浅析分块矩阵的性质和应用[1]讲解
【文献综述】分块矩阵的性质及其应用

用中还是会遇到很多问题, 在实际生活中, 我们的很多问题可以用矩阵抽象出来, 但这些矩阵
一般都是高阶矩阵, 行数和列数都是一个相当大的数字, 因此我们在计算和证明这些矩阵时
会遇到很烦琐的任务. 这时我们得有一个新的矩阵处理工具, 来使这些问题得到更好的解决!
在文献[3]中给出了分块矩阵定义: 把一个 m n 矩阵 A , 在行的方向分成 s 块, 在列的方
向分成 t 块, 称为 A 的 s t 分块矩阵, 记作 A Akl st , 其中 Akl , k 1, 2,, s ,
l 1, 2,, t 称为 A 的子块, 它们是各种类型的小矩阵.
A
=
I3 0
A1
A2
并称它是 A 的一个 2 2 分块矩阵, 其中的每一个小矩阵称为 A 的一个子块. 常用的矩阵分块
方法, 除了上例中的 4 块矩阵, 矩阵的分块还有以下几种常用的分法:
(1) 按行分块
a11 a12 ... a1n A1
A
a12Βιβλιοθήκη ...a22 ...
... ...
| M || BC | | CA1B | .
文献[5-12]中还提到了有关分块矩阵的一些用法, 比如用分块矩阵证明有关矩阵乘积的
秩的定理: 矩阵乘积的秩不超过其因子的秩, 即 r( AB) r( A), 且 r( AB) r(B), 或者表示成
r( AB) min{r( A), r(B)}, 其中 r( A) 表示矩阵 A 的秩. 还可以利用分块矩阵求矩阵的行列
AD
式问题, 比如利用分块矩阵求高阶行列式
: 设 A, C 都是 n 阶矩阵, 其中| A | 0 , 并且
分块矩阵及其应用

分块矩阵及其应用
分块矩阵是由若干个子矩阵组成的大矩阵,通常将行和列分成若干块,每块均为矩阵,因而得名。
分块矩阵在数学和工程领域有广泛应用。
一些应用包括:
1.矩阵求逆:对于大规模矩阵求逆,可以先将矩阵分成较小的块,在每个块的范围内求逆并重新组合。
2.矩阵乘法:矩阵乘法的时间复杂度与矩阵的大小有关,但矩阵块的大小也会影响乘法的效率。
分块矩阵可以提高矩阵乘法的效率。
3.矩阵分解:对于某些特定类型的矩阵,如对称正定矩阵和稀疏矩阵,分块矩阵分解可以有效地降低计算复杂度。
4.图像处理:分块矩阵可以用于图像处理中的分块压缩和离散余弦变换等算法,以提高图像处理的效率和质量。
5.结构力学:分块矩阵广泛应用于结构力学和有限元方法中,可以描述复杂的结构系统和分析结构系统的动态行为。
高等代数小论文--分块矩阵及其应用

高等代数期中论文课程高等代数专业班级数学0802 姓名徐锴学号 ******** 指导教师牛敏分块矩阵及其应用主要内容1.分块矩阵1.1. 分块矩阵的定义用纵线与横线将矩阵A 划分成若干较小的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡st s s t t A A A A A A A A A 212222111211 其中每个小矩阵 .),1;,1(t j s i A ij==叫做A 的一个子块;分成子块的矩阵叫做分快矩阵[2].1.2 运算规则()1 stij ij st ij st ij B A B A )()()(+=± ()2 tsT ji st Tij A A )()(= ()3 sp ij tp ij st ij C B A )()()(=,ij C =∑-==tk kjik t j s i B A 1),...1,,...1( ()4 stij st ij A k A k )()(=(k 是数量) 在用规则1)时,A 与B 的分块方法须完全相同;用性质3)时,A 的列的分法与B 的行的分法须相同.1.3分块矩阵的性质及其推论在行列式计算中 ,我们经常用到下面三条性质[3]:()1 若行列式中某行有公因子 ,则可提到行列式号外面;()2 把行列式中的某行乘上某一个非零数 ,加到另一行中去 ,其值不变; ()3 把行列式中的某两行互换位置 ,其值变号;利用矩阵的分块 ,我们可以把行列式的三条性质在分块矩阵中进行广.性质 1 设方阵A 是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 级方阵 .对于矩阵B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C MB MB MB A A A则B =MA证明 设s E 为s 级单位矩阵 ,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321000000C C C B B B A A A E M E s s =A E ME s s⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000 于是B =0000ssE ME A =s E M s E A =MA性质 2 设矩阵是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 阶方阵 .