人教A版高中数学必修五 等比数列的概念及通项公式
高中数学必修五--等比数列

这些数列 有什么共同点
概念形成
一、等比数列的定义
一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等
比数列.这个常数叫做等比数列的公比,公比通常用字母 q 表示 q 0 ,即 an q (q 0) . an1
概念形成
二、等比数列的通项公式
概念形成
四、等比数列的性质
(1)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项,
即 an2 an1 an1 (n 2) .
(2)在有穷等比数列中,与首末两项等距离的两项之积等于首末两项之积,即
a1 an a2 an1 a3 an2 L .
(3)在等比数列中,若 m n p q ,则 am an ap aq .
(4)若 {an } , {bn } 均为等比数列,则 {an
bn} ,{k
an}
(k
0)
,{ 1 an
} 仍为等比数列,公比分别为
q1
q2
,
q1 ,
1 q1
.Байду номын сангаас
(5)等比数列依次每 n 项的和仍为等比数列,公比为 qn
n
(6) a1 a2 L an (a1 an )2 . (正项数列中)
课堂小结
四、等比数列的性质
一个思想 类比思想
两个方法 不完全归纳法
叠乘法
三个公式
谢谢大家
人教版高中数学必修五
不完全归纳法
叠乘法
概念形成
二、等比数列的通项公式
【问题3】怎样用函数观点来分析等比数列的通项公式呢?
类比思想
概念形成
新人教A版必修5高中数学学案教案: (2.4.1 等比数列的概念及通项公式)

2.4 等比数列2.4.1 等比数列的概念及通项公式从容说课本节内容先由师生共同分析日常生活中的实际问题来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程.教学中应充分利用信息和多媒体技术,给学生以较多的感受,激发学生学习的积极性和思维的主动性.准备丰富的阅读材料,为学生提供自主学习的可能,进而达到更好的理解和巩固课堂所学知识的目的.教学重点1.等比数列的概念;2.等比数列的通项公式.教学难点1.在具体问题中抽象出数列的模型和数列的等比关系;2.等比数列与指数函数的关系.教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着一类特殊的数列;2.理解等比数列的概念,探索并掌握等比数列的通项公式;3.能在具体的问题情境中,发现数列的等比关系,并能用有关的知识解决相应的实际问题;4.体会等比数列与指数函数的关系.二、过程与方法1.采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2.发挥学生的主体作用,作好探究性活动;3.密切联系实际,激发学生学习的积极性.三、情感态度与价值观1.通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学过程导入新课师现实生活中,有许多成倍增长的实例.如,将一张报纸对折、对折、再对折、…,对折了三次,手中的报纸的层数就成了8层,对折了5次就成了32层.你能举出类似的例子吗?生一粒种子繁殖出第二代120粒种子,用第二代的120粒种子可以繁殖出第三代120×120粒种子,用第三代的120×120粒种子可以繁殖出第四代120×120×120粒种子,…师非常好的一个例子!现实生活中,我们会遇到许多这类的事例.教师出示多媒体课件一:某种细胞分裂的模型.师 细胞分裂的个数也是与我们上述提出的问题类似的实例.细胞分裂有什么规律,将每次分裂后细胞的个数写成一个数列,你能写出这个数列吗?生 通过观察和画草图,发现细胞分裂的规律,并记录每次分裂所得到的细胞数,从而得到每次细胞分裂所得到的细胞数组成下面的数列:1,2,4,8,…①教师出示投影胶片1:“一尺之棰,日取其半,万世不竭.”师 这是《庄子·天下篇》中的一个论述,能解释这个论述的含义吗?生 思考、讨论,用现代语言叙述.师 (用现代语言叙述后)如果把“一尺之棰”看成单位“1”,那么得到的数列是什么样的呢?生 发现等比关系,写出一个无穷等比数列:1,21,41,81,161,… ② 教师出示投影胶片2:计算机病毒传播问题.一种计算机病毒,可以查找计算机中的地址簿,通过邮件进行传播.如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒感染的计算机数构成一个什么样的数列呢?师 (读题后)这种病毒每一轮传播的计算机数构成的数列是怎样的呢?