin θcos θ) =a (1-a )=(1-2)[1-(1-2)]=2-2. (2)tan θ+1tan θ=sin θcos θ+cos θsin θ=sin 2θ+cos 2θsin θcos θ=1sin θcos θ=1a =11-2=-1- 2.若sin A =45,且A 是三角形的一个内角,求5sin A +815cos A -7的值.[错解] ∵sin A =45,∴cos A = 1-sin 2A =35,∴5sin A +815cos A -7=5×45+815×35-7=6. [错因] 由sin A =45不能确定A 是锐角或钝角,那么cos A 就有正、负两个值,此解法中忽视开方运算的符号而出现错误.[正解] ∵sin A =45,且A 是三角形的一个内角,∴A 是锐角或钝角. 当A 为锐角时, cos A =1-sin 2A =35.∴5sin A +815cos A -7=5×45+815×35-7=6; 当A 为钝角时,cos A =-1-sin 2A =-35.∴5sin A +815cos A -7=5×45+815×(-35)-7=-34.1.下列各项中可能成立的是( ) A .sin α=12且cos α=12B .sin α=0且cos α=-1C .tan α=1且cos α=-1D .α在第二象限时,tan α=-sin αcos α解析:选B 由平方关系知A 不成立;由商数关系知D 不成立.对于B ,当sin α=0时,cos α=±1,所以B 可能成立.而对于C ,当tan α=1时,cos 2α=11+tan 2α=12,所以C 不成立.应选B.2.已知sin α=-45,α是第三象限角,则tan α等于( )A.34 B .-34 C.43 D .-43解析:选C ∵sin α=-45,且α是第三象限角.∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=43.3.已知tan φ=-3,且φ为三角形的内角,那么cos φ的值为( ) A .- 3 B.233C .-12D .-2解析:选C cos 2φ=11+tan 2φ=11+(-3)2=14. ∵φ为三角形的内角,tan φ<0, ∴φ∈(π2,π),∴cos φ=-12.4.已知sin α=55,则sin 2α-cos 2α的值为________. 解析:sin 2α-cos 2α =2sin 2α-1=2×(55)2-1=-35. 答案:-355.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是________. 解析:原式=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α =(sin α+cos α)2(sin α+cos α)(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=(-12)+1(-12)-1=-13.答案: -136.已知sin α=4-2m m +5,cos α=m -3m +5,α是第四象限角,试求tan α的值. 解:∵sin 2α+cos 2α=1, ∴(4-2m m +5)2+(m -3m +5)2=1.化简,整理得,m (m -8)=0,∴m 1=0,m 2=8.当m =0时,sin α=45,cos α=-35,不符合α是第四象限角,舍去.当m =8时,sin α=-1213,cos α=513,∴tan α=-125.一、选择题1.已知sin(α+π2)=13,α∈(-π2,0),则tan α的值为( )A .-2 2B .2 2C .-24 D.24解析:选A 由已知得cos α=13.∵α∈(-π2,0),∴sin α=-1-cos 2α=-232,∴tan α=sin αcos α=-232×3=-2 2.2.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α=( ) A.34 B .-34C.43 D .-43解析:选A 由a ∥b 得,sin α3=cos α4.∴sin αcos α=34=tan α. 3.若sin α,cos α是方程3x 2+6mx +2m +1=0的两根.则实数m 的值为( ) A .-12 B.56C .-12或56 D.12解析:选A 依题意得⎩⎪⎨⎪⎧sin α+cos α=-2m ,sin αcos α=2m +13,∵(sin α+cos α)2=1+2sin αcos α, ∴(-2m )2=1+23(2m +1),即12m 2-4m -5=0. 解m =-12或56.m =56时,Δ=36m 2-12(2m +1)<0,∴m =-12.4.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是( )A.25 B .-25 C .-2 D .2解析:选A 由条件可得tan α+33-tan α=5.解得tan α=2.∴sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25. 二、填空题5.若sin θ=-45,tan θ>0,则cos θ=________.解析:∵sin θ<0,tan θ>0,∴θ是第三象限角, ∴cos θ=-1-sin 2θ=-35.答案:-356.已知α∈(π,3π2),tan α=2,则cos α=________. 解析:依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15. 又α∈(π,3π2),因此cos α=-55. 答案:-557.已知A 为三角形内角,且sin A cos A =-18,则cos A -sin A =________. 解析:(cos A -sin A )2=1-2sin A cos A =1-2×(-18)=54. ∵0<A <π,sin A cos A <0,∴sin A >0,cos A <0.∴cos A -sin A <0,∴cos A -sin A =-52. 答案:-52 8.已知θ是第三象限角,且sin 4θ+cos 4θ=59, 则sin θcos θ=________.解析:sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2(sin θcos θ)2=59,∴(sin θcos θ)2=29. ∵θ是第三象限角,∴sin θ<0,cos θ<0.∴sin θ cos θ=23. 答案:23 三、解答题9.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.解:(1)∵a ∥b ,∴2sin θ-(cos θ-2sin θ)=0,即4sin θ=cos θ,故tan θ=14. (2)∵|a |=|b |,∴sin 2θ+(cos θ-2sin θ)2=5.展开得sin 2θ+cos 2θ-4sin θcos θ+4sin 2θ=5.把sin 2θ=1-cos 2θ代入并整理,得cos θ(sin θ+cos θ)=0.∴cos θ=0或tan θ=-1.又θ∈(0,π),∴θ=π2或θ=3π4. 10.已知3sin α+cos α=0,求下列各式的值:(1)3cos α+5sin αsin α-cos α; (2)sin 2α+2sin αcos α-3cos 2α.解:法一:由已知得,cos α=-3sin α.(1)3cos α+5sin αsin α-cos α=-9sin α+5sin αsin α+3sin α=-4sin α4sin α=-1. (2)sin 2α+2sin αcos α-3cos 2α=sin 2α+2sin α(-3sin α)-3(-3sin α)2=-32sin 2α.由⎩⎪⎨⎪⎧cos α=-3sin α,sin 2α+cos 2α=1,得sin 2α=110. ∴sin 2α+2sin αcos α-3cos 2α=-32×110=-165. 法二:由已知,得sin αcos α=-13,∴tan α=-13. (1)3cos α+5sin αsin α-cos α=3+5×sin αcos αsin αcos α-1=3+5tan αtan α-1=3-53-13-1=-1. (2)sin 2α+2sin αcos α-3cos 2α=sin 2α+2sin αcos α-3cos 2αsin 2α+cos 2α=tan 2α+2tan α-3tan 2α+1=(-13)2+2×(-13)-3(-13)2+1 =-165.。

相关文档
最新文档