17-18版 必修5 第2章 2.4 第2课时 等比数列的性质
高考数学必修五 第二章 2.4 第2课时等比数列的性质

第2课时 等比数列的性质学习目标 1.灵活应用等比数列的定义及通项公式.2.熟悉等比数列的有关性质.3.系统了解判断数列是否成等比数列的方法.知识点一 由等比数列衍生的等比数列思考 等比数列{a n }的前4项为1,2,4,8,下列判断正确的是 (1){3a n }是等比数列; (2){3+a n }是等比数列;(3)⎩⎨⎧⎭⎬⎫1a n 是等比数列; (4){a 2n }是等比数列.答案 由定义可判断出(1),(3),(4)正确.梳理 (1)在等比数列{a n }中按序号从小到大取出若干项:123,,,,,,n k k k k a a a a ……若k 1,k 2,k 3,…,k n ,…成等差数列,那么123,,,,,n k k k k a a a a ……是等比数列.(2)如果{a n },{b n }均为等比数列,那么数列⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫b n a n ,{|a n |}是等比数列.知识点二 等比数列的性质思考 在等比数列{a n }中,a 25=a 1a 9是否成立?a 25=a 3a 7是否成立?a 2n =a n -2a n +2(n >2,n ∈N *)是否成立? 答案 ∵a 5=a 1q 4,a 9=a 1q 8,∴a 1a 9=a 21q 8=(a 1q 4)2=a 25, ∴a 25=a 1a 9成立.同理a 25=a 3a 7成立,a 2n =a n -2·a n +2也成立. 梳理 一般地,在等比数列{a n }中,若m +n =s +t ,则有a m ·a n =a s ·a t (m ,n ,s ,t ∈N *).若m +n =2k ,则a m ·a n =a 2k (m ,n ,k ∈N *).1.a n =a m q n -m (n ,m ∈N *),当m =1时,就是a n =a 1q n -1.(√)2.等比数列{a n }中,若公比q <0,则{a n }一定不是单调数列.(√)3.若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.(×)类型一 等比数列通项公式的推广应用 例1 等比数列{a n }中. (1)a 4=2,a 7=8,求a n ;(2)若{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,求通项公式a n . 考点 等比数列的通项公式题点 已知数列为等比数列求通项公式 解 (1)∵a 7a 4=q 7-4=82,即q 3=4,∴q =34, ∴a n =a 4·qn -4=2·(34)n -4=22543332(2)2.n n --⋅=(2)由a 25=a 10=a 5·q 10-5,且a 5≠0, 得a 5=q 5,即a 1q 4=q 5, 又q ≠0,∴a 1=q .由2(a n +a n +2)=5a n +1得,2a n (1+q 2)=5qa n , ∵a n ≠0,∴2(1+q 2)=5q , 解得q =12或q =2.∵a 1=q ,且{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=2,q =2.∴a n =2·2n -1=2n .反思与感悟 (1)应用a n =a m q n -m ,可以凭借任意已知项和公比直接写出通项公式,不必再求a 1. (2)等比数列的单调性由a 1,q 共同确定,但只要单调,必有q >0. 跟踪训练1 (1)在等比数列{a n }中,a 3=4,a 7=16,则a 5=________;(2)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2·…·a n 的最大值为__________. 考点 等比数列的通项公式题点 已知数列为等比数列求通项公式 答案 (1)8 (2)64解析 (1)∵a 7a 3=q 7-3=q 4=164=4,∴q 2=2.∴a 5=a 3q 5-3=4·q 2=4×2=8. (2)设该等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5,即⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12,∴a 1a 2…a n =⎝⎛⎭⎫12(-3)+(-2)+…+(n -4)211749(7)[()]222411()(),22n n n ---== 当n =3或4时,12⎣⎡⎦⎤⎝⎛⎭⎫n -722-494取得最小值-6, 此时21749[()]2241()2n --取得最大值26,∴a 1a 2…a n 的最大值为64. 类型二 等比数列的性质 命题角度1 序号的数字特征 例2 已知{a n }为等比数列.(1)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(2)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值. 考点 等比数列的性质 题点 利用项数的规律解题解 (1)a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25, ∵a n >0, ∴a 3+a 5>0,∴a 3+a 5=5.(2)根据等比数列的性质,得 a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴a 1a 2…a 9a 10=(a 5a 6)5=95, ∴log 3a 1+log 3a 2+…+log 3a 10 =log 3(a 1a 2…a 9a 10) =log 395=10.反思与感悟 抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地解决问题. 跟踪训练2 在各项均为正数的等比数列{a n }中,若a 3a 5=4,则a 1a 2a 3a 4a 5a 6a 7=________. 考点 等比数列的性质 题点 等比数列各项积的问题 答案 128解析 ∵a 3a 5=a 24=4,a n >0, ∴a 4=2.∴a 1a 2a 3a 4a 5a 6a 7=(a 1a 7)·(a 2a 6)·(a 3a 5)·a 4 =43×2=128.命题角度2 未知量的设法技巧例3 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 考点 等比数列的性质题点 等比数列的性质的其他应用问题解 方法一 设这四个数依次为a -d ,a ,a +d ,(a +d )2a ,由条件得⎩⎨⎧a -d +(a +d )2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧ a =4,d =4或⎩⎪⎨⎪⎧a =9,d =-6.所以当a =4,d =4时,所求的四个数为0,4,8,16; 当a =9,d =-6时,所求的四个数为15,9,3,1.故所求的四个数为0,4,8,16或15,9,3,1.方法二 设这四个数依次为2a q -a ,aq,a ,aq (q ≠0),由条件得⎩⎨⎧2aq-a +aq =16,aq +a =12,解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =3,q =13.当a =8,q =2时,所求的四个数为0,4,8,16; 当a =3,q =13时,所求的四个数为15,9,3,1.故所求的四个数为0,4,8,16或15,9,3,1.