引导学生发现“病毒制造者发送病毒称为第一轮”“每一轮感染20台计算机”中蕴涵的等比关系.生 发现等比关系,写出一个无穷等比数列:1,20,202,203,204,… ③教师出示多媒体课件二:银行存款利息问题.师 介绍“复利”的背景:“复利”是我国现行定期储蓄中的一种支付利息的方式,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.我国现行定期储蓄中的自动转存业务实际上就是按复利支付利息的.给出计算本利和的公式:本利和=本金×(1+本金)n ,这里n 为存期.生 列出5年内各年末的本利和,并说明计算过程.师 生合作讨论得出“时间”“年初本金”“年末本利和”三个量之间的对应关系,并写出:各年末本利和(单位:元)组成了下面数列:10 000×1.019 8,10 000×1.019 82,10 000×1.019 83,10 000×1.019 84,10 000×1.01985. ④师 回忆数列的等差关系和等差数列的定义,观察上面的数列①②③④,说说它们有什么共同特点?师 引导学生类比等差关系和等差数列的概念,发现等比关系.引入课题:板书课题 2.4等比数列的概念及通项公式推进新课[合作探究]师 从上面的数列①②③④中我们发现了它们的共同特点是:具有等比关系.如果我们将具有这样特点的数列称之为等比数列,那么你能给等比数列下一个什么样的定义呢? 生 回忆等差数列的定义,并进行类比,说出:一般地,如果把一个数列,从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列. [教师精讲]师 同学们概括得很好,这就是等比数列(geometric seque n ce)的定义.有些书籍把等比数列的英文缩写记作G.P.(Geometric Progressio n ).我们今后也常用G.P.这个缩写表示等比数列.定义中的这个常数叫做等比数列的公比(commo n r a tio),公比通常用字母q 表示(q≠0).请同学们想一想,为什么q≠0呢?生 独立思考、合作交流、自主探究.师 假设q=0,数列的第二项就应该是0,那么作第一项后面的任一项与它的前一项的比时就出现什么了呢?生 分母为0了.师 对了,问题就出在这里了,所以,必须q≠0.师 那么,等比数列的首项能不能为0呢?生 等比数列的首项不能为0.师 是的,等比数列的首项和公比都不能为0,等比数列中的任一项都不会是0. [合作探究]师类比等差中项的概念,请同学们自己给出等比中项的概念.生 如果在a 与b 中间插入一个数G ,使a 、G 、b 成等比数列,那么G 叫做a 、b 的等比中项. 师 想一想,这时a 、b 的符号有什么特点呢?你能用a 、b 表示G 吗?生 一起探究,a 、b 是同号的G b a G ,G=±ab ,G 2=ab . 师 观察学生所得到的a 、b 、G 的关系式,并给予肯定.补充练习:与等差数列一样,等比数列也具有一定的对称性,对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍,即a n -k +a n +k =2a n .对于等比数列来说,有什么类似的性质呢? 生 独立探究,得出:等比数列有类似的性质:a n -k ·a n +k =a n 2.[合作探究]探究:(1)一个数列a 1,a 2,a 3,…,a n ,…(a 1≠0)是等差数列,同时还能不能是等比数列呢?(2)写出两个首项为1的等比数列的前5项,比较这两个数列是否相同?写出两个公比为2的等比数列的前5项,比较这两个数列是否相同?(3)任一项a n 及公比q 相同,则这两个数列相同吗?(4)任意两项a m 、a n 相同,这两个数列相同吗?(5)若两个等比数列相同,需要什么条件?师 引导学生探究,并给出(1)的答案,(2)(3)(4)可留给学生回答.生 探究并分组讨论上述问题的解答办法,并交流(1)的解答.[教师精讲]概括总结对上述问题的探究,得出:(1)中,既是等差数列又是等比数列的数列是存在的,每一个非零常数列都是公差为0,公比为1的既是等差数列又是等比数列的数列.概括学生对(2)(3)(4)的解答.(2)中,首项为1,而公比不同的等比数列是不会相同的;公比为2,而首项不同的等比数列也是不会相同的.(3)中,是指两个数列中的任一对应项与公比都相同,可得出这两个数列相同;(4)中,是指两个数列中的任意两个对应项都相同,可以得出这两个数列相同;(5)中,结论是:若两个数列相同,需要“首项和公比都相同”.(探究的目的是为了说明首项和公比是决定一个等比数列的必要条件;为等比数列的通项公式的推导做准备) [合作探究]师 回顾等差数列的通项公式的推导过程,你能推导出等比数列的通项公式吗? 