八年级数学竞赛试题
初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
全国初中数学竞赛试题

全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。
【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。
在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。
求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。
【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。
求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。
【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。
【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。
随机抽取两个球,求两个球颜色相同的概率。
【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。
求不同的放法有多少种。
【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。
”- 乙说:“丙是说谎者。
”- 丙说:“甲和乙都是说谎者。
”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。
【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。
如果水池开始时是空的,求水池被填满的时间\( t \)。
【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。
八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
初中数学竞赛试题及答案(免费)20

肇庆市八年级数学竞赛初赛试题一、填空题:每小题2分,共40分。
1、使等式x x x =-成立的的值是 。
2、扇形统计图中扇形占圆的30%,则此时扇形所对的圆心角为。
3、如果点A (3,a )是点B (3,4)关于y 轴的对称点,那么a 的值是。
4、如图1,正方形ABCD 的边长为1cm ,以对角线AC为边长再作一个正方形,则正方形ACEF 的面积是2cm .5、已知四个命题:①1是1的平方根,②负数没有立方根,③无限小数不一定是无理数,一定没有意义;其中正确的命题有 个。
6、已知72π⎡--⎢⎣,,,其中无理数有 个。
7、若A 的算术平方根是 。
(图1)FEDCBA(图2)F GEDCBA8、如图2,在△ABC 中,AB=AC ,G 是三角形的重心,那么图中例行全等的三角形的对数是 对。
9、足球比赛的记分规则是:胜一场记3分,平一场记1分,负一场记0分;一支中学生足球队参加了15场比赛,负了4场,共得29分,则这支球队胜了 场。
10、若方程组4101,43x y k x y k x y +=+⎧<+<⎨+=⎩的解满足则围是 。
11、如图3,在一个正方体的两个面上画两条对角线AB ,AC ,那么这两条对角线的夹角等于 。
12、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐5人,租金24元,则该班至少要花租金 元。
13、正三角形△ABC 所在平面内有一点P ,使得△PAB 、△PBC 、△PCA 都是等腰三角形,则这样的P 点有 个。
14、若61m m -表示一个数,则整数可取值的个数是 个。
15、已知x 和y 满足2x+3y=5,则当x=4时,代数式22312x xy y ++的值是 。
16、方程550x x -+-=的解的个数为 个。
17、如图4,△ABC 为等边三角形,且BM=CN ,AM 与BN 相交于点P ,则∠APN= . 18、已知有如下一组,x y z 和的单项式:(图3)(图4)PNM CBA(图5)3232242323117 8 3 9 9 0.325x z x y x yz xy z x zy zy xyz y z xz y z --,,,,,,,,,我们用下面的方法确定它们的先后次序:对任两个单项式,先看x 的次幂,规定x 幂次高的单项式排在x 幂次低的单项式的前面;再先看y 的次幂,规定y 幂次高的单项式排在y 幂次低的单项式的前面;再先看z 的次幂,规定z 幂次高的单项式排在z 幂次低的单项式的前面。
初中数学竞赛试题及答案解析

初中数学竞赛试题二、填空题1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 .3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为.9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 .12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 .15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 .21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a=-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+.5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--.6、 137 解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--.8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x .15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14.16、 0解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式= 37772(1117)322113838111111-+=+=.18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值.20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=.21、 999解:由b a x <≤,可得a b a x b x -=---,则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。
江苏数学竞赛初中试题及答案

江苏数学竞赛初中试题及答案试题一:代数基础题题目:已知 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 - b^2 = 21 \),求 \( a \) 和 \( b \) 的值。
答案:根据差平方公式,\( a^2 - b^2 = (a+b)(a-b) \)。
已知\( a^2 - b^2 = 21 \),我们可以将21分解为两个因数的乘积,即\( 21 = 3 \times 7 \)。
考虑到 \( a \) 和 \( b \) 是正整数,我们可以得出 \( a = 7 \),\( b = 3 \)。
试题二:几何题题目:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,求这个三角形的三个角度数。
答案:设较小的锐角为 \( x \) 度,则较大的锐角为 \( 2x \) 度。
根据直角三角形的性质,三个角的和为180度,因此有 \( x + 2x + 90 = 180 \)。
解这个方程,我们得到 \( 3x = 90 \),所以 \( x = 30 \)。
因此,较小的锐角是30度,较大的锐角是60度,直角是90度。
试题三:数列题题目:一个数列的前三项为 \( 2, 4, 7 \),从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:根据题意,数列的前几项为:2, 4, 7, (2+4+7), (4+7+13), ...即:2, 4, 7, 13, 24, 41, 75, 130, 231, ...第10项的值为 \( 231 \)。
试题四:逻辑推理题题目:有5个盒子,每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人从每个盒子里都拿了一个球,但没有人拿到两个相同数量的球。
每个人拿的球的总数都是6个。
问每个人分别从哪些盒子里拿球?答案:设5个人分别为A、B、C、D、E。
根据题意,每个人拿的球的总数都是6个,且没有人拿到两个相同数量的球。
我们可以列出以下可能的组合:- A: 1, 2, 3- B: 1, 3, 4- C: 1, 4, 5- D: 2, 3, 5- E: 2, 4由于每个人拿的球的总数都是6个,我们可以排除E的组合,因为2+4=6,没有第三个球。
八年级奥林匹克数学竞赛题