反思与感悟 合理地设出未知数是解决此类问题的技巧.一般地,三个数成等比数列,可设为aq ,a ,aq ;三个数成等差数列,可设为a -d ,a ,a +d .若四个同号的数成等比数列,可设为a q 3,aq ,aq ,aq 3;四个数成等差数列,可设为a -3d ,a -d ,a +d ,a +3d .跟踪训练3 有四个数,前三个数成等比数列,后三个数成等差数列,首末两项和为21,中间两项和为18,求这四个数.考点 等比数列的性质题点 等比数列的性质的其他应用问题 解 设这四个数分别为x ,y,18-y,21-x ,则由题意得⎩⎪⎨⎪⎧y 2=x (18-y ),2(18-y )=y +(21-x ),解得⎩⎪⎨⎪⎧x =3,y =6或⎩⎨⎧x =754,y =454.故所求的四个数为3,6,12,18或754,454,274,94.1.在等比数列{a n }中,a 2=8,a 5=64,则公比q 为( )A.2B.3C.4D.8考点等比数列基本量的计算题点求等比数列公比答案 A解析由a5=a2q3,得q3=8,所以q=2.2.在等比数列{a n}中,a n>0,且a1a10=27,则log3a2+log3a9等于()A.9B.6C.3D.2考点等比数列的性质题点等比数列的性质与对数运算综合答案 C解析因为a2a9=a1a10=27,所以log3a2+log3a9=log327=3.3.在1与2之间插入6个正数,使这8个数成等比数列,则插入的6个数的积为________.考点等比数列的性质题点等比数列各项积的问题答案8解析设这8个数组成的等比数列为{a n},则a1=1,a8=2.插入的6个数的积为a2a3a4a5a6a7=(a2a7)·(a3a6)·(a4a5)=(a1a8)3=23=8.4.已知a n=2n+3n,判断数列{a n}是不是等比数列?考点等比数列的判定题点判断数列为等比数列解不是等比数列.∵a1=21+31=5,a2=22+32=13,a3=23+33=35,∴a1a3≠a22,∴数列{a n}不是等比数列.1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法.2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中项等列出方程(组),求出基本量.3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.一、选择题1.在等比数列{a n }中,a 2 015=8a 2 012,则公比q 的值为( ) A.2 B.3 C.4 D.8考点 等比数列基本量的计算 题点 求等比数列公比 答案 A解析 ∵a 2 015=8a 2 012=a 2 012·q 3,∴q 3=8,∴q =2.2.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为( ) A.7 B.8 C.9 D.16 考点 等比数列的判定 题点 判断数列为等比数列 答案 B解析 点(a n ,a n +1)在直线y =2x 上,∴a n +1=2a n ,∵a 1=1≠0,∴a n ≠0,∴{a n }是首项为1,公比为2的等比数列,∴a 4=1×23=8. 3.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A.100 B.-100 C.10 000D.-10 000考点 等比数列的性质 题点 利用项数的规律解题 答案 C解析 ∵lg(a 3a 8a 13)=lg a 38=6,∴a 38=106∴a 8=102=100.∴a 1a 15=a 28=10 000.4.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.32 考点 等比数列的性质 题点 利用项数的规律解题 答案 D解析 设公比为q ,则由等比数列{a n }各项为正数且 a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.解得q =26或q =36(舍去),∴a 5a 7=1q 2=⎝⎛⎭⎫622=32.5.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( ) A.13 B.3 C.±13 D.±3 考点 等比中项 题点 利用等比中项解题 答案 B解析 设等差数列为{a n },公差为d ,d ≠0. 则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )(a 1+5d ), 化简得d 2=-2a 1d ,∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.6.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( ) A.5 2 B.7 C.6 D.4 2 考点 等比数列的性质 题点 等比数列各项积的问题 答案 A解析 ∵a 1a 2a 3=a 32=5,∴a 2=35.∵a 7a 8a 9=a 38=10,∴a 8=310.∴a 25=a 2a 8=350=1350,又∵数列{a n }各项均为正数,∴a 5=1650. ∴a 4a 5a 6=a 35=1250=5 2.7.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8等于( )A.1+ 2B.1- 2C.3+2 2D.3-2 2考点 等比数列基本量的计算 题点 利用基本量法解题 答案 C解析 设等比数列{a n }的公比为q ,∵a 1,12a 3,2a 2成等差数列,∴a 3=a 1+2a 2,∴a 1q 2=a 1+2a 1q ,a 1≠0,∴q 2-2q -1=0,∴q =1±2. ∵a n >0,∴q >0,q =1+ 2. ∴a 9+a 10a 7+a 8=q 2=(1+2)2=3+2 2.二、填空题8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________. 考点 等比数列的性质 题点 利用项数的规律解题 答案 18解析 由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18.9.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=________. 考点 等比中项 题点 利用等比中项解题 答案 -6解析 由题意知,a 3=a 1+4,a 4=a 1+6. ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4, ∴(a 1+4)2=(a 1+6)a 1, 解得a 1=-8,∴a 2=-6.10.在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,则a 41a 42a 43a 44=________. 考点 等比数列的性质 题点 等比数列各项积的问题 答案 1 024解析 设等比数列{a n }的公比为q , a 1a 2a 3a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,① a 13a 14a 15a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,②②÷①得q 48=8,q 16=2,∴a 41a 42a 43a 44=a 1q 40·a 1q 41·a 1q 42·q 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)(q 16)10=210=1 024.11.