对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=321321321C C C MC B MC B MC B A A A D 则A =D证明 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s sE E E 000000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++321321321C C C MC B MC B MC B A A A 其中 s E 是s 级单位矩阵 ,对上式两边同时取行列式得A =D性质 3 设方阵A 和'A 写成如下形式A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A ,'A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C A A A B B B 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是 s ×t 矩阵,则|'A |=⎩⎨⎧-为奇数时,当为偶数时当s A s A |||,|证明 A 可由'A 中的1B ,2B ,3B 与1A ,2A ,3A 相应的两行对换而得到 ,而对换行列式的两行 , 行列式反号 ,故当s 为偶数时|'A |=A 当s 为奇时|'A |=-A可以证明 ,对于一般分块矩阵也具有类似性质.同时 ,这些性质不仅对行成立 ,对列也同样成立.下面举例说明这些性质在行列式计算和证明中的应用.推论 1 设A ,都是n 阶方阵,则有AB =A B ()2.6 证明 作2n 阶行列式C =EA AB由拉普拉斯展开定理得C =AB E =AB又由性质2并应用于列的情况,有E A AB0=E EB A AB AB --0=EB A -0=B A nn n --+++++++2)1(21)1( =B A 推论 2 设,A B 都是n 阶方阵,则有AB BA =B A B A -+ 证明 根据定性质2并应用于列的情况,有AB BA =A AB B B A ++=B A B B A ++0=B A B A -+ 例1 计算n 2阶行列式D =ab a b a b b a b a ba 000000000000000000000000解 令A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡a 00000a 0000a 0000aB =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000 b b b 则 D =ABBA=B A B A -+=a b a b b a b a 00000000 ab a b b aba 00000000 ---- =n b a )(+n b a )(-=nb a )(22-推论 3 设,B ,C ,D 都是n 阶方阵 ,其中A ≠0,并且AC =CA ,则有DC BA=CB AD - ()2.8 证明 根据性质2,因为1-A 存在,并注意到AC =CA ,用1C A --乘矩阵⎥⎦⎤⎢⎣⎡D C B A 的第一行后加到第二行中去得⎥⎦⎤⎢⎣⎡----B CA D B CA A 110 从而D C B A=110A C A B D C A B---- =A B CA D 1--=B ACA AD 1--B CAA AD 1--=CB AD- 把行列式的性质在分块矩阵中进行推广之后,我们又由这三个新的性质得到了三个结论.设A ,B ,C ,D 都是n 级方阵则有AB =A B ABBA =B A B A -+ 结论()2.6告诉我们,两个方阵的乘积的行列式等于这两个方阵的行列式的乘积.结论()2.7则说明,当一个行列式可以分成四个级数相等的方阵A ,B ,B ,A 时(即AB BA ), 2.1分块矩阵在矩阵的秩的相关证明中的应用定理 1 秩()AB≤秩()A ,且秩()AB ≤秩()B ,则秩()AB ≤min{秩A ,秩B }[4]证明 令s m C ⨯=n m A ⨯⋅s n B ⨯,A =()12,n aa a ,C =()12,s γγγ 则(s γγγ 21,)=()12,naa a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ns n n s s b b b b b bb b b212222111211 ∴nns s s s nn n n a b a b a b a b a b a b a b a b a b +++=+++=+++=22112222112212211111γγγ∴s γγγ 21,()1可由n a a a 21,()2线性表示 ∴秩()I ≤秩()I I ,即秩()C =秩()AB ≤秩()A令=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21,B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n βββ 21 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a aa a a212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nβββ 21即nmn m m s nn n n a a a a a a a a a βββηβββηβφβη+++=+++=+++=22112222112212211111∴m ηηη 21,()3可由nβββ 21,()4线性表示 ∴秩()III ≤秩()IV ,即秩()C=秩()AB ≤秩()B即秩()AB ≤()()m i n {A B }秩,秩 定理 2 设、都是n 级矩阵,若0A B =则秩()A +秩()B ≤n[5].证明 对分块如下:()12nB B B B = 由于0A B =即()120nA B A B A B = 即()01,2,,i A B i n == 说明的各列B 都是0A X =的解.