雅克比高斯赛德尔迭代法
高斯-塞德尔(Gauss-Seidel)迭代法

将A分裂成A =L+D+U,则 Ax b 等价于
( L+D+U )x = b
于是,则高斯—塞德尔迭代过程
Dx(k1) Lx(k1) Ux(k) b
因为 D 0 ,所以 D L D 0
故
(D L)x(k1) Ux (k) b
x(k1) (D L)1Ux (k) (D L)1b
数值计算方法
高斯-塞德尔(Gauss-Seidel)迭代法
1.1 高斯-塞德尔迭代法的基本思想
在Jacobi迭代法中,每次迭代只用到前一次的 迭代值,若每次迭代充分利用当前最新的迭代值,
即在求
x (k 1) i
时用新分量
x1( k
1)
,
x
(k 2
1)
,,
x (k 1) i 1
代替旧分量
x1(
k
)
,
x1(k
x
(k 2
1) 1)
( x2(k ) x3(k ) (2x1(k1)
1) / 8 x3(k) 4) /10
x3(k
1)
( x1(k 1)
x (k 1) 2
3) / 5
取初始迭代向量 x(0) (0 ,0 ,0)T ,迭代结果为:
1.2 Gauss—Seidel 迭代法的矩阵表示
令 G1 (D L)1U , d1 (D L)1b
则高斯-塞德尔迭代形式为:
x (k 1) G1 x (k ) d1
1.3 高斯—塞德尔迭代算法实现
高斯-塞德尔迭代算法的计算步骤与流程图与
雅可比迭代法大致相同,只是一旦求出变元 xi
的某个新值
后, x (k1) i
就改用新值
研究生数值分析12高斯 赛德尔Gauss Seidel迭代法

上式左端为将系数矩阵 A 的对角线及对角线
以下元素同乘以 λ 后所得新矩阵的行列式。
例9 用高斯-赛德尔迭代法解方程组
???1?02xx11??
2x2 ? 10 x2
x3 ? ? x3
3 ?
15
??? x1 ? 2x2 ? 5x3 ? 10
解:相应的高斯 -赛德尔迭代公式为
? ? ?
x (k?1) 1
高斯-赛德尔迭代公式如下:
??x1(k?1) ?
?
1 a11
(?a12x2(k)
?
a13x3(k)
?L
?
a1n
x (k) n
?
b1)
??x2(k?1) ?
?
1 a11
(?a21x1(k?1)
?
a23x3(k)
?L
?
a2n
x (k) n
?
b2
)
??L L
?
??xi(k?1) ??L L
?
1 aii
(?ai1x1(k?1)
i ?1
i? j
则方程组 AX=b有唯一解,且对任意初始向量 X(0)
雅可比迭代法与高斯 -赛德尔迭代法都收敛。
定理5 若方程组 AX=b 的系数矩阵 A ? [aij ]n?n 为对称正定矩阵。则对任意初始向量 X (0) 高斯 -赛德尔迭代法 都收敛。
只要方程组 AX=b 的系数矩阵 A? [aij ]n?n 满足 定理4或定理 5的条件,就可以十分方便地判断相 应迭代过程的收敛性。
??0.2 0.4 0 ??
BJ ? ? 0.6 ? 1 雅可比迭代过程必收敛;
高斯 -赛德尔迭代矩阵
?0 BG ? ??0
研究生数值分析(12)高斯-赛德尔(Gauss-Seidel)迭代法 ppt课件

则由误差估计式知,只要 k 满足
Bk
X(1) X(0) 104
1 B
将 B J 0 . 6 , X ( 0 ) ( 0 , 0 , 0 ) T , X ( 1 ) ( 0 . 3 0 0 0 , 1 . 5 0 0 0 , 2 . 0 0 0 0 ) T
代入得 k21.18 ,故Jacobi迭代22次即可;
• “太阳当空照,花儿对我笑,小鸟说早早早……”
其矩阵表示形式为 X (k 1 ) D 1 (L X (k 1 ) U X (k ) b )
现将 X (k1) 显式化,由 (D L )X(k 1)U X(k)b
得
X (k 1 ) (D L ) 1 U X (k ) (D L ) 1 b
,x (k 1) i 1
求出,马上就用新分量
x1 (k 1 ),
,x (k 1 ) i 1
代替雅可比迭代法中
来求 x1(k), ,xi 1(k)
x (k 1) i
, 这就是高斯-赛德尔(Gauss-Seidel)迭代法。
高斯-赛德尔迭代公式如下:
x1(k1)
1 a11
(a12
x (k) 2
a13x3(k)
2
x1
10 x2
x3
15
x1 2x2 5x3 10
雅可比迭代矩阵
0 0.2 0.1 BJ 0.2 0 0.1
0.2 0.4 0
BJ
0.61
雅可比迭代过程必收敛;
高斯-赛德尔迭代矩阵
0 BG 0
0
0.2 0.04 0.056
0.1
0.12
0.068
BG 0.31 高斯-赛德尔迭代过程也收敛。
出如下结论。
计算方法3_线性方程组迭代解法

