合集下载

热力学中的熵与热力学第二定律

热力学中的熵与热力学第二定律

热力学中的熵与热力学第二定律热力学是研究热量与能量转换关系的学科,而熵(entropy)是热力学中一个重要的概念。

本文将介绍熵的定义和特性,并解释熵在热力学第二定律中的应用。

一、熵的定义与基本特性熵是热力学中的一个状态函数,用S表示,它度量了系统的无序程度或混乱程度。

根据统计热力学的观点,当系统的无序程度较高,熵的值也较高;当系统有序程度较高,熵的值较低。

熵可以用数学公式表示为:S = k ln W其中,S表示系统的熵,k是玻尔兹曼常数,ln表示自然对数,W 是系统的微观状态数,表示系统可以处于的不同状态的数量。

熵具有以下几个基本特性:1. 熵是一个状态函数,与系统的路径无关。

这意味着无论系统经历了怎样的变化,最终的熵值只与系统的初始状态和最终状态有关。

2. 熵在不可逆过程中增加,而在可逆过程中保持不变或减少。

可逆过程是指系统与外界之间没有任何摩擦、能量损耗等能量转化损失的过程;而不可逆过程则与之相反,包含能量转化损耗、摩擦产生的能量等。

3. 熵的增加代表着系统的能量转化的不可逆性和能量利用的低效性。

这也是熵在热力学第二定律中的重要作用。

二、热力学第二定律与熵热力学第二定律是热力学中最重要的定律之一,主要阐述了热量在系统和环境之间传递的方向。

而熵则是作为热力学第二定律的一个重要概念被提出并应用其中。

热力学第二定律有多种表述方式,其中之一是卡诺定理(Carnot theorem)。

卡诺定理指出,对于所有工作在相同温度下的热机,存在一个最大效率,这个效率只依赖于这两个热源的温度差。

而这个最大效率可以用熵的概念进行描述。

对于两个热源温度分别为T1和T2(T1 > T2),卡诺定理给出的最大效率为:η = 1 - (T2 / T1)其中,η表示热机的效率,T2 / T1表示热机工作过程中熵变的比值。

这里的熵变指的是系统和环境熵的变化量。

根据熵增加的特性,不可逆过程会使系统的熵增加,即熵变为正值。

因此,根据卡诺定理,最大效率只能在可逆过程中达到。

熵

基本释义熵shang【拼音】:[shāng]详细释义1:物理学上指热能除以温度所得的商,标志热量转化为功的程度。

2: 科学技术上用来描述、表征系统不确定程度的函数。

亦被社会科学用以借喻人类社会某些状态的程度。

3:传播学中表示一种情境的不确定性和无组织性。

英文释义:The degree of randomness or disorder in a thermodynamic system.编辑本段熵的特点1.熵是体系的状态函数,其值与达到状态的过程无关;2.熵的定义是:dS=dQR/T,因此计算不可逆过程的熵变时,必须用与这个过程的始态和终态相同的可逆过程的热效应dQR来计算;3.TdS的量纲是能量,而T是强度性质,因此S是广度性质。

计算时,必须考虑体系的质量;4.同状态函数U和H一样,一般只计算熵的变化。

编辑本段历史概念提出1850年,德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大。

一个体系的能量完全均匀分布时,这个系统的熵就达到最大值。

在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。

让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。

克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意可逆循环过程都都适用的一个公式:dS=(dQ/T)。