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=________. 考点 等比数列的性质 题点 利用项数的规律解题 答案 8解析 由等比数列的性质得a 3a 11=a 27,∴a 27=4a 7.∵a 7≠0,∴a 7=4,∴b 7=a 7=4. 再由等差数列的性质知b 5+b 9=2b 7=8. 三、解答题12.已知{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛⎭⎫1a 1+1a 2,a 3+a 4+a 5=64⎝⎛⎭⎫1a 3+1a 4+1a 5,求{a n }的通项公式.考点 等比数列的性质 题点 利用项数的规律解题 解 设数列{a n }的公比为q (q >0).∵a 1+a 2=2·⎝⎛⎭⎫1a 1+1a 2, ∴a 1+a 1q =2·1+q a 1q ,即a 1=2a 1q .①又∵a 3+a 4+a 5=64⎝⎛⎭⎫1a 3+1a 4+1a 5,∴a 3(1+q +q 2)=64·q 2+q +1a 3q 2,即a 3=64a 3q 2.② 联立①②,解得q =2,a 1=1, 故a n =2n -1(n ∈N *).13.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项a n ; (3)试比较a n 与S n 的大小. 考点 等比数列的性质题点 等比数列的性质与对数运算综合 (1)证明 因为b n =log 2a n ,所以b n +1-b n =log 2a n +1-log 2a n =log 2 a n +1a n=log 2q (q >0)为常数,所以数列{b n }为等差数列且公差d =log 2q .(2)解 因为b 1+b 3+b 5=6,所以(b 1+b 5)+b 3=2b 3+b 3=3b 3=6,即b 3=2.又因为a 1>1,所以b 1=log 2a 1>0,又因为b 1·b 3·b 5=0,所以b 5=0,即⎩⎪⎨⎪⎧ b 3=2,b 5=0,即⎩⎪⎨⎪⎧ b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1, 因此S n =4n +n (n -1)2(-1)=9n -n 22. 又因为d =log 2q =-1,所以q =12,b 1=log 2a 1=4, 即a 1=16,所以a n =25-n (n ∈N *).(3)解 由(2)知,a n =25-n >0,当n ≥9时,S n =n (9-n )2≤0, 所以当n ≥9时,a n >S n .又因为a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12, a 7=14,a 8=18, S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7, S 8=4,所以当n =3,4,5,6,7,8时,a n <S n ;当n =1,2或n ≥9,n ∈N *时,a n >S n .四、探究与拓展14.已知等比数列{a n }满足a n >0,且a 5·a 2n -5=22n (n ≥3),则当n ≥3时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A.2nB.2n 2C.n 2D.n考点 等比数列的性质题点 等比数列的性质与对数运算综合答案 C解析 log 2a 1+log 2a 3+…+log 2a 2n -1=log 2(a 1a 3·…·a 2n -1) 2222222121252522log ()log ()log (2)log 2.n n n n n n n a a a a n --=====15.在等差数列{a n }中,公差d ≠0,a 1,a 2,a 4成等比数列,已知数列a 1,a 3,12,,,,n k k k a a a ……也成等比数列,求数列{k n }的通项公式.考点 等比数列基本量的计算题点 利用基本量法解题解 由题意得a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ), 得d (d -a 1)=0,又d ≠0,∴a 1=d .又a 1,a 3,12,,,,n k k k a a a ……成等比数列,∴该数列的公比q =a 3a 1=3d d=3, ∴n k a =a 1·3n +1.又n k a =a 1+(k n -1)d =k n a 1,∴数列{k n }的通项公式为k n =3n +1.。
人教版高中数学必修5第二章数列-《2.4.2等比数列的基本性质及其应用》教案

2.4.2等比数列的基本性质及其应用从容说课这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.如类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等教学中以师生合作探究为主要形式,充分调动学生的学习积极性教学重点1.探究等比数列更多的性质2.解决生活实际中的等比数列的问题教学难点渗透重要的数学思想教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解等比数列更多的性质2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题二、过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程3.当好学生学习的合作者的角色三、情感态度与价值观1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值教学过程导入新课师 教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下生 由学习小组汇报探究结果 师 对各组的汇报给予评价师 出示多媒体幻灯片一:第3题、第4题详细解答: 第3题解答:(1)将数列{a n }的前k 项去掉,剩余的数列为a k+1,a k+2,….令b i =a k+i则数列a k+1,a k+2,…,可视为b 1,b 2,因为q a a b bik i k i i ==++++11 (i≥1),所以,{b n }是等比数列,即a k+1,a k+2,…是等比数列 (2){a n }中每隔10项取出一项组成的数列是a 1,a 11,a 21,…,则109101101121111......q a a a a a a k k =====-+所以数列a 1,a 11,a 21,…是以a 1为首项,q 10为公比的等比数列猜想:在数列{a n }中每隔m(m 是一个正整数)取出一项,组成一个新数列,这个数列是以a 1为首项、q m 为公比的等比数列◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法第4题解答:(1)设{a n }的公比是q ,则 a 52=(a 1q 4)2=a 12q 8而a 3·a 7=a 1q 2·a 1q 6=a 12q 8所以a 52=a 3·a 7同理,a 52=a 1·a 9(2)用上面的方法不难证明a n 2=a n -1·a n +1(n >1).