从而秩()12nB B B ≤基础解系=n -秩()A 即秩()A+秩()B ≤n3.1 分块矩阵在求逆矩阵方面的应用命题1[10]设P =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中B 为r 阶方阵, C 为k 阶方阵,当B 与)(1A DB C --都是可逆矩阵时,则P 是可逆矩阵,并且1-P=⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C 特例 ()1 当A =0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡--0011B C . ()2 当A =0,D ≠0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----01111B C DB C ()3 当A ≠0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----1111AC B BC 证明 设P 可逆,且1-P =⎥⎦⎤⎢⎣⎡W Z Y X,其中Y 为k 阶方阵,Z 为r 阶的方阵.则应有 于是得到下面的等式(4.1)0(4.2)0(4.3)(4.4)k r X AY C E X BY D Z AW C Z BW DE +=⎧⎪+=⎪⎨+=⎪⎪+=⎩因为可逆,用1-B 右乘(3.2)式可得代入(3.1)式得Y -11)(---A DB C 则X =11)(----A DB C D 1-B . 用右乘(3.4)式可得=()r E W D -1-B =1-B -1W D B - 代入(3.3)式得W =1B A -11)(---A DB C则 可得Z =1-B +1B A -11)(---A DB C D 1-B .所以1-P=⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C . 命题2 设Q =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中A 为r 阶方阵,D 为k 阶方阵,当A 与(B CA D 1--)都是可逆矩阵时,则Q 是可逆矩阵,并且1-Q =1-⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A特例 (1) 当B =0,C =0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡--1100D A (2) 当B ≠0,C=0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D BD A A 1X Y D B-=(3) 当B =0,C ≠0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D CA D A 此结论参考命题1.例1 设M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------6000004000001001095201473,求1-M . 解 令=⎥⎦⎤⎢⎣⎡--5273,=⎥⎦⎤⎢⎣⎡--109014,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001.则很容易求得1-A =⎥⎦⎤⎢⎣⎡--3275,1-D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--6/10004/10001 且11---BD A =-⎥⎦⎤⎢⎣⎡--3275⎥⎦⎤⎢⎣⎡--109014⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001=⎥⎦⎤⎢⎣⎡---2/12/1196/74/543 由命题2可得,1-M =⎥⎦⎤⎢⎣⎡-----1111D O BD A A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------6/1000004/1000001002/12/119326/74/54375 3.2 分块矩阵在行列式计算式方面的应用在线性代数中 ,分块矩阵是一个十分重要的概念 ,它可以使矩阵的表示简单明了 ,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上 ,利用分块矩阵方法计算行列式 ,时常会使行列式的计算变得简单 ,并能收到意想不到的效果[11]. 本节给出利用分块矩阵计算行列式的几种方法.引理 设矩阵H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A OOA O A A21或H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A AO A O OA21其中sA A A ,,,21 均为方阵,则 H =s A A A 21.3.2.1矩阵A 或B 可逆时行列式|H|的计算 命题 1 B A 、分别为m 与n 阶方阵. 证明 : (1)当可逆时 ,有BCD A =A D CA B 1-- (3.5) (2)当可逆时 ,有BCD A =C DB A 1--B (3.6) 证明 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D CA B D A B C D A E CA E 1100 由引理知,两边取行列式即得(3.5).