证明对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。

这就是熵增加原理。

由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。

它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。

熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。

热力学中的熵的概念

热力学中的熵的概念

热力学中的熵的概念熵,是热力学中一个重要的概念。

它是由鲁道夫·克劳修斯(Rudolf Clausius)引入并定义的,被视为热力学第二定律的核心内容之一。

熵在热力学、信息论和统计力学中都扮演着重要的角色。

在热力学中,熵被定义为系统中能量的一种度量,也可理解为系统的无序程度。

熵的概念最初是从研究热力学过程中的能量转化而来的。

当系统的能量转化时,热力学第二定律指出,系统的熵必然增加。

这也可以解释为热能从高温区流向低温区的现象,即能量会朝着更无序的方向转化。

熵可以用数学公式来表示,即ΔS = Q/T,其中ΔS表示系统的熵变,Q表示系统从外界吸收或释放的热量,T表示系统的温度。

熵变可以为正、负或者零,正表示熵增,负表示熵减,零表示熵保持不变。

熵增是热力学第二定律的数学表述,它告诉我们,在孤立系统中,熵随时间的推移会不断增加。

熵在信息论中也有重要的应用。

在信息论中,熵被用来衡量信息的不确定程度。

信息论的奠基人之一克劳德·香农(Claude Shannon)提出了信息熵(或称为香农熵)的概念。

信息熵衡量了信息源的不确定性,越不确定的信息源具有的信息熵越高。

熵在统计力学中也有深入的应用。

统计力学研究的是微观粒子的行为和性质,熵是描述多粒子系统行为和性质的重要物理量之一。

根据统计力学的原理,熵可以通过计算系统的微观状态数来求得。

微观状态数是系统可能存在的所有微观状态的数量,熵的计算公式为S = k ln Ω,其中S表示系统的熵,k是玻尔兹曼常数,Ω是系统的微观状态数。

通过计算系统的微观状态数,我们可以了解系统的宏观性质和行为。

熵的概念在实际应用中有许多重要的意义。

在工程热力学中,熵被用来分析能量转换的效率和热力学过程的可逆性。

在生物学中,熵被用来解释生命现象中的组织和动态平衡。

在经济学中,熵被用来分析资源分配和经济活动中的效率。

总之,熵是热力学中的重要概念,它在能量转化、信息论和统计力学中都有广泛的应用。

熵的定义(精)

熵的定义(精)

A (U - TS ) TS 5744 J G ( H - TS ) TS 5744 J
② 第二过程与第一过程具有相同的始末态,故所有的状态函数 的改变量不变: ΔU = ΔH = 0, ΔS = 19.15 J/K, ΔG = ΔA = -5744 J, W = 0, Q = 0。 用什么来判断该过程的方向呢?5个判据只有一个可用:该 过程为一等温过程,可以用亥姆霍兹函数ΔA 判断过程的性质。 dAT ≤δW实,体 或:ΔAT ≤ W实,体 { ΔA = - 5744 J。实际过程,W = 0,故: ΔAT ≤ W,过程自发。
G U pV TS H TS
dAT ,V 0 or AT ,V 0 dGT , p 0 or GT , p 0
作业:3-19、23、24、31
解 ①理想气体等温过程; ΔU = ΔH = 0. W = - Q = - nRTln = - 1×8.315×300×ln
1013 .25 kPa 101.325 kPa
p p
1
2
= - 5744 J,
Q = 5744 J.
S nCp ,m ln
T2 p 1013.25 nRln 1 8.315 ln J/K 19.15 J/K T1 p2 101.325
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。 热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,体系必须是孤立体系,也就是说必须同 时考虑体系和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用体系自身状 态函数的变化,来判断自发变化的方向和限度。
(2) 含有相变化过程的ΔG 计算

熵

熵的由来物理学中,熵有两个定义——热力学定义和统计力学定义。

熵最初是从热力学角度定义的。

19世纪50年代,克劳修斯(...R J E C lausius)编造了一个新名词:entropy,它来自希腊词“trope”,意为“转变,变换”。

为了与能量(energy)相对应,克劳修斯在“trope”上加了一个前缀“en”。

在克劳修斯看来,“energy”和“entropy”这两个概念有某种相似性。

前者从正面量度运动转化的能力;后者从反面量度运动不能转化的能力,即运动丧失转化能力的程度,表述能量的可转换能力(活力)丧失的程度,或能量僵化(蜕化)的程度(尽管能量总体是守恒的)。

例如,你用20元人民币购得一袋大米,你的价值总量(能量)不变,但一袋大米在市场上的再交换能力(活力)低于20元人民币。

这种消费使其熵(经济)增大。

按当初的设计,活力越丧失,能量越僵化,熵越大。

热力学第一定律描述了自然界中各种形式的能量转换过程中量的守恒,并未指出不同形式能量的本质的差异。

而热力学第二定律告诉我们,能量之间的品质是有差别的:有序运动的能量可以通过做功完全转变成无序运动的能量;而无序运动的能量不能完全转变成有序运动的能量(效率为100%的热机是不能实现的)。