八年级奥林匹克数学竞赛题八年级的奥林匹克数学竞赛题相对于一般数学题而言,更侧重考查学生对知识的综合运用能力和解题思维能力,题目相对偏难一些。
接下来是店铺为大家带来的八年级奥林匹克的数学竞赛题,供大家参考。
八年级奥林匹克数学竞赛题目一填空题1、观察下列各式1× 3=3而3=22-1,3×5=15而15=42-1,5×7=35而35=62-1,……,11×13=143而143=122-1;你猜想到的规律用只含一个字母n的式子表示出来是 __ 。
2、a=2005x+2004,b=2005x+2005,c=2005x+2006,代数式a2+b2+c2-ab-bc-ca= 。
3、一个多边形的对角线的条数等于边数的5倍,则这个多边形是_____边形.4、现有铁矿石73吨,计划用载重量分别为7吨和5吨的两种卡车一次运走,已知载重量7吨的卡车每台车的运费为65元,载重量5吨的卡车每台车运费为50元,则最省的运费是元。
5、100个数据分成5组,其中第一、二小组的频率之和等于0.11,第四、五小组的频率之和等于0.27,则第三小组的频数等于_______________。
6、甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是________。
7、在四边形ABCD中,如果要使对角线AC⊥BD,可添加条件(只需填写一个你认为适当的条件即可)。
8、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币___枚,第2堆有硬币____枚,第3堆有硬币_____枚.9、盒子里有10个球,每个球上写有1~10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是_______。
八年级奥林匹克数学竞赛试题