生 推导等比数列的通项公式. [方法引导]师 让学生与等差数列的推导过程类比,并引导学生采用不完全归纳法得出等比数列的通项公式.具体的,设等比数列{a n }首项为a 1,公比为q ,根据等比数列的定义,我们有: a 2=a 1q,a 3=a 2q=a 1q 2,…,a n =a n -1q=a 1q n -1,即a n =a 1q n -1.师 根据等比数列的定义,我们还可以写出q a a a a a a a a n n =====-1342312..., 进而有a n =a n -1q=a n -2q 2=a n -3q 3=…=a 1q n -1.亦得a n =a 1q n -1.师 观察一下上式,每一道式子里,项的下标与q 的指数,你能发现有什么共同的特征吗?生 把a n 看成a n q 0,那么,每一道式子里,项的下标与q 的指数的和都是n .师 非常正确,这里不仅给出了一个由a n 倒推到a n 与a 1,q 的关系,从而得出通项公式的过程,而且其中还蕴含了等比数列的基本性质,在后面我们研究等比数列的基本性质时将会再提到这组关系式.师 请同学们围绕根据等比数列的定义写出的式子 q a a a a a a a a n n =====-1342312...,再思考. 如果我们把上面的式子改写成q a a q a a q a a q a a n n ====-1342312,...,,,. 那么我们就有了n -1个等式,将这n -1个等式两边分别乘到一起(叠乘),得到的结果是11-=n n q a a ,于是,得a n =a 1q n -1. 师 这不又是一个推导等比数列通项公式的方法吗?师 在上述方法中,前两种方法采用的是不完全归纳法,严格的,还需给出证明.第三种方法没有涉及不完全归纳法,是一个完美的推导过程,不再需要证明.师 让学生说出公式中首项a 1和公比q 的限制条件.生 a 1,q 都不能为0. [知识拓展]师 前面实例中也有“细胞分裂”“计算机病毒传播”“复利计算”的练习和习题,那里是用什么方法解决问题的呢?教师出示多媒体课件三:前面实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的练习或习题.某种储蓄按复利计算成本利息,若本金为a 元,每期利率为r ,设存期是x,本利和为y 元.(1)写出本利和y 随存期x 变化的函数关系式;(2)如果存入本金1 000元,每期利率为2.25%,试计算5期后的本利和.师 前面实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的问题是用函数的知识和方法解决问题的.生 比较两种方法,思考它们的异同. [教师精讲]通过用不同的数学知识解决类似的数学问题,从中发现等比数列和指数函数可以联系起来.(1)在同一平面直角坐标系中,画出通项公式为a n =2 n -1的数列的图象和函数y=2x-1的图象,你发现了什么?(2)在同一平面直角坐标系中,画出通项公式为1)21(-=n n a 的数列的图象和函数y=(21)x-1的图象,你又发现了什么?生 借助信息技术或用描点作图画出上述两组图象,然后交流、讨论、归纳出二者之间的关系.师 出示多媒体课件四:借助信息技术作出的上述两组图象.观察它们之间的关系,得出结论:等比数列是特殊的指数函数,等比数列的图象是一些孤立的点.师 请同学们从定义、通项公式、与函数的联系3个角度类比等差数列与等比数列,并填充下列表格:等差数列 等比数列 定 义从第二项起,每一项与它前一项的差都是同一个常数 从第二项起,每一项与它前一项的比都是同一个常数 首项、公差(公比)取值有无限制没有任何限制 首项、公比都不能为0 通项公式a n =a 1+(n -1)d a n =a 1q n -1 相应图象的特点直线y=a 1+(x-1)d 上孤立的点 函数y=a 1q x-1图象上孤立的点[例题剖析]【例1】 某种放射性物质不断变化为其他物质,每经过一年,剩留的这种物质是原来的84%,这种物质的半衰期为多长(精确到1年)?师 从中能抽象出一个数列的模型,并且该数列具有等比关系.【例2】 根据右图中的框图,写出所打印数列的前5项,并建立数列的递推公式,这个数列是等比数列吗?师 将打印出来的数依次记为a 1(即A ),a 2,a 3,….可知a 1=1;a 2=a 1×21;a 3=a 2×21. 于是,可得递推公式⎪⎩⎪⎨⎧==-)1(21,111>n a a a n n . 由于211=-n n a a ,因此,这个数列是等比数列. 生 算出这个数列的各项,求出这个数列的通项公式.练习:1.一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.师 启发、引导学生列方程求未知量.生 探究、交流、列式、求解.2.课本第59页练习第1、2题.课堂小结本节学习了如下内容:1.等比数列的定义.2.等比数列的通项公式.3.等比数列与指数函数的联系.布置作业课本第60页习题2.4 A 组第1、2题.板书设计等比数列的概念及通项公式1.等比数列的定义 实例剖析2.等比数列的通项公式 从三个角度类比等差数列表 例1练习:1.(学生板演) 例2。