或者说,有序运动的能量转化为其他形式的能量的能力强,能被充分利用来做功,品质较高;而无序运动的能量转化能力弱,做功能力差,品质较低。

根据热力学第二定律,高品质的能量转换为低品质的能量的过程是不可逆的。

高品质的能量转换为低品质的能量后,就有一部分不能再做功了。

我们把这样的过程称为能量的退化,通过物理学知识可以证明:退化的能量与系统的熵增成正比。

于是,我们可以说:熵是能量不可用程度的度量。

“熵”的中文译名是我国物理学家胡刚复教授确定的。

他于1923年5月为德国物理学家普朗克作《热力学第二定律及熵之观念》讲学时做翻译,把“entropy”译为“熵”。

它是热量变化与温度之比(商),又与热学有关,就加了个“火”字旁,定名为熵。

热力学中的熵计算

热力学中的熵计算

热力学中的熵计算
热力学中的熵(Entropy)是一个物质或系统的无序程度的度量,可以用来描述热力学过程中能量转化的方向和可能性。

熵的计算可由以下公式表示:
ΔS = ∫(δQ/T)
其中,ΔS表示系统的熵变,是指在热力学过程中系统从一个状态变为另一个状态时,系统熵的变化量。

δQ表示系统吸收或放出的热量,T表示系统的温度。

需要注意的是,熵是一个统计性质,其值与系统的微观状态有关,因此只能计算熵的变化,而不能直接计算出系统的绝对熵值。

在某些特定情况下,熵的计算可以采用更简化的公式。

例如,在等温过程中,熵的变化可以通过以下公式计算:
ΔS = Q/T
其中,ΔS表示系统的熵变,Q表示系统吸收或放出的热量,T表示系统的温度。

总之,在热力学中,熵是一个重要的概念,用于描述能量转化的方向和可能性。

通过计算熵的变化,可以揭示系统的行为和性质。

熵的定义式及其适用条件

熵的定义式及其适用条件

熵的定义式及其适用条件
熵是热力学中的一个重要概念,它描述了系统的无序程度。

熵的定义
式为:
S = k ln W
其中,S表示系统的熵,k是玻尔兹曼常数,W是系统的微观状态数。

这个定义式表明了一个重要事实:系统越有序,其微观状态数就越少,而系统越无序,则其微观状态数就越多。

因此,当一个系统处于高度
有序状态时,它的熵值会非常低;而当一个系统处于高度无序状态时,则其熵值会非常高。

熵的适用条件包括:
1. 系统必须是封闭的。

也就是说,在计算一个系统的熵值时,我们必
须考虑到该系统与外界之间没有任何物质和能量交换。

2. 系统必须达到平衡态。

只有在平衡态下,才能够准确地计算出一个
系统的熵值。

3. 系统必须处于可观测范围内。

也就是说,在计算一个系统的熵值时,我们需要考虑到该系统内所有不同微观状态所对应的概率分布情况。

总之,在计算一个系统的熵值时,我们需要考虑到该系统内所有可能
出现的微观状态,并且需要将这些微观状态所对应的概率分布情况考
虑在内。

只有在满足这些条件的情况下,我们才能够准确地计算出一
个系统的熵值。

总结一下,熵是一个非常重要的热力学概念,它描述了系统的无序程度。

通过使用熵的定义式,我们可以准确地计算出一个系统的熵值,
并且可以利用这个值来推导出系统内部发生的各种物理过程。

但是,
在计算一个系统的熵值时,我们需要注意到一些适用条件,并且需要
将这些条件考虑在内。

熵

熵熵shāng〈名〉物理名词,用热量除温度所得的商,标志热量转化为功的程度[entropy]物理意义:物质微观热运动时,混乱程度的标志。

热力学中表征物质状态的参量之一,通常用符号S表示。

在经典热力学中,可用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量。

下标―可逆‖表示加热过程所引起的变化过程是可逆的。

若过程是不可逆的,则dS>(dQ/T)不可逆。

单位质量物质的熵称为比熵,记为s。

熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。

热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地、连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生的过程总使整个系统的熵值增大,此即熵增原理。

摩擦使一部分机械能不可逆地转变为热,使熵增加。

热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。

◎物理学上指热能除以温度所得的商,标志热量转化为功的程度。

◎科学技术上泛指某些物质系统状态的一种量(liàng)度,某些物质系统状态可能出现的程度。

亦被社会科学用以借喻人类社会某些状态的程度。

◎在信息论中,熵表示的是不确定性的量度。

只有当你所使用的那个特定系统中的能量密度参差不齐的时候,能量才能够转化为功,这时,能量倾向于从密度较高的地方流向密度较低的地方,直到一切都达到均匀为止。

正是依靠能量的这种流动,你才能从能量得到功。

江河发源地的水位比较高,那里的水的势能也比河口的水的势能来得大。

由于这个原因,水就沿着江河向下流入海洋。

要不是下雨的话,大陆上所有的水就会全部流入海洋,而海平面将稍稍升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