()2 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡--E DB E 01⎥⎦⎤⎢⎣⎡B C D A =⎥⎦⎤⎢⎣⎡--B C C DB A 01两边取行列式即得(3.6).此命题可以用来解决一些级数较高的矩阵求逆问题,但在利用命题1时,要特别注意条件有矩阵或可逆,否则此命题不适用,下面给出此命题的应用.推论1 设,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵. 证明 B C DE m=CD B - ( 3.7) nE CD A =DC A - (3.8) 证明 只需要在命题1的(3.5)中令=m E , 即得(3.7);在(3.6)中令=n E ,即得(3.8). 推论2 ,C D 分别是n m ⨯和mn ⨯矩阵.证明 nm E CD E =CD E n -=DC E m - (3.9) 证明 在推论1的(3.7)中,令=n E ,在(3.8)中,令=m E ,即得(3.9)例3 计算下面2n 阶行列式n H 2=bcb c d a da()0a ≠解 令=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a ,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡b b,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c ,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dd为n 阶方阵.由于0a ≠,故为可逆方阵.又易知-D CA1-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------d ca b d ca b d ca b 111从而由命题1中()1得n H 2=AD C B=DCA B A 1-- =nn d ca b a )(1--=n cd ab )(-.例4 计算行列式()1);,,2,1,0(,00100100111121n i a a a a a i n=≠ ()2cb b b b a a a a nn3213211000100010001解 ()1 设=BC DA ,其中 =()0a ,=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a21,=T )1,,1,1( ,D =)1,,1,1( . 因为n i a i ,,2,1,0 =≠所以是可逆矩阵.又易知 A -C DB 1-=⎥⎦⎤⎢⎣⎡-∑=ni i a a 10/1从而由命题1中的结论()4.2得BC D A=1A DB CB -- =⎥⎦⎤⎢⎣⎡-∑=ni i n a a a a a 1021/1 (2)设Q =BC DE n,其中 B =(c ),C =),,,(21nb b b ,D =Tn a a a ),,(21 由于C D =),,,(21nb b b Tn a a a ),,(21 =∑=ni ii ba 1从而由推论1知,=BC DEn=B CD -=c -∑=ni ii ba 1.3.2.2矩阵,A B C D==时行列式|H|的计算 命题 2 ,A C 是两个n 阶方阵.则AC CA=|A+C||A-C| 证明 根据行列式的性质和定理,有AC CA =A A C C C A ++=C A C C A -+0 =A CA C +-. 例1 计算行列式.D =000xyzx zy y z x z y x解 这道题看似简单 ,但如果方法选择不好,做起来并不轻松. 这里设=⎥⎦⎤⎢⎣⎡00x x ,=⎥⎦⎤⎢⎣⎡y z z y 由命题2知D =ACCA=C A C A -+ =yzx z x y++yzx z x y ----=])(][)([2222z x y z x y --+- =))()()((z y x z y x z y x z y x ++--+-+-++行列式的计算是线性代数中的一个重要内容,本节就行列式的计算问题具体就形如H =BC DA (,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵)的类型的行列式计算进行了分析,其中将一个行列式分块成,,,ABCD 后,又细分为几种情况进行了讨论,依据不同的情况给出了不同的计算方法,在计算行列式时可根据这几种不同的情况具体问题具体对待,从而简化行列式的计算过程.在这一部分可见,利用分块矩阵计算行列式主要是靠分块矩阵来改变原来矩阵的级数从而达到简化计算过程,快速解决问题的目的.。
分块矩阵的运算

分块矩阵的运算分块矩阵的运算是一种特殊的运算方式,它可以有效地减少矩阵计算时间和存储空间,在科学计算、信号处理等领域有广泛的应用。
本文针对分块矩阵的定义、特性、计算方式和应用进行深入细致的介绍,以期为读者提供更多有价值的信息。
一、什么是分块矩阵分块矩阵是将原始矩阵按一定规则拆分,得到格式一致的若干小矩阵,每一小矩阵叫做分块,组成分块矩阵。
简单地说,分块矩阵的概念就是将原始矩阵拆分成若干小矩阵,每一小矩阵称为一块,它可以更加细致地描述不同的矩阵元素,有助于明确矩阵的结构和信息。
二、分块矩阵的特性1、存储空间的优化:由于分块矩阵可以将原始矩阵拆分,根据分块矩阵的定义可知,当其中某块恒为零时,即可认为该块不存在,从而节省内存空间;2、线性计算时间的优化:分块矩阵的计算时间较简单的矩阵更少,相比普通的矩阵该方法可以节省计算时间;3、实现快速收敛:由于分块矩阵可以分解矩阵,把复杂的计算问题分解为若干子问题,相比普通的矩阵可以实现更快的收敛;4、具有可扩展性:由于分块矩阵分解了原来的矩阵,新增的分块矩阵可以随时添加,也可以方便地删除,能够更容易实现分块矩阵的扩展性;三、分块矩阵的计算方式分块矩阵的计算方式主要有三种:第一种是基于普通的矩阵运算计算方式,这种方式集中计算分块矩阵所有的分块,是一种普通的矩阵运算。