【优化方案】2012高中数学 第2章2.4.1等比数列的概念及通项公式课件 新人教A版必修5

2.用函数的观点看等比数列的通项公式 . - 等比数列{a 的通项公式 等比数列 n}的通项公式 an=a1qn 1, 还可以改写 a1 n 当 > , ≠ = 为 an= q q .当 q>0,且 q≠1 时,y=qx 是一个指 a1 n 数函数, 数函数,而 y= q ·q 是一个不为 0 的常数与指数 = 函数的积.因此等比数列{a 的图象是函数 = 函数的积.因此等比数列 n}的图象是函数 y= a1 x ·q 图象上的一些孤立的点. 图象上的一些孤立的点. q
例3
已知数列{a 满足 满足a 已知数列 n}满足 1=1,an+1=2an+1. , +
(1)求证:数列{an+1}是等比数列; 求证:数列 是等比数列; 求证 是等比数列 (2)求数列 n}的通项公式. 求数列{a 的通项公式 的通项公式. 求数列 【思路点拨】 思路点拨】 将递推公式变形, 将递推公式变形,然后利用等比 数列的定义判定. 数列的定义判定. 证明: 【解】 (1)证明:因为 an+1=2an+1, 证明 , 所以 an+1+1=2(an+1). = . , ≠ , ≠ 由 a1=1,知 a1+1≠0,可得 an+1≠0. an+1+1 * 所以 =2(n∈N ). ∈ . an+1 所以数列{a 是等比数列. 所以数列 n+1}是等比数列. 是等比数列
2. 4.1 等 比 数 列 的 概 念 及 通 项 公 式
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基 1.如果一个数列从__________起,每一项与它 .如果一个数列从 第二项 起 的前一项的差都等于__________, 的前一项的差都等于 同一常数 ,那么这个数列 叫做等差数列. 叫做等差数列. a1+(n-1)d 是关 - 2.等差数列的通项公式:an=___________是关 .等差数列的通项公式: 的一次函数式(或常函数 于n的一次函数式 或常函数 . 的一次函数式 或常函数).
2.4等比数列的概念及通项公式(高中数学人教A版必修五)

(1)an am (n m)d
a1 0, q 0
通项 公式
an a1q
n 1
(1)an amqnm
则 am· n=as· r . a a
(3) an2=an-1· n+1 . a (等比中项)
主要 性质
(2)若m+n=s+r (m,n,s,r∈N*) (2)若m+n=s+r (m,n,s,r∈N*)
其中,a1与q均不为0。由于当n=1时上面等式两边均为a1, 即等式也成立,说明上面公式当n∈N*时都成立,因此它 就是等比数列{an}的通项公式。
(1)等比数列的通项公式
通项公式一:
an a1 q
n1
(a1 , q 0)
an a1q n 1、不要错误地写成
2、每一项都可以用a1和q表示,等比数列 由首项和公比确定
1 变式训练 已知数列{an}的前 n 项和为 Sn,Sn= 3 (an-1)(n∈N*). (1)求 a1,a2; (2)求证:数列{an}是等比数列. 1 解:(1)由 S1= (a1-1), 3 1 1 得 a1= (a1-1),∴a1=- . 3 2 1 又 S2= (a2-1), 3 1 1 即 a1+a2= (a2-1),得 a2= . 3 4
an am qn m
(1)等比数列的通项公式 如果数列 an }是等比数列,首项为 1 , 公比为q, { a
①.不完全归纳法 a2=a1q a3=a2q=a1q2 a4=a3q=a1q3 … an=a1qn1
②.叠乘法(累乘法) a2/a1=q a3/a2=q a4/a3=q … an/an-1=q 这n-1个式子相乘得an/a1=qn-1 所以 an=a1qn-1
必修5-等比数列的概念及通项公式(实用)

是,公比 q=3
1 是,公比 q= 2
5,5,5,5,5,5,… 1,-1,1,-1,1,… 1,0,1,0,1,… 0,0,0,0,0,…
是,公比 q=1 是,公 比q= -1 不是等比数列
不是等比数列
1, x , x , x , x , ( x 0)