由此得出,a n 是a n -1和a n +1的等比中项,同理可证a n 2=a n -k ·a n +k (n >k >0).a n 是a n -k 和a n +k 的等比中项(n >k >师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究推进新课[合作探究] 师 出示投影胶片1例题1 (教材P 61B 组第3题)就任一等差数列{a n },计算a 7+a 10,a 8+a 9和a 10+a 40,a 20+a 30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师 注意题目中“就任一等差数列{a n }”,你打算用一个什么样的等差数列来计算? 生 用等差数列1,2,3,师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢? 生 在等差数列{a n }中,若k+s=p+q(k,s,p,q ∈N *),则a k +a s =a p +a q师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做? 生 思考、讨论、交流师 出示多媒体课件一:等差数列与函数之间的联系[教师精讲]师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{a n }的图象,可以看出qs a a p k a a q s p k ==,根据等式的性质,有1=++=++qp sk a a a a q p s k所以a k +a s =a p +a q师 在等比数列中会有怎样的类似结论?生 猜想对于等比数列{a n },类似的性质为:k+s=p+t(k,s,p,t ∈N *),则 a k ·a s =a p ·a t师 让学生给出上述猜想的证明证明:设等比数列{a n }公比为q ,则有a k ·a s =a 1q k-1·a 1q s-1=a 12·q k+s-2a p ·a t =a 1q p-1·a 1q t-1=a 12·q p+t-2因为所以有a k ·a s =a p ·a t师 指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质即等比数列{a n }中,若k+s=p+t(k,s,p,t ∈N *),则有a k ·a s =a p ·a t师 下面有两个结论:(1)与首末两项等距离的两项之积等于首末两项的积; (2)与某一项距离相等的两项之积等于这一项的平方你能将这两个结论与上述性质联系起来吗?生 思考、列式、合作交流,得到:结论(1)就是上述性质中1+n =(1+t)+(n -t)时的情形; 结论(2)就是上述性质中k+k=(k+t)+(k-t)时的情形师 引导学生思考,得出上述联系,并给予肯定的评价师 上述性质有着广泛的应用师 出示投影胶片2:例题2例题(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18(2)在等比数列{b n }中,b 4=3,求该数列前七项之积; (3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.例题2 三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程解答:(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18解:∵a 1a 18=a 9a 10,∴a 18=51001109a a a(2)在等比数列{b n }中,b 4=3,求该数列前七项之积解:b 1b 2b 3b 4b 5b 6b 7=(b 1b 7)(b 2b 6)(b 3b 5)b 4∵b 42=b 1b 7=b 2b 6=b 3b 5,∴前七项之积(32)3×3=37(3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8解:.∵a 5是a 2与a 8的等比中项,∴542=a 8×(-∴a 8=-另解:a 8=a 5q 3=a 5·2545425-⨯=a a =-[合作探究]师 判断一个数列是否成等比数列的方法:1、定义法;2、中项法;3、通项公式法例题3:已知{a n }{b n }是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论师 请同学们自己完成上面的表师 根据这个表格,我们可以得到什么样的结论?如何证明?生 得到:如果{a n }、{b n }是两个项数相同的等比数列,那么{a n ·b n }也是等比数列证明如下:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项与第n +1项分别为a 1p n -1b 1q n -1与a 1p n b 1q n ,因为pqq b p a q b p a b a b a n n nn n n n n ==∙--++11111111它是一个与n 无关的常数,所以{a n ·b n }是一个以pq 为公比的等比数列[教师精讲]除了上面的证法外,我们还可以考虑如下证明思路: 证法二:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项、第n -1项与第n +1项(n >1,n ∈N *)分别为a 1p n -1b 1q n -1、a 1p n -2b 1q n -2与a 1p n b 1q n ,因为 (a n b n )2=(a 1p n -1b 1q n -1)2=(a 1b 1)2(pq) 2(n -1)(a n -1·b n -1)(a n +1·b n +1)=(a 1p n -2b 1q n -2)(a 1p n b 1q n )=(a 1b 1)2(pq)2(n -1)即有(a n b n )2=(a n -1·b n -1)(a n +1·b n +1)(n >1,n ∈N *所以{a n ·b n }是一个等比数列师 根据对等比数列的认识,我们还可以直接对数列的通项公式考察:证法三:设数列{a n}的公比是p,{b n}公比是q,那么数列{a n·b n}的通项公式为a n b n=a1p n-1b1q n-1=(a1b1)(pq) n-1设c n=a n b n,则c n=(a1b1)(pq) n-1所以{a n·b n}是一个等比数列课堂小结本节学习了如下内容:1.等比数列的性质的探究2.证明等比数列的常用方法布置作业课本第60页习题2.4 A组第3题、B组第1题板书设计。
人教版2017高中数学(必修五)2.4.2等比数列的性质 探究导学课型PPT课件

am·an=ap2. (2)性质的特殊情况:若m+n=2p,则
2.等比数列四个常用性质 (1)下标成等差数列,则其对应项成等比数列. (2)从第二项起,每一项都是与它等距离的前后两项的等比
中项.
(3)奇数项(或偶数项)依次仍组成等比数列.
(4)若{an},{bn}都是等比数列,则{an·bn},
探究2:对任意的等比数列{an},若有m+n=p+l(m,n,p,l∈N*),
那么aman=apal吗?
提示:相等,设等比数列{an}的公比为q,则am=a1qm-1,
an=a1qn-1,ap=a1qp-1,al=a1ql-1,aman= a1qm-1×a1qn-1=a12 qm apal= a1qp-1×a1ql-1=a12qp
=a32+2a3a5+a52=(a3+ a5)2= 25,
又an>0,所以a3+a5=5.
答案:5
2 a 3.在等比数列{an}中,a3a5a7a9a11=243,则 9 = a11
.
【解析】由等比数列的性质知a3a11=a5a9=a72得a75=243,所以 a7=3,而a7a11=a92,所以 答案:3
)
2a ,a ,a 成等比数列,得 9 【解析】选D.由 a62=a3·a9,所以 3 6 9
a3=4.