第二种方式为拆解结构计算方式,这种方式先把分块矩阵拆解,把各个分块转化为普通矩阵,再采用普通矩阵计算方式进行各个分块的计算,最后综合各个分块的计算结果得到最终结果。
第三种则通过调整运算顺序来提高运算效率,这种方式根据分块矩阵的特性,分析每一个分块元素之间的依赖性,调整每一步运算的先后顺序,以达到提高运算效率的目的。
四、分块矩阵的应用分块矩阵的计算方式在科学计算、信号处理等领域有广泛的应用,其中包括:1、分块矩阵在解决线性方程组时有着强大的能力,可以更加有效地解决大规模的线性方程组;2、分块矩阵可以用来处理稀疏矩阵,在机器学习、数据分析、金融数据等领域有重要的应用;3、分块矩阵在信号处理领域有广泛的应用,可以有效地处理正交调制、小波变换等信号处理任务;4、在矩阵的LU分解、矩阵的幂运算等复杂的线性代数计算中,分块矩阵可以极大地提高计算效率。
分块矩阵的原理和应用

分块矩阵的原理和应用1. 原理分块矩阵是一种特殊的矩阵结构,将大型矩阵分割成更小的块状矩阵,以便进行更高效的运算和存储。
分块矩阵的原理主要包括以下几个方面:1.1 分块矩阵的定义分块矩阵由多个块状子矩阵组成,每个子矩阵都是相对较小的矩阵。
这些子矩阵可以是任意维度的矩阵,但通常都是方阵。
分块矩阵的维度取决于它所包含的子矩阵的维度和排列方式。
1.2 分块矩阵的运算分块矩阵可以进行各种矩阵运算,例如加法、减法和乘法等。
在进行这些运算时,可以利用分块矩阵的特殊结构,将运算过程分解为对各个子矩阵的运算,从而提高计算效率。
1.3 分块矩阵的存储分块矩阵的存储方式也与普通矩阵存储方式有所不同。
在分块矩阵中,每个子矩阵都被存储在一个相邻的内存块中,而各个子矩阵之间的存储空间可以是非连续的。
这种存储方式可以提高数据的局部性,进而提高计算效率。
2. 应用分块矩阵在科学计算和工程领域有广泛的应用,以下列举了一些常见的应用领域:2.1 计算机图形学在计算机图形学中,分块矩阵常用于表示和处理三维图形中的几何变换矩阵。
通过分块矩阵的运算,可以实现旋转、缩放和平移等常见的几何变换操作。
2.2 信号处理在信号处理中,分块矩阵常用于表示和处理信号的频谱信息。
通过分块矩阵的乘法运算,可以实现信号的卷积和相关等基本操作,进而实现滤波和频谱分析等应用。
2.3 优化算法在优化算法中,分块矩阵常用于表示优化问题的约束矩阵。
通过分块矩阵的运算,可以将大规模的优化问题分解为小规模的子问题,从而提高求解效率。
2.4 数据压缩在数据压缩领域,分块矩阵常用于表示和处理图像和视频数据。
通过分块矩阵的变换和压缩算法,可以实现图像和视频数据的无损或有损压缩,从而减小存储空间和传输带宽的需求。
3. 总结分块矩阵作为一种特殊的矩阵结构,在科学计算和工程领域有着广泛的应用。
它的原理包括定义、运算和存储等方面,通过合理利用分块矩阵的结构,可以提高计算效率和存储效率。
浅析分块矩阵的性质和应用[1]讲解
![浅析分块矩阵的性质和应用[1]讲解](https://img.taocdn.com/s3/m/7d1e919b7f1922791688e84d.png)
浅析分块矩阵的性质和应用作者姓名:周甜河南理工大学数学与信息科学学院数学与应用数学专业2007级2班性质1:分块矩阵都是可逆的,且逆矩阵为分块初等矩阵。
性质2:分块单位矩阵经过一次分块矩阵的初等变换后所得到的矩阵仍为分块初等矩阵。
摘要:分块矩阵在高等代数中有着广泛的应用,矩阵的分块运算是矩阵运算的一种重要方法。
本文主要讨论了分块矩阵的运算性质,初等变换,并举例说明和分析了分块矩阵在解决矩阵特征值计算和有关矩阵证明等问题中的应用。
利用分块矩阵可以使阶数比较高,比较复杂的矩阵和抽象矩阵的特征值问题的解决变得简明而清晰。
关键词:分块矩阵行列式特征值初等变换矩阵的逆Tentative Analysis of Properties and Applications of BlockMatricesAuthor Name:Zhou TianClass 2 Grade 2007 of Mathematics and Applied Mathematics of College Mathematics and Information Scienceof Henan Polytechnic University SchoolSummary:Block matrices has a wide use in Advanced Algebra. Operations of block matrices play an important role in the operation of matrices. This paper mainly illustrates the operation properties and the elementary transformations of block matrices. Several examples are given in the paper to show the applications of block matrices in calculating the eigenvalues of a matrix and proving a subject in connection with matrices. It is convenient to apply block matrices to deal with questions containing matrices with high order and complex appearances and calculating the eigenvalues of abstract matrices.Keywords: block matrices determinant eigenvalues elementary transformation the inverse of a matrix§1引言在高等代数中,矩阵是一项非常重要的内容,也是高等数学的很多分支研究问题的工具。