本章框架结构
基本要求
1. 理解玻尔兹曼熵公式及熵增加原理。

2. 了解克劳修斯熵公式及其物理意义。

3. 了解热力学第三定律的内容。

4. 了解熵与能量、熵与时间、熵与生命的关系。

5. 了解耗散结构结构的定义及其研究耗散结构的意义。

内容提要
1. 玻尔兹曼熵公式与熵增加原理
其中为系统在某一宏观状态时所对应的热力学概率。

由于状态确定就确定,进而S 也就确定了,因而熵是一个状态函数,这是熵的重要性质。

熵的其它性质请参阅教材相关章节。

由于,而孤立系统中过程进行的方向总是向着或S 增加的方向进行的,直到达到S 极大为止,因而必然有:一切实际的宏观过程只能沿着熵增加的方向进行,即
这就是熵增加原理。

显然,熵是一个标志孤立系统过程进行方向的物理量,孤立系统的熵值给出了一个时间箭头,揭示了实际宏观过程的时间反演不对称性。

2. 克劳修斯熵公式
对可逆过程:
对不可逆过程:
对微小过程:
对孤立系统:因为,所以必有
此式表明,一个孤立系统的熵不会减少,这与熵增加原理是完全一致的。

可以证明,克劳修斯熵与玻尔兹曼熵是完全一致的。

3. 热力学第三定律
当温度趋于绝对零度时,凝聚系统在一切等温过程中的熵值不变。

在此基础上人们发现,温度越低,降温越困难/由此实验事实提出了“绝对零度是不能达到的”结论,称为热力学第三定律。

难点辨析
1. 怎样理解熵是态函数
从可逆卡诺循环出发,对图21-1所示的任一可逆循环过程有
所以必有
仿照保守力做功与路径无关引入了一个态函数那样,可以引入一个态函数,即熵S是热力学系统的状态函数。

2. 熵与内能的比较
熵和内能虽然都是态函数,却是两个不同的概念,它们描述系统的不同性质,具有不同的物理意义。

例如,理想气体向真空膨胀的过程中,系统的内能不变,但熵却要增加,我们还是根据熵的变化来判断过程自发进行的方向的。

另一方面,内能的变化是从量的方面显示过程中的能量转换,而熵的变化则是从质的方面显示能量转换的不可逆行。

3. 怎样计算不可逆过程的熵变
对可逆过程,可以利用克劳修斯熵公式计算熵变,即
对不可逆过程如何计算熵变呢?由于熵是态函数,因此,我们总可以在系统初、末态之间设计一个或几个假想的可逆过程,并利用上述可逆过程熵变的计算方法来估算出对应的不可逆过程的总熵变。

例1人体一天大约向周围环境散发热量,试估算由此产生的熵。

设人体温度为,忽略人进食时带进体内的熵,环境温度取为237K。

解:将人和环境视为一个孤立系统,人体向周围环境散热可以设计为一个等温过程,环境吸热也可以设计为一个等温过程,于是两个过程的总熵为
例2已知在时,1mol的冰溶解为1mol的水需要吸收6000J的热量,求
(1) 在时这些水化为冰的熵变;
(2) 在时水的微观状态数与冰的微观状态数之比。

解:(1) 的冰化为的水为不可逆过程,为了计算其熵变,可设一可逆的等温过程,于是熵变为
(2) 由玻尔兹曼熵公式可知,熵S与微观状态数有关,若已知两状态的熵变,就可求得微观状态数之比。

由于
所以
问题讨论
1. 对于一个系统的熵变,有下面两种说法,判断其正误。

(1) 任一绝热过程,熵变;
(2) 任一可逆过程,熵变。

解答:
(1) 说法错误。

由克劳修斯熵公式可知,对可逆绝热过程,熵变,但对不可逆绝热
过程,即,熵增加。

(2) 说法同样不正确。

可逆的绝热过程系统熵不变。

但对非绝热的可逆过程,吸热时,放热
时。

2.一杯热水放在空气中,最终杯中水的温度与空气完全相同,结果杯中水的熵减少,这是否与熵增加原理矛盾?
解答:不矛盾。

熵增加原理只对孤立绝热系统成立。

而杯中的水不是孤立的,也不是绝热系统,因而其熵是可以减少的。

若将杯中的水可、和空气作为一个孤立系统,则系统达到平衡态时,总熵一定是增加的。

3.若一系统从某一初态分别沿可逆过程和不可逆过程到达同一终态,则不可逆过程的熵变大于可逆过程的熵变。

解答:这种说法不对。

因为熵是态函数,只要初、末状态一定,熵的增量就一定,与过程无关。

相关文档
最新文档