2.已知数列{an}是等比数列,若an>0,且a2a4+2a3a5+a4a6=25, 则a3+a5= .
【解析】因为数列{an}是等比数列,所以a2a4=a32, a4a6=a52,所以a2a4+2a3a5+a4a6
(2)若项数满足4+5=2+7,那么项之间满足a4a5=a2a7吗? 提示:满足,因为a4=23=8,a5=24=16,a2=2, a7=26=64,所以a4a5=128=a2a7.
高中数学新人教A版必修5第二章 2.4 第二课时 等比数列的性质

第二课时 等比数列的性质预习课本P53练习第3、4题,思考并完成以下问题 等比数列项的运算性质是什么?[新知初探] 等比数列的性质(1)若数列{a n },{b n }是项数相同的等比数列,则{a n ·b n }也是等比数列.特别地,若{a n }是等比数列,c 是不等于0的常数,则{c ·a n }也是等比数列.(2)在等比数列{a n }中,若m +n =p +q ,则a m a n =a p a q .(3)数列{a n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项的积. (4)在等比数列{a n }中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等比数列,公比为q k +1.(5)当m ,n ,p (m ,n ,p ∈N *)成等差数列时,a m ,a n ,a p 成等比数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( )解析:(1)正确,根据等比数列的定义可以判定该说法正确. (2)错误,当q >1,a 1>0时,{a n }才为递增数列.(3)正确,当q =1时,数列中的每一项都相等,所以为常数列. 答案:(1)√ (2)× (3)√2.由公比为q 的等比数列a 1,a 2,…依次相邻两项的乘积组成的数列a 1a 2,a 2a 3,a 3a 4,…是( )A .等差数列B .以q 为公比的等比数列C .以q 2为公比的等比数列D .以2q 为公比的等比数列解析:选C 因为a n +1a n +2a n a n +1=a n +2a n =q 2为常数,所以该数列为以q 2为公比的等比数列.3.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( )A .35B .63C .21 3D .±21 3解析:选B ∵{a n }成等比数列. ∴a 4,a 6,a 8成等比数列∴a 26=a 4·a 8,即a 8=2127=63.4.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41,又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49,∵数列各项都是正数, ∴a 4+a 8=7. 答案:7等比数列的性质[典例] (1)在1与100之间插入n 个正数,使这n +2个数成等比数列,则插入的n 个数的积为( )A .10nB .n 10C .100nD .n 100(2)在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________. [解析] (1)设这n +2个数为a 1,a 2,…,a n +1,a n +2, 则a 2·a 3·…·a n +1=(a 1a n +2)n 2=(100)n 2=10n .(2)因为a 1a 2a 3…a 10=(a 3a 8)5=265,所以a 3a 8=213, 又因为a 3=16=24,所以a 8=29. 因为a 8=a 3·q 5,所以q =2. 所以a 7=a 8q =256.[答案] (1)A (2)256有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项的“下标”的指导作用.[活学活用]1.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7解析:选D 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8,联立⎩⎪⎨⎪⎧a 4+a 7=2,a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以q 3=-12或q 3=-2,故a 1+a 10=a 4q3+a 7·q 3=-7.2.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,则a 10=________. 解析:由a 4·a 7=-512,得a 3·a 8=-512.由⎩⎪⎨⎪⎧a 3·a 8=-512,a 3+a 8=124, 解得⎩⎪⎨⎪⎧ a 3=-4,a 8=128或⎩⎪⎨⎪⎧a 3=128,a 8=-4.(舍去). 所以q =5a 8a 3=-2.所以a 10=a 3q 7=-4×(-2)7=512. 答案:512灵活设元求解等比数列问题[典例] (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们之和为12,求这四个数.[解析] (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6,解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45. [答案] 45(2)解:法一:设前三个数为aq ,a ,aq ,则a q ·a ·aq =216, 所以a 3=216.所以a =6. 因此前三个数为6q ,6,6q . 由题意知第4个数为12q -6. 所以6+6q +12q -6=12,解得q =23.故所求的四个数为9,6,4,2.法二:设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2,由题意知14(4-d )2×(4-d )×4=216,解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.几个数成等比数列的设法(1)三个数成等比数列设为aq ,a ,aq . 推广到一般:奇数个数成等比数列设为: …a q 2,aq,a ,aq ,aq 2… (2)四个符号相同的数成等比数列设为: a q 3,aq,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为: …a q 5,a q3,aq ,aq ,aq 3,aq 5… (3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.等比数列的实际应用问题[典例] 某工厂2018年1月的生产总值为a 万元,计划从2018年2月起,每月生产总值比上一个月增长m %,那么到2019年8月底该厂的生产总值为多少万元?[解] 设从2018年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %.∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列.∴a n =a (1+m %)n -1.∴2019年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用] 如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝⎛⎭⎫22n ,故a 7=2×⎝⎛⎭⎫226=14. 答案:14层级一 学业水平达标1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:选A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.32解析:选D 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.∴a 5=6,a 4+a 6=6q+6q =5. 解得q =26,∴a 5a 7=1q 2=⎝⎛⎭⎫622=32.4.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13D .±3解析:选B 设等差数列为{a n },公差为d ,d ≠0.