分块矩阵计算

分块矩阵计算分块矩阵在线性代数中是一个重要的概念,它可以用来简化复杂矩阵的运算。
在本文中,我们将介绍分块矩阵的定义、性质以及如何进行分块矩阵的运算。
我们来了解一下什么是分块矩阵。
分块矩阵是由若干个子矩阵按照一定的规则排列而成的大矩阵。
这些子矩阵可以是任意大小的矩阵,它们之间可以有重叠或间隔。
分块矩阵可以简化复杂矩阵的运算,使得计算更加方便。
接下来,我们来介绍一下分块矩阵的性质。
分块矩阵的加法和减法运算可以分别对子矩阵进行独立的运算。
具体来说,如果两个分块矩阵A和B具有相同的分块结构,那么它们的和C和差D也具有相同的分块结构,并且C和D的每个子矩阵分别等于A和B的对应子矩阵的和和差。
除了加法和减法,分块矩阵的乘法运算也非常重要。
分块矩阵的乘法运算可以分为两种情况:一种是分块矩阵与标量的乘法运算,另一种是分块矩阵与分块矩阵的乘法运算。
对于分块矩阵与标量的乘法运算,只需要将每个子矩阵乘以该标量即可。
而分块矩阵与分块矩阵的乘法运算则需要按照一定的规则进行。
在进行分块矩阵的乘法运算时,我们需要注意分块矩阵的乘法不满足交换律。
具体来说,如果A和B是两个分块矩阵,那么一般情况下AB不等于BA。
因此,在进行分块矩阵的乘法运算时,我们需要根据具体的分块结构进行计算。
分块矩阵的乘法运算可以通过分块矩阵的乘法规则来进行。
具体来说,如果A是一个m×n的分块矩阵,其中每个子矩阵的大小分别为ai×bj,那么A的乘积AB的大小为m×l,其中l是B的列数。
在计算AB时,我们可以按照以下步骤进行:1. 将A和B分别按照相同的方式进行分块,得到分块矩阵A'和B';2. 对于A'的每个分块矩阵Aij和B'的每个分块矩阵Bjk,计算它们的乘积Cij= Aij×Bjk;3. 将所有的Cij按照相应的位置进行相加,得到AB的分块矩阵C';4. 将C'中的每个分块矩阵重新排列,得到最终的结果C。
浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc分块矩阵是由几个矩阵块组成的矩阵,它的出现主要是为了更好地解决某些复杂的数学问题。
在实际应用中,分块矩阵既可以用于表示线性系统,也可以用于表示迭代算法的计算过程。
本文将从性质和应用两个方面对分块矩阵进行浅谈。
1. 分块矩阵的性质分块矩阵的一些性质能够帮助我们更好的理解它的本质。
下面将介绍几个较为常见的性质。
(1) 直和分块矩阵:如果一个分块矩阵的所有矩阵块都是对角矩阵,那么我们称这个分块矩阵为直和分块矩阵。
直和分块矩阵与对角矩阵非常相似,都具有稳定的性质和巨大的计算优势。
(2) 块矩阵的转置:对于一个分块矩阵A,通常有以下转置公式:(A^T)_i,j=A_j,i。
也就是说,分块矩阵的转置相当于交换原矩阵的每一块。
(3) 块矩阵的乘法:设A和B是两个分块矩阵,当且仅当A的列数等于B的行数时,我们才可以进行矩阵乘法AB。
具体方法是将A中的每一块分别与B中的每一列乘起来,然后对结果进行相加。
另外还有两个性质需要注意。
首先,如果A和B都是直和分块矩阵,则它们的乘积也是直和分块矩阵。
其次,如果A和B都是分块对称矩阵,那么它们的乘积也是分块对称矩阵。
(1) 线性系统求解:分块矩阵可以用于求解大规模的线性系统,它的基本思想是将系统分成若干个小规模的子系统,利用线性代数中的基本定理,通过求解小系统的逆矩阵逐步求解全局矩阵的逆矩阵。
具体而言,我们可以将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。
然后,我们可以将原始线性系统Ax=b转化为一个新的线性系统(D^-1CB)x=D^-1b。
由于B和D都是对角矩阵,所以它们的逆矩阵很容易求得。
接下来,我们只需要在新的线性系统中解x即可。
(2) 特征值计算:分块矩阵也可以用于特征值问题的求解,尤其是在计算大规模稀疏矩阵的特征值时特别有效。
具体而言,我们可以采用分块对角化的方法,将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析分块矩阵的性质和应用作者姓名:周甜河南理工大学数学与信息科学学院数学与应用数学专业2007级2班性质1:分块矩阵都是可逆的,且逆矩阵为分块初等矩阵。
性质2:分块单位矩阵经过一次分块矩阵的初等变换后所得到的矩阵仍为分块初等矩阵。
摘要:分块矩阵在高等代数中有着广泛的应用,矩阵的分块运算是矩阵运算的一种重要方法。
本文主要讨论了分块矩阵的运算性质,初等变换,并举例说明和分析了分块矩阵在解决矩阵特征值计算和有关矩阵证明等问题中的应用。
利用分块矩阵可以使阶数比较高,比较复杂的矩阵和抽象矩阵的特征值问题的解决变得简明而清晰。