2 3 4
是,公比 q= x
公比q是每一项(第2项起)与它的前一项的比;防止把被除数 与除数弄颠倒;公比可以是正数,负数,可以是1,但不可以为0
等差数列通项公式的推导: (不完全归纳)
a3 a2 d a1 2d
a4 a3 d a1 3d
方法:(累加法)
an an1 d
a n a1 (n 1)d, n N
a2 a1 d a3 a 2 d a 4 a3 d … … an1 an2 d
公式强化 例1:在等比数列{an}中:
(1)已知a1 2, q 3, an 162, 求n;
4
3 1 (2)已知a1 3, q ,求a5; 2 16 1 1 (3)已知a9 , q , 求a1; 36 729 9 3 (4)已知a1 2, a5 8, 求q 2
其数学表达式
an 0
或
an q(n 2) an1
an1 * q(n N ) an
(判断一个数列是否为等比数列的依据)
观察并判断下列数列是否是等比数列:
(1) (2) (3) (4) (5) (6) (7) 1,3,9,27,81,…
1 1 1 1 , , , , 2 4 8 16
( n, m N )
*
生活 应用
高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
人教A版高中数学高二必修5课件2.4等比数列(二)

2.4 等比数列(二)
6
(6)等比数列的项的对称性:在有穷等比数列中,与首末两项
“等距离”的两项之积等于首末两项的积,即a1·an=
2.4 等比数列(二)
29
规律方法 (1)在等差数列与等比数列的综合问题中, 特别要注意它们的区别,避免用错公式.(2)方程思想的 应用往往是破题的关键.
2.4 等比数列(二)
30
跟踪演练4 已知{an}是首项为19,公差为-2的等差数列, Sn为{an}的前n项和. (1)求通项公式an及Sn; 解 因为{an}是首项为19,公差为-2的等差数列,所以an =19-2(n-1)=-2n+21,
的m的个数;若不存在,请说明理由.
解 若存在m,使b1,b4,bt成等差数列, 则2b4=b1+bt,
∴ 7 ×2= 1 + 2t-1 ,
7+m
1+m 2t-1+m
2.4 等比数列(二)
28
7m+1 7m-5+36
∴t=
=
=7+
36
,
m-5
m-5
m-5
由于m、t∈N*且t≥5. 令m-5=36,18,9,6,4,3,2,1, 即m=41,23,14,11,9,8,7,6时,t均为大于5的整数. ∴存在符合题意的m值,且共有8个.
2.4 等比数列(二)
26
(1)由 bn=an+an m(m∈N*)知 b1=1+1 m,b2=3+3 m,b8=151+5 m,
∵b1,b2,b8成等比数列,
高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.
-
1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……
a a q n-1
n
1
3.等比数列的通项公式: an a1qn-1
思考:如何用 a1 和 q 表示 an?
❖ 方法:累加法
等 a2 - a1 d
差 数
a3 - a2 d
列
a4 - a3 d
……
+)an - an-1 d
类比
累乘法
等 比 数 列
a2 q a1
a3 q a2
a4 q
G2 ab 或 G ab
定义式
通项公 式
中项 公式
an - an-1 d , n 2
an a1 (n - 1)d
a b 2 A或A a b 2
思考辨析 判断正误
SIKAOBIANXIPANDUANZHENGWU
1.若an+1=qan,n∈N*,且q≠0,则{an}是等比数列.( × ) 2.任何两个数都有等比中项.( × ) 3.等比数列 1,21,41,81,…中,第 10 项为219.( √ ) 4.常数列既是等差数列,又是等比数列.( × )
①
1,1,1,1,1 ,...... 2 4 8 16
②
1,20,202,203,204,205,...... ③
请问:这三个 数列有什么 共同特点?
对于数列①,从第2项起,每一项与前一项的比都等于_12_;
对于数列②,从第2项起,每一项与前一项的比都等于_2_;
对于数列①,从第2项起,每一项与前一项的比都等于2_0_;
∴an+1+1=2(n∈N*). an+1
∴数列{an+1}是等比数列.
(2)求数列{an}的通项公式.
解 由(1)知{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2·2n-1=2n.
即an=2n-1.