则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )·(a 1+5d ),化简得d 2=-2a 1d , ∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.5.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000D .-10 000解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.又a 1a 15=a 28=10000,故选C.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b , 解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27. 答案:3或277.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.解析:由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 答案:188.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048. 答案:2 0489.在由实数组成的等比数列{a n }中,a 3+a 7+a 11=28,a 2·a 7·a 12=512,求q . 解:法一:由条件得⎩⎪⎨⎪⎧a 7q -4+a 7+a 7q 4=28, ①a 7q -5·a 7·a 7q 5=512, ② 由②得a 37=512,即a 7=8. 将其代入①得2q 8-5q 4+2=0.解得q 4=12或q 4=2,即q =±142或q =±42.法二:∵a 3a 11=a 2a 12=a 27, ∴a 37=512,即a 7=8.于是有⎩⎪⎨⎪⎧a 3+a 11=20,a 3a 11=64,即a 3和a 11是方程x 2-20x +64=0的两根,解此方程得x =4或x =16.因此⎩⎪⎨⎪⎧ a 3=4,a 11=16或⎩⎪⎨⎪⎧a 3=16,a 11=4.又∵a 11=a 3·q 8,∴q =±⎝⎛⎭⎫a 11a 318=±418=±42或q =±⎝⎛⎭⎫1418=±142. 10.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25, ∴由题意,得a 23-2a 3a 5+a 25=36, 同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧ (a 3-a 5)2=36,(a 3+a 5)2=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧ a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n-2或a n =26-n .层级二 应试能力达标1.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:选B 由题意,可得a 1·a 2·a 3·a 4·a 5=1,即(a 1·a 5)·(a 2·a 4)·a 3=1,又a 1·a 5=a 2·a 4=a 23,所以a 53=1,得a 3=1.2.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.3.已知数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 1=1,则a 2 016=( ) A .5B .1C .0D .-1解析:选B 设等差数列{a n }的公差为d ,则由a 1,a 2,a 3成等比数列得(1+d )2=1+2d ,解得d =0,所以a 2 016=a 1=1.4.设各项为正数的等比数列{a n }中,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( )A .230B .210C .220D .215解析:选C ∵a 1·a 2·a 3·…·a 30=230,∴a 301·q1+2+3+…+29=a 301·q29×302=230, ∴a 1=2-272,∴a 3·a 6·a 9·…·a 30=a 103·(q 3)9×102=(2-272×22)10×(23)45=220. 5.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27,∴a 1a 2a 3…a 13=(a 27)6·a 7=a 137, 而a 7=-2.∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-2136.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________.解析:由题意,知a 2-a 1=-1-(-7)3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1. 答案:-17.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=5,b 3=17.求数列{b n }的通项公式.解:依题意a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4d a 1=3,所以ab n =a 13n -1,①又ab n =a 1+(b n -1)d =b n +12a 1,② 由①②得a 1·3n -1=b n +12·a 1. 因为a 1=2d ≠0,所以b n =2×3n -1-1.8.容器A 中盛有浓度为a %的农药m L ,容器B 中盛有浓度为b %的同种农药m L ,A ,B 两容器中农药的浓度差为20%(a >b ),先将A 中农药的14倒入B 中,混合均匀后,再由B倒入一部分到A 中,恰好使A 中保持m L ,问至少经过多少次这样的操作,两容器中农药的浓度差小于1%?解:设第n 次操作后,A 中农药的浓度为a n ,B 中农药的浓度为b n ,则a 0=a %,b 0=b %.b 1=15(a 0+4b 0),a 1=34a 0+14b 1=15(4a 0+b 0);b 2=15(a 1+4b 1),a 2=34a 1+14b 2=15(4a 1+b 1);…;b n =15(a n -1+4b n -1),a n =15(4a n -1+b n -1).∴a n -b n =35(a n -1-b n -1)=…=35(a 0-b 0)·⎝⎛⎭⎫35n -1. ∵a 0-b 0=15,∴a n -b n =15·⎝⎛⎭⎫35n .依题意知15·⎝⎛⎭⎫35n <1%,n ∈N *,解得n ≥6.故至少经过6次这样的操作,两容器中农药的浓度差小于1%.。
高中数学人教版必修5课件:2.4.2等比数列的性质(共13张PPT)

2、等比数列性质二:
• 在等比数列{an}中,若m+n=p+q,m、n、p、
q∈N*,则 am·an=ap·aq 。 • 特别地,若m+n=2k,则am·an=_ak_·a_k=_(a_k)2 。
• 由1+5=6,则a1·a5=a6吗?
【注】等式两边相乘的项数必须一样多!
追 踪
利用等比数列的性质填空:
练 在等比数列{an}中: 习 (1)若a5=2,a10=10,则a15=__,
a6·a9=__。
(2)若a13·a22=14,a10=4 ,则a25=___。
(3)若a2·a4=4,则a3=___。
提 升
利用等比数列的性质填空:
练 习
(4)若a4·a8=30,则a2·a6·a10=___。
(5) 若 an>0 , a2a4+2a3a5+a4a6=25 ,
等比数列
学习目标
1、进一步巩固等比数列的定义和通项公式。 2、掌握等比数列的性质,会用性质灵活解决
问题。
• 重、难点:等比数列性质的灵活运用。
抛 砖 在等比数列{an}中: 引 玉 an=a1qn-1
猜想an=amq ? ,你能证明这个结论
吗?
1、等比数列性质一:
• 设数列{an}是公比为q的等比数列,则:
2.4.2 等比数列的性质
Yesterday once more
等差数列
等比数列
定义
an+1-an=d
公差(比)
d
q
递推公式
通项公式 等差(比)
中项
an=an-1+d an= a1+(n-1)d
an=an-1 q an=a1qn-1
高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.