关键词:分块矩阵行列式特征值初等变换矩阵的逆Tentative Analysis of Properties and Applications of BlockMatricesAuthor Name:Zhou TianClass 2 Grade 2007 of Mathematics and Applied Mathematics of College Mathematics and Information Scienceof Henan Polytechnic University SchoolSummary:Block matrices has a wide use in Advanced Algebra. Operations of block matrices play an important role in the operation of matrices. This paper mainly illustrates the operation properties and the elementary transformations of block matrices. Several examples are given in the paper to show the applications of block matrices in calculating the eigenvalues of a matrix and proving a subject in connection with matrices. It is convenient to apply block matrices to deal with questions containing matrices with high order and complex appearances and calculating the eigenvalues of abstract matrices.Keywords: block matrices determinant eigenvalues elementary transformation the inverse of a matrix§1引言在高等代数中,矩阵是一项非常重要的内容,也是高等数学的很多分支研究问题的工具。
当我们处理阶数较高或者具有特殊结构的矩阵时,用一般处理低阶矩阵的方法,往往会比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常常把一个大型矩阵分成若干子块。
把每个子块矩阵看成是一个元素,从而构成分块矩阵。
分块矩阵形象地揭示了一个复杂或是特殊矩阵的内部本质结构。
利用矩阵分块可以把高阶矩阵划分为阶数较低的“块”,然后对这些以“块”为单位的矩阵施行矩阵的运算。
本文就分块矩阵的加法与数量乘法、乘法、转置、初等变换等运算性质,以及分块矩阵在矩阵求逆、行列式展开等方面的应用作了较为深入的研究。
1.分块矩阵的概念有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样,特别是在运算中,把这些小矩阵当作数一样来处理,这就是所谓的矩阵的分块。
设A 是一个n m ⨯ 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它分成s 块,于是,我们就得到了一个有rs 块的分块矩阵,⎪⎪⎪⎭⎫ ⎝⎛=rs r s A A A A A 1111,在这里ij A 表示的是一个矩阵。
2.分块矩阵的运算性质分块矩阵的运算在形式上和数字矩阵的运算完全一样,只要进行运算的矩阵的分块适当,分块矩阵有类似于普通矩阵的运算法则: a .分块矩阵的加法设A ,B 都是n m ⨯矩阵,并且对A ,B 用同样的方法进行分块:111212122212k k l l lk A A A A A A A A A A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 111212122212k k l l lk B B B B B B B B B B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中,ij ij A B 都是i j m n ⨯矩阵,即,ij ij A B 使同型矩阵,那么111112121121212222221122k k k k l l l l lk lk A B A B A B A BA B A B A B A B A B A B +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦应注意的是,利用分块法对两个同型矩阵进行加法运算时,两个矩阵必须采用相同的分块法。
下面我们通过一个例题来详细了解加法的运算法则。
例2.1:100000,001001a a A b b ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭设000100000001aa Bb b ⎛⎫⎪⎪= ⎪⎪⎝⎭, .A B +求解:将,A B 分块100000001001a a A b b ⎛⎫⎪⎪= ⎪ ⎪⎝⎭12A O ,O A ⎛⎫= ⎪⎝⎭其中121,01;1a A a bA b ⎛⎫=⎪⎝⎭⎛⎫=⎪⎝⎭12000100000001a B O a B ,OB b b ⎛⎫⎪⎛⎫⎪==⎪ ⎪⎝⎭ ⎪⎝⎭其中120,10;1a B a bB b ⎛⎫=⎪⎝⎭⎛⎫=⎪⎝⎭111021,0112a a a A B a a a ⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭221021,1122b b b A B b b b ⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1122AO B O A B OA OB ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭2100120000210022a a b b ⎛⎫⎪ ⎪=⎪ ⎪⎝⎭。