计算方法3_线性方程组迭代解法线性方程组的迭代解法是解决线性方程组的一种常见方法,常用于大规模的线性方程组求解。
该方法通过不断迭代更新解的近似值,直到满足一定的收敛准则为止。
线性方程组的迭代解法有很多种,其中最经典的是雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法。
本文将分别介绍这三种迭代解法及其计算方法。
雅可比迭代法是一种比较简单的线性方程组迭代解法,它的基本思想是先将线性方程组转化为对角占优的形式,然后通过迭代求解逐渐接近精确解。
雅可比迭代法的迭代公式为:其中,x^(k+1)是第k+1次迭代的近似解,n是未知数的个数,a_ij 是系数矩阵A的元素,f_i是方程组的右端向量的元素。
雅可比迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式,即保证矩阵A的对角元素绝对值大于其它元素的绝对值。
2.初始化向量x^(0),设定迭代终止准则。
3.根据雅可比迭代公式,计算x^(k+1)。
4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。
高斯-赛德尔迭代法是雅可比迭代法的改进方法,它的基本思想是在每次迭代计算x^(k+1)时,利用已经计算出的近似解作为x的一部分。
高斯-赛德尔迭代法的迭代公式为:其中,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。
高斯-赛德尔迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式。
2.初始化向量x^(0),设定迭代终止准则。
3.根据高斯-赛德尔迭代公式,计算x^(k+1)。
4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。
超松弛迭代法是对高斯-赛德尔迭代法的一种改进方法,它引入了松弛因子ω,通过调整参数ω的值,可以加快迭代的收敛速度。
超松弛迭代法的迭代公式为:其中,0<ω<2,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。
雅可比,高斯-赛德尔以及SOR迭代法

{
float t=0.0;
for(j=1;j<n+1;j++)
{
if(j==i)
continue;
t=t+a[i][j]*xk[j];
}
xl[i]=(b[i]-t)/a[i][i];
}
t=0.0;
for(i=1;i<n+1;i++)
{
tt=fabs(xl[i]-xk[i]);
if(t>p)
{
k++;
SOR(xk);
}
else
{
printf("\nReach the given precision!\n");
printf("\nCount number is %d\n",k);
}
}
for(i=1;i<n+1;i++)
xk[i]=xl[i];
if(k+1>c)
{
if(t<=p)
printf("\nReach the given precision!\n");
else
printf("\nover the maximal count!\n");
printf("\nCount number is %d\n",k);
t=t+a[i][j]*xl[j];
for(j=i+1;j<n+1;j++)
tt=tt+a[i][j]*xk[j];
高斯赛德尔迭代计算方法

高斯-赛德尔迭代(Gauss-Seidel iteration)是一种用于解线性方程组的迭代计算方法。
它是雅可比迭代(Jacobi iteration)的一种改进,以求解形如 Ax = b 的线性方程组。
迭代过程中,高斯-赛德尔方法按顺序更新解向量的每个分量,所得新值将直接用于后续计算。
这种按顺序更新的方法使收敛速度通常比雅可比迭代法更快。
给定一个 n×n 的系数矩阵 A 和一个 n 维列向量 b ,线性方程组表示为 Ax = b。
高斯-赛德尔迭代的步骤如下:将系数矩阵 A 分解为两部分:一个下三角矩阵 L(包括对角线)和一个上三角矩阵 U(不包括对角线)。
因此,A = L + U。
选取一个初始解向量 x^(0)。
对于每次迭代,按以下顺序更新 x 中的每个分量:x^(k+1)_i = (b_i - sum(A_ij * x^(k+1)_j, j=1 to i-1) - sum(A_ij * x^(k)_j, j=i+1 to n)) / A_ii, for i=1 to n其中,k 是迭代次数,x^(k)_i 是第 k 次迭代得到的解向量中的第 i 个分量。
判断收敛性:计算解向量相邻两次迭代之间的误差,通常采用范数(如无穷范数)表示。
如果误差满足设定的收敛准则(如小于某个阈值),则停止迭代。
如果未达到收敛准则,返回步骤 3,再次迭代。
需要注意的是,高斯-赛德尔迭代的收敛性并非总是得到保证。
通常,当系数矩阵 A 为严格对角占优矩阵(或正定矩阵)时,迭代方法才具有收敛性。
在实际应用中,常尝试使用一系列预处理技术(如 ILU 分解)通过改变原始线性方程组的形式来提高迭代收敛性。
线性方程组的迭代法雅可比高斯塞德尔和超松弛迭代ppt课件