-
1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,
2.4 第2课时 等比数列的性质

2 3 4
由此可知,等比数列 an 的通项公式为
an a1 q
n 1
观察数列
(1) 1,2,4,8,16,…
(2)8, 4, 2, 1, 1 2 , 1 4 , 1 8 ,
公比 q=2 公比 q=
1 2
(3) 4,4,4,4,4,4,4,… (4) 1,-1,1,-1,1,-1,1,… 以上4个数列的公比分别为:
1 an
是公比为
1 q
的等比数列.
(9)在{an}中,每隔k(k∈N*)项取出一项,按原来顺序排 列,所得的新数列仍为等比数列,且公比为qk+1.
(10)当m、n、p(m、n、p∈N*)成等差数列时,am ,
an , a
p
成等比数列。
例:已知{an},{bn}是项数相同的等比数列,求证{an•bn} 是等比数列.
迭加法 加-乘
an a1 (n 1)d
迭乘法
an a1 q (a1 q 0)
n 1
乘—乘方
由等差数列的性质,猜想等比数列的性质
{an}是公差为d的等差数列
性质1: an=am+(n-m)d 性质2:若an-k,an,an+k 是{an}中的三项 , 则2an=an+k+ an-k 性质3: 若n+m=p+q 则am+an=ap+aq
证明或判断一个数列为等比数列的方法: (1)an/an-1=q (n2 且q≠0){an}为等比数列. (适用于选择、填空题和解答题) (2)an=cqn (c,q≠0){an}为等比数列.
(适用于选择、填空题)
(3) a2n+1=anan+2{an}为等比数列. (适用于选择、填空题)
高中数学必修五第二章第二节第2课时 等比数列的性质及应用

第二章 数 列
等比数列性质的应用
(1)已知在各项均为正数的等比数列{an}中,a1a2a3=5,
a7a8a9=10,则 a4a5a6=( )
A.5 2
B.7
C.6
D.±5 2
栏目 导引
第二章 数 列
(2)(2021·南开中学月考)已知等比数列{an}满足 an>0,n=1,2,…, 且 a5·a2n-5=22n(n≥3),则当 n≥1 时,log2a1+log2a3+…+
栏目 导引
第二章 数 列
法四:因为 a1·a2n-1=a3·a2n-3=a5·a2n-5=…=(an)2=22n, 所以 log2a1+log2a3+…+log2a2n-1=log2(a1a3…a2n-1) =log2[(a1a2n-1)·(a3a2n-3)…an]=log22n2=n2. 【答案】 (1)A (2)C
栏目 导引
第二章 数 列
利用等比数列的性质解题的基本思路 (1)充分发挥项的“下标”的指导作用,分析等比数列项与项之间 的关系,选择恰当的性质解题. (2)在等比数列的有关运算中,常常涉及次数较高的指数运算,往 往是建立关于 a1,q 的方程组求解,但这样解起来很麻烦.此时, 常利用等比数列的性质求解,往往可使问题简单明了. [注意] 在应用等比数列的性质解题时,需时刻注意等比数列性 质成立的前提条件.
多项关系
若{an}为等比数列,且 m+n=p+q(m,n,p,q∈N*), 则__a_m_·_a_n_=__a_p_·a_q____
栏目 导引
第二章 数 列
■名师点拨 在等比数列{an}中, (1)若 m+n=p+r,m,n,p,r∈N*,则 aman=apar,特别地: ①若 m+n=2r,则 aman=a2r(其中 m,n,r∈N*); ②a1an=a2an-1=…=aian+1-i=…; ③推广:若 m+n+t=p+r+s,则 amanat=aparas(m,n,t,p,r, s∈N*). (2)若 m,n,p(m,n,p∈N*)成等差数列,则 am,an,ap 成等比 数列.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 等比数列的性质1.掌握等比数列的性质及其应用.(重点)2.熟练掌握等比数列与等差数列的综合应用.(难点、易错点) 3.能用递推公式求通项公式.(难点)[基础·初探]教材整理 等比数列的性质阅读教材P 51例4~P 53,完成下列问题. 1.“子数列”性质对于无穷等比数列{a n },若将其前k 项去掉,剩余各项仍为等比数列,首项为a k +1,公比为q ;若取出所有的k 的倍数项,组成的数列仍为等比数列,首项为a k ,公比为q k .2.等比数列项的运算性质在等比数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q . ①特别地,当m +n =2k (m ,n ,k ∈N *)时,a m ·a n =a 2k .②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1=…=a k ·a n -k +1=….3.两等比数列合成数列的性质若数列{a n },{b n }均为等比数列,c 为不等于0的常数,则数列{ca n },{a 2n }{a n ·b n },⎩⎨⎧⎭⎬⎫a n bn 也为等比数列.1.等比数列{a n }中,a 4=4,则a 2·a 6=________. 【解析】 ∵{a n }是等比数列,∴a 2a 6=a 24=42=16.【答案】 162.若a ,b ,c 既成等差数列,又成等比数列,则它们的公比为________. 【解析】 只有非零常数列才满足题意,∴公比q =1. 【答案】 13.正项等比数列{a n }中,a 2a 5=10,则lg a 3+lg a 4=___________________. 【解析】 lg a 3+lg a 4=lg(a 3a 4) =lg(a 2a 5) =lg 10=1. 【答案】 14.在等比数列{a n }中,a 2=2,a 6=16,则a 10=________. 【解析】 ∵数列{a n }是等比数列,∴a 10·a 2=a 26,即a 10=a 26a 2=1622=128.【答案】 128[小组合作型]已知n (1)等比数列{a n }满足a 2a 4=12,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.【精彩点拨】 利用等比数列的性质,若m +n =p +q ,则a m ·a n =a p ·a q 求解.【自主解答】 (1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 23a 5=14.(2)由等比中项,化简条件得a 23+2a 3a 5+a 25=25,即(a 3+a 5)2=25,∵a n >0,∴a 3+a 5=5.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10.有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项的“下标”的指导作用.[再练一题]1.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,求a 1+a 10. 