同理,设A 都是n m ⨯矩阵,把A 进行分块:111212122212k k l l lk A A A A A A A A A A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,a 为任意数,则111212122212k k l l lk aA aA aA aA aA aA aA aA aA aA ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦b .分块矩阵的乘法下面的定理表明,分块矩阵的乘法类似于矩阵的乘法:例2.2:用分块法计算AB ,其中0051241421,53100120020-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A B 。
解:,A B 如上分块,⎪⎪⎭⎫ ⎝⎛=22211211A AA A A , ⎪⎪⎭⎫⎝⎛=232221131211B B B B B B B , 其中11122122421(0,0),(5),,,12⎛⎫⎛⎫====⎪ ⎪-⎝⎭⎝⎭A A A A()()()0,20,0,01,1342,51232221131211===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=B B B B B B ; 令==C AB ⎪⎪⎭⎫⎝⎛232221131211C C CC C C ,其中=+=2112111111B A B A C )0()0)(5(51)00(=+⎪⎪⎭⎫⎝⎛,=+=2212121112B A B A C )00(()()()1002051342=+⎪⎪⎭⎫⎝⎛,=+=2312131113B A B A C )0()0)(5(01)00(=+⎪⎪⎭⎫⎝⎛-,=+=2122112121B A B A C ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-514)0(21511024,=+=2222122122B A B A C ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-332014)20(2113421024,=+=2322132123B A B A C ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-04)0(21011024。
故==C AB ⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛0335420141401000232221131211C C CC C C 。
值得注意的是,利用分块法对两个矩阵进行乘法运算时,左矩阵列的分法和右矩阵行的分法必须完全相同。
c .分块矩阵的转置对于一有rs 块的分块矩阵1111s r rs A A A A A ⎛⎫⎪=⎪ ⎪⎝⎭,有 11111111T T s r TT T r rs s sr A A A A A A A A A A ⎛⎫⎛⎫⎪ ⎪=⇒= ⎪⎪⎪ ⎪⎝⎭⎝⎭值得注意的是,转置时,每一个小块也要转置,并且它的位置也要行列对调。
d .对角分块矩阵的一些性质对于方阵A ,经过分块后,非0对角块都只在主对角线上,而且每个小块都是方阵;即120000000000s A A A A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,其中(1,2,)i A i s =都是方阵,那么称A 为方块对角矩阵。
有如下性质:(1)行列式12s A A A A =。
(2)若0(1,2,,)i A i s ≠=则0A ≠,并且有 11112100000000000s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭. (3)分块对角阵的乘法,111122220000000000000000s s s s A B A B A B A B A B A B ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(4)分块对角阵的转置,120000000000s A A A A ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,那么1200000000000TT T T s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭3.分块矩阵初等变换的应用定义3.1 将一个分块矩阵A 用若干条纵线和横线分成许多块的低阶矩阵,每一块低阶矩阵称为A 的子块。
以子块为元素的矩阵A 称为分块矩阵。
我们将单位矩阵E 分块:⎪⎪⎪⎭⎫ ⎝⎛=s r r E E E 000001,其中i r E 是i r 阶单位矩阵(s i <<1)称E 为分块单位矩阵。
3.1 应用分块矩阵初等变换求矩阵的逆下面我们先将初等变换求逆矩阵的方法()()1-→M EE M 推广到分块矩阵中去。
定理3.1.1 可逆分块矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=ss s s s s A A A A A A A A A M 212222111211可以写成分块初等矩阵的乘积,其中11A ,22A ,…,ii A ,…,ss A 均为矩阵。