a11x1 a12 x2 a1n xn b1
a21 x1
a22 x2
a2n xn
b2
an1x1 an2 x2 ann xn bn
写据成此建立n 迭ai代j x公j 式 bi
i 1,2,, n
上若xi式(xkai称1ii)为0ja1解a11i(iiii方((bb程1ii,2组,jj的njn,1i n1Jaa)aijcxio,j分(jxbk)ij离)迭) 代出公i变i式量1,。21x,,2i , n , n
j=1
j ≠i
称A为严格对角占优阵。
2.如果A的元素满足
∑n
ai,i ≥ ai, j ,i = 1,2,..., n
j=1 j≠i
且至少一个不等式严格成立,称A为弱对角占优阵。 16
定义:设 A = (ai,j )n×n ,n ≥ 2
如果存在置换矩阵P,使得
PT
AP
A11 0
A12
A22
1
§6.1 迭代法的基本思想
迭代法的基本思想是将线性方程组转化 为便于迭代的等价方程组,对任选一组初始 值 xi(0) (i 1,2,, n) ,按某种计算规则,不断地 对所得到的值进行修正,最终获得满足精度 要求的方程组的近似解。
2
设 A Rnn 非奇异,b Rn,则线性方程组
Ax b 有惟一解 x A1b ,经过变换构造
x (k 1) 1
x (k 1) 2
x1(k 2x1(k)
)
x(k) 2
4x2(k )
3 3
取
x (0) 1
x (0) 2
0
计算得
雅可比迭代法与高斯-塞德尔迭代法