一、请你填一填。
(19分)1. + + + =( ×)。
2.画一个直径6厘米的圆,圆规两脚尖的距离是( )厘米,面积是( )平方厘米。
3. =0.4= ( ) : 20 =( )%。
4.把3:1.25化成最简单的整数比是( ),比值是( )。
5.40千克的20%是( )千克,20吨比( )吨少。
6. 六(1)班今天出勤48人,有2人请假,今天六(1)班学生的出勤率是( )。
7.油菜籽的出油率是40%,500千克油菜籽可出油( )千克;要出油500千克需要( )千克油菜籽。
8.一个长方形的周长是30厘米,长与宽的比是3:2,这个长方形的面积是( )平方厘米。
9.一个钟面的分针长4厘米,时针走了1大格,分针扫过的面积是( )平方厘米,分针的尖端所走过的路程是( )厘米。
10.六(1)班女生人数是男生人数的,女生人数与全班人数的比是( ),男生人数占全班的,男生比女生多。
二、请你来判断。
(6分)1.1的倒数是1,0的倒数是0。
( )2.用110粒种子做发芽试验,有100粒发芽,发芽率是100% ( )3.走完一段路,甲需要8时,乙需要10时,甲、乙速度比是4:5。
( )4.1吨煤用去吨,还剩20%吨。
( )5.5比4多25%,4比5少20%。
( )6.大牛和小牛的头数比是4:5,表示大牛比小牛少。
( )三、请你来选择。
(16分)1.两根3米长的铁丝,第一根用去全长的,第二根用去米,剩下的铁丝( )。
A第一根长B第二根长C 两根一样长2.一台电视机降价40%后售价是660元,原价是( )元。
A 1100B 396C 3303.小圆的直径是2厘米,大圆的半径是2厘米,小圆的面积是大圆面积的( )。
4.一个正方形的边长和圆的半径相等,已知正方形的面积是20平方米,圆的面积是( )平方米。
A 62.8B 12.56C 15.75.一种MP3原来的售价是820元,降低10%,再提高10%,现在的价格和原来相比( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鳌江中学八年级数学竞赛试题
(2017—2018学年度第一学期)(共100分,时间:60分钟)
班级: 姓名: 座位: 得分:
一、选择题(每小题3分,共24分)
1、下列说法不正确的是( )
①10的平方根是10±;②-2是4的一个平方根;③
94的平方根是3
2; ④0.01的算术平方根是0.1;⑤24a a ±=.
A .①③ B.③⑤ C.②③⑤ D.③
2、一个三角形三边长分别是16㎝、30㎝、34㎝,则这个三角形最长边上的高为( ) A.17120㎝ B.17160㎝ C.17200㎝ D.17
240㎝ 3、点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是 ( )
A.(-4,-8)
B.(4,8)
C.(-4,8)
D.(4,-8)
4、若△ABC 的三边长a ,b ,c 满足(a -b)(a 2+b 2-c 2)=0,则△ABC 是( )
A .等腰三角形
B .直角三角形
C .等边三角形
D .等腰三角形或直角三角形
5、 要使33)3(x -=3-x ,则 x 的取值范围( )
A.x ≤3
B.x ≥3
C.0≤x ≤3
D.任意数
6、已知:,则的值为( ) A.-1 B.0 C. 1 D.2012
7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( )
A.(-1,-1)
B.(-1, 1)
C.(1, -1)
D.(1, 1)
8、如下图表示一次函数n mx y +=与正比例函数mnx y =(m 、n 是常数,m ≠0)图象是( )
二、填空题(每小题4分,共24分)
9、若40,x y ++=则y x 23-的平方根是______________.
10、 若133=-x ,则=x 。
11、设12+=m ,则m m 1+
的整数部分是 ,m
m 1+的小数部分是 .
12、关于x 的一次函数2)73(-+-=a x a y 的图象与y 轴的交点在x 轴的上方,且y 随x 的增大而减小,则a 的取值范围是 .
13、在ΔABC 中,∠C =90°,两直角边BC=5,AC=12,在三角形内有一点P,它到各边的距离相等,则这个距离是 .
14、化简111120122014201520162017++++⨯= . 三、解答题(52分)
15、计算(每小题5分,共10分)
(1)、-(-2)
2+2)23(--(3+2)0+2
333-;
(2)、33227
85
)52()52(20122011⨯⨯--⨯+.
16、(10分)已知直线33
2+-=x y 与x 轴交于点A ,与y 轴交于点B ,直线b x y +=2经过点B 且与x 轴交于点C,求△ABC 的面积。
17. (8分)如图:在Rt △ABC 中,
∠BAC=900,AB=AC ,P 为BC 上一点,试判断是否存在PB 2+PC 2=2PA 2?
18.(12分)如图,在平面直角坐标系中,过点A (-6,0)的直线1l 与直线2l :y=2x 相交于点B (m ,4).
(1)求直线1l 的表达式;(6分)
(2)过动点P(n,0)且垂于x 轴的直线与1l ,2l 的交点分别为
C,D,当点D 位于点C 下方时,写出n 的取值范围.(6分)
19、(12分)某面粉厂有工人20名,为获取更多利润,增设加工面条项目,用本厂生产的面粉加工成面条(生产1㎏面条需面粉1㎏),已知每人每天平均生产面粉600㎏,或生产面条400㎏,将面粉直接出售每千克可获利润0.2元,加工成面条后出售每千克可获利润0.6元,若每个工人一天只能做一项工作,且不计其他因素,设安排x 名工人加工面条.
(1)求一天中加工面条所获利润1y (元);(2分)
(2)求一天中剩余面粉所获利润2y (元);(2分)
(3)当x 为何值时,该厂一天中所获总利润y (元)最大?最大利润为多少元?(8分)
鳌江中学八年级数学竞赛试题答案
(2017—2018学年度第一学期)
一、选择题(每小题3分,共24分)
1-4、BDAD 5-8、DCDA
二、填空题(每小题4分,共24分)
9、 -6 ; 10、13-3133或+; 11、2,2-22; 12、3
72<<a ; 13、2; 14、2016 三、解答题(52分)
15、计算(每小题5分,共10分)
(1)、-(-2)2+2)23(--(3+2)0+2
333- =-4+(32-)-1+(
3323-) =-4+32--1+
3
323- =3653-- (2)、3322785
)52()52(20122011⨯⨯--⨯+ =()()[]()20525
2522011
--⨯-+ =()()5212011-⨯-20- =225-.
16、(10分)解:根据题意,令0=y 时,即0332=+-
x ,解得29=x ,∴A(29,0),(2分)
令0=x 时,3=y ,∴B(0,3),(4分)
∵直线b x y +=2经过点B,
∴b +⨯=023,解得3=b ,∴32+=x y ;(6分)
令0=y 时,23-
=x ,∴C(2
3-,0),(8分) ∴AC=963=+,∴9361=⨯⨯=∆ABC S (10分)
17、
18、将x=n 代入直线l 2得,y=2n ,故点D 的坐标为)2,(n n ;(10分)
当点D 位于点C 下方时,有32
1
2+n n <,解得n <2,故当n <2时,点D 位于点C 下方. (12分)
19、(12分)解:(1)x y 4006.01⨯=,即x y 2401=.(2分)
(2)()[]x x y 400206002.02--=,即24002002+-=x y .(4分)
(3)由题意,得:
240040240020024021+=+-=+=x x x y y y ,(6分)
又因为生产面条的千克数不能超过生产面料的千克数,
即)20(600400x x -≤,解得:12≤x .(8分)
因为240040+=x y 中,y 的值随x 的值增大而增大,
所以当12=x 时,总利润y 最大,(10分)
此时, 288024001240=+⨯=最大y (元)。
故当12=x 时,该厂一天中所获总利润最大,最大利润为:2880元. (12分)。