【解】 因为数列{a n }为等比数列, 所以a 5a 6=a 4a 7=-8,联立⎩⎪⎨⎪⎧a 4+a 7=2,a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以q 3=-12或q 3=-2,故a 1+a 10=a 4q 3+a 7·q 3=-7.216,后三个数成等差数列,且它们之和为12,求这四个数.【精彩点拨】根据前三项成等比数列,可对称性设为aq,a,q,也可依据后三项成等差数列设为a-d,a,a+d,然后列方程组求解.【自主解答】法一:设前三个数为aq,a,aq,则aq·a·aq=216,所以a3=216,所以a=6.因此前三个数为6q,6,6q.由题意知第4个数为12q-6.所以6+6q+12q-6=12,解得q=23.故所求的四个数为9,6,4,2.法二:设后三个数为4-d,4,4+d,则第一个数为14(4-d)2,由题意知14(4-d)2×(4-d)×4=216,解得4-d=6,所以d=-2.故所求得的四个数为9,6,4,2.巧设等差数列、等比数列的方法:(1)若三数成等差数列,常设成a-d,a,a+d.若三数成等比数列,常设成a q,a,aq或a,aq,aq2.(2)若四个数成等比数列,可设为aq,a,aq,aq2.若四个正数成等比数列,可设为aq3,aq,aq,aq3.[再练一题]2.三个数成等比数列,其积为512,如果第一个数与第三个数各减去2,则这三个数成等差数列,求这三个数.【解】 设三个数依次为aq ,a ,aq , ∵a q ·a ·aq =512,∴a =8. ∵⎝ ⎛⎭⎪⎫a q -2+(aq -2)=2a , ∴2q 2-5q +2=0,∴q =2或q =12, ∴这三个数为4,8,16或16,8,4.[探究共研型]n 1n +1n {a n }是等差数列,还是等比数列吗?【提示】 由等差数列与等比数列的递推关系,可知数列{a n }既不是等差数列,也不是等比数列.探究2 在探究1中,若将a n +1=2a n +1两边都加1,再观察等式的特点,你能构造出一个等比数列吗?【提示】 在a n +1=2a n +1两边都加1得a n +1+1=2(a n +1),显然数列{a n +1}是以a 1+1=2为首项,以q =2为公比的等比数列.探究3 在探究1中,若将a n +1=2a n +1改为a n +1=3a n +5,又应如何构造出一个等比数列?你能求出a n 吗?【提示】 设将a n +1=3a n +5变形为a n +1+x =3(a n +x ).将该式整理为a n +1=3a n +2x 与a n +1=3a n +5对比可知2x =5,即x =52;所以在a n +1=3a n +5两边都加52,可构造出等比数列⎩⎨⎧⎭⎬⎫a n +52.利用等比数列求出a n +52即可求出a n .已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式.【精彩点拨】 (1)先由a n +S n =n ,利用S n 与a n 的关系得{a n }的递推关系式,然后构造出数列{a n -1},利用定义证明即可.(2)由(1)求出a n 代入b n =a n -a n -1(n ≥2)即可. 【自主解答】 (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1.∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∵首项c 1=a 1-1, 又a 1+a 1=1,∴a 1=12,∴c 1=-12, 又c n =a n -1,∴q =12.∴{c n }是以-12为首项,公比为12的等比数列. (2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n .∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n .又b 1=a 1=12,代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n .1.已知数列的前n 项和,或前n 项和与通项的关系求通项,常用a n 与S n的关系求解.2.由递推关系a n +1=Aa n +B (A ,B 为常数,且A ≠0,A ≠1)求a n 时,由待定系数法设a n +1+λ=A (a n +λ)可得λ=BA -1,这样就构造了等比数列{a n +λ}. [再练一题]3.已知数列{a n }中,a 1=1,a n +1=52-1a n ,b n =1a n -2,求数列{b n }的通项公式.【解】 a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2,b n +1+23=4⎝ ⎛⎭⎪⎫b n +23.又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,所以b n +23=-13×4n -1,b n =-4n -13-23.1.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列【解析】 由于a n a n +1a n -1a n =a n a n -1×a n +1a n =q ·q =q 2,n ≥2且n ∈N *,∴{a n a n +1}是以q 2为公比的等比数列,故选B. 【答案】 B2.若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值等于( )A .-12 B.12 C .±12D.14【解析】 ∵1,a 1,a 2,4成等差数列, ∴3(a 2-a 1)=4-1,∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2,∴a 1-a 2b 2=-(a 2-a 1)b 2=-12.【答案】 A3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =________. 【解析】 ∵a 891=a 888q 891-888=a 888q 3, ∴q 3=a 891a 888=813=27, ∴q =3. 【答案】 34.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.【解析】 ∵a 6a 10=a 28,a 3a 5=a 24,∴a 24+a 28=41,又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49,∵数列各项都是正数,∴a 4+a 8=7. 【答案】 75.已知数列{a n }为等比数列,(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ;(2)若a3a5=18,a4a8=72,求公比q.【解】(1)∵a1a2a3=a32=216,∴a2=6,∴a1a3=36. 又∵a1+a3=21-a2=15,∴a1,a3是方程x2-15x+36=0的两根3和12.当a1=3时,q=a2a1=2,a n=3·2n-1;当a1=12时,q=12,a n=12·⎝⎛⎭⎪⎫12n-1.(2)∵a4a8=a3q·a5q3=a3a5q4=18q4=72,∴q4=4,∴q=±2.。