反思感悟 等比数列的判定方法
(1)定义法: an =q(n≥2,q an-1
第1课时 等比数列的概念及通项公式
复习回顾
等差数列
最值问题 实际问题 带绝对值求和
概念 通项公式 求和公式 相关性质
学习目标
XUEXIMUBIAO
1.通过实例,理解等比数列的概念. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程.
1,2,4,8,16,32,......
…a3…
×) an q
a n -1
共n – 1 项
an - a1 (n -1)d
an q n-1 a1
等比数列
名称
类比
从第2项起,每一项与它前一 概念
项的比等同一个非零常数
等差数列
从第2项起,每一项与它前 一项的差等同一个常数
公比 q 0
常数
公差 d R
an q, n 2 an-1
an a1 q n-1
共同特点: 从第二项起,每一项与其前一项的比是
同一个常数
类比“等差数列”,这样的数列可以叫做“等比数列”。
知识点一 等比数列的概念 1.定义:如果一个数列从第 2项起,每一项与它的 前 一项的 比 等于同一 常数, 那么这个数列叫做等比数列,这个常数叫做等比数列的公比 ,通常用字母q表
示(q≠0).
判断一个数列是否为等比n 1=q(n>1)或aan+n 1=q,n∈N*.
3.等比数列各项均 不能 为0.
知识点二 等比中项与等差中项的异同
对比项
等差中项
等比中项
若a,A,b成等差数列,则A叫 若a,G,b成 等比 数列,则G叫做
定义
做a与b的等差中项
a与b的 等比 中项
是不为
0
的常数)⇔{an}是公比为
q
的等比数列.
(2)等比中项法:a2n=an-1·an+1(n≥2,an,an-1,an+1 均不为 0)⇔{an}是等比
数列.
跟踪训练2 数列{an}满足a1=-1,且an=3an-1-2n+3(n=2,3,…). (1)求a2,a3,并证明数列{an-n}是等比数列; 解 a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.
(2)-1,1,2,4,8,…; 解 记数列为{an},显然a1=-1,a2=1,a3=2,…, ∵aa21=-1≠aa32=2, ∴此数列不是等比数列. (3)a1,a2,a3,…,an,….
解 当a=0时,数列为0,0,0,…是常数列,不是等比数列; 当a≠0时,数列为a1,a2,a3,a4,…,an,…, 显然此数列为等比数列,且公比为a.
a2 a1 d
a3 a2 d
归 纳
(a1 d ) d
法
a1 2d
a4 a3 d
类比
(a1 2d) d
a…1
3d
…
an a1 (n -1)d
等比数列 an an-1q, n 2
a2 a1q
a3
aa12qq2
(a1q)q
a4 a3q (a1q2 )q
a1q3
定义式
A-a=b-A
Ga =Gb
公式
A=a+b 2
G=± ab
个数
a与b的等差中项唯一
a与b的等比中项有 两 个,且互为_相_ _反__数_
备注 任意两个数a与b都有等差中项 只有当ab>0时,a与b才有等比中项
3.等比数列的通项公式:
思考:如何用 a1和 q表示 an?
等差数列an an-1 d , n 2
√C.①②④
解析 ①②显然是等比数列;
由于x可能为0,③不是;
a不能为0,④符合等比数列定义,故④是.
D.①②③④
命题角度2 已知递推公式判断是否为等比数列
例2 已知数列{an}满足a1=1,an+1=2an+1. (1)证明:数列{an+1}是等比数列; 证明 ∵an+1=2an+1,∴an+1+1=2(an+1).由a1=1,知a1+1≠0,从而an+1≠0.
反思感悟 判定等比数列,要抓住3个要点: ①从第二项起.②要判定每一项,不能有例外.③每一项与前一项的比是同一个 常数,且不能为0.
跟踪训练1 下列各组数成等比数列的是
①1,-2,4,-8; ②- 2,2,-2 2,4;
③x,x2,x3,x4; ④a-1,a-2,a-3,a-4.
A.①②
B.①②③
2 题型探究
PART TWO
多维探究
题型一 等比数列的判定
命题角度1 已知数列前若干项判断是否为等比数列 例1 判断下列数列是否为等比数列. (1)1,3,32,33,…,3n-1,…; 解 记数列为{an},显然a1=1,a2=3,…,an=3n-1,…. ∵aan-n 1=33nn--12=3(n≥2,n∈N*), ∴数列为等比数列,且公比为3.