线性方程组的迭代法一、实验目的及要求掌握解线性方程组的雅可比迭代法,培养编程与上机调试能力。
二、相关理论知识1、雅可比迭代计算b Ax =,将系数矩阵分解U L D A --=,雅可比迭代格式为f Jx x k k +=+)()1(其中)(1U L D J +=-,b D f 1-=。
Matlab 相关函数:D=diag (diag (A ))n=norm(a,inf) 表示求向量a 的无穷范数。
2、高斯-塞德尔迭代法计算b Ax =,将系数矩阵分解U L D A --=,雅可比迭代格式为f Gx x k k +=+)()1(其中U L D G 1)(--=,b L D f 1)(--=。
Matlab 相关函数:tril (A ,-1) 表示输出矩阵为矩阵A 的下三角,主对角线元素为0.triu (A ,1) 表示输出矩阵为矩阵A 的上三角,主对角线元素为0.三、研究、解答以下问题问题 1、用雅可比迭代法解线性方程组⎪⎩⎪⎨⎧=++=++=++2010311102143210321321321x x x x x x x x x , (1)取初始值)0,0,0(',分别保证当3)()1(10-∞+<-k k x x 和6)()1(10-∞+<-k k x x 时,迭代终止,要求输出对应的近似解。
(2)输出对应的迭代的次数。
(3)输出一个矩阵,每行表示每次迭代的向量。
1.程序:function [x,i,G]=kb(A,b,max,eps)A=[10 2 3;2 10 1;3 1 10];b=[14 11 20]';max=100;eps=1e-006D=diag(diag(A));ID=inv(D);J=ID*(-A+D);f=ID*b;x0=zeros(rank(A),1);x=x0;G(1,:)=x0';for i=1:maxk=x;x=J*x+f;G(i+1,:)=x';n=norm((x-k),inf);if n<=epsbreak ;endendGi结果:(1)eps = 1.0000e-003G =0 0 01.4000 1.10002.00000.5800 0.6200 1.47000.8350 0.8370 1.76400.7034 0.7566 1.66580.7489 0.7927 1.71330.7275 0.7789 1.69600.7354 0.7849 1.70390.7319 0.7825 1.70090.7332 0.7835 1.70220.7326 0.7831 1.7017i =10ans =0.73260.78311.7017(2)eps =1.0000e-006G =0 0 01.4000 1.10002.0000 0.5800 0.6200 1.4700 0.8350 0.8370 1.7640 0.7034 0.7566 1.6658 0.7489 0.7927 1.7133 0.7275 0.7789 1.6960 0.7354 0.7849 1.7039 0.7319 0.7825 1.7009 0.7332 0.7835 1.7022 0.7326 0.7831 1.7017 0.7329 0.7833 1.7019 0.7328 0.7832 1.7018 0.7328 0.7833 1.7018 0.7328 0.7833 1.7018 0.7328 0.7833 1.7018 0.7328 0.7833 1.70180.7328 0.7833 1.70180.7328 0.7833 1.7018i =18ans =0.73280.78331.70182、用高斯-塞德尔迭代法计算第1题中的线性方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节 雅可比迭代法与高斯—塞德尔迭代法
一 雅可比迭代法
设线性方程组
b Ax = (1) 的系数矩阵A 可逆且主对角元素nn a ,...,a ,a 22
11均不为零,令
()nn
a ,...,a ,a diag D 2211=
并将A 分解成
()D D A A +-= (2)
从而(1)可写成 ()b x A D Dx +-=
令
11f x B x +=
其中b D f ,A D I B 1
111
--=-=. (3) 以
1B 为迭代矩阵的迭代法(公式)
()()111f x B x k k +=+ (4)
称为雅可比(Jacobi)迭代法(公式),用向量的分量来表示,(4)为
⎩
⎨⎧
[]
,...
,,k ,n ,...,i x a b
a x
n
i
j j )
k (j j i i
ii
)k (i
21021111==∑-=≠=+ (5)
其中
()()()()
()T
n x ,...x ,x x 002010=为初始向量.
由此看出,雅可比迭代法公式简单,每迭代一次只需计算一次矩阵和向量的乘法.在电算时需
要两组存储单元,以存放()
k x 及()
1+k x . 例1 例1 用雅可比迭代法求解下列方程组
⎪⎩⎪
⎨⎧=+--=-+-=--2
45382102
7210321321321.x x x .x x x .x x x
解 将方程组按雅可比方法写成
⎪⎪
⎩⎪
⎪⎨⎧++=++=++=8402020830201072
020*******
2321.x .x .x .x .x .x .x .x .x
取初始值
()()()()
()()T T ,,,x ,x ,x x 0000302010==按迭代公式
()()
()()()
()()()()⎪⎪⎩⎪⎪⎨⎧++=++=++=+++840202083020107202010211331
123211.x .x .x .x .x .x .x .x .x k k k k k k k k k
进行迭代,其计算结果如表1所示
表1
二 高斯—塞德尔迭代法
由雅可比迭代公式可知,在迭代的每一步计算过程中是用()
k x
的全部分量来计算()
1+k x
的所
有分量,显然在计算第i 个分量()
1+k i x 时,已经计算出的最新分量()
()
11
11
+-+k i k x ,...,x 没有被利
用,从直观上看,最新计算出的分量可能比旧的分量要好些.因此,对这些最新计算出来的第
1+k 次近似()
1+k x
的分量
()
1+k j
x 加以利用,就得到所谓解方程组的高斯—塞德(Gauss-Seidel )
迭代法.
把矩阵A 分解成
U L D A --= (6)
其中
()nn a ,...,a ,a diag D 2211=,U ,L --分别为A 的主对角元除外的下三角和上三角部分,于是,方程组(1)便可以写成 ()b Ux x L D +=-
即 22f x B x +=
其中
()()b L D f ,
U L D B 1
21
2---=-= (7)
以
2B 为迭代矩阵构成的迭代法(公式)
()()221f x B x k k +=+ (8)
称为高斯—塞德尔迭代法(公式),用 量表示的形式为
⎩
⎨⎧[]
,...
,,k ,
n ,,i x a x a b a x
i j n i j )
k (j ij )
k (j ij i ii
)k (i
21021111111==∑∑--=-=+=++ (9)
由此看出,高斯—塞德尔迭代法的一个明显的优点是,在电算时,只需一组存储单元(计算出
()
1+k i
x 后()
k i
x 不再使用,所以用()
1+k i x 冲掉()
k i
x ,以便存放近似解.
例2 例2 用高斯——塞德尔迭代法求解例1.
解 取初始值
()()()()
()()T
T
,,,x ,x ,x x 0000302010==,按迭代公式
()()
()()()
()()()()
⎪⎩⎪⎨⎧++=++=++=++++++840202083020107202010121113
311
123211.x .x .x .x .x .x .x .x .x k k k k k k k k k
进行迭代,其计算结果如下表2
从此例看出,高斯—塞德尔迭代法比雅可比迭代法收敛快(达到同样的精度所需迭代次数少),但这个结论,在一定条件下才是对的,甚至有这样的方程组,雅可比方法收敛,而高斯—塞德尔迭代法却是发散的.
三 迭代收敛的充分条件
定理1 在下列任一条件下,雅可比迭代法(5)收敛.
①
1
11
<∑
=≠=∞
n
i
j j ii
ij i
a a max B ;
②
1
11
1
<∑
=≠=n
i
j i ii
ij j
a a max B ;
③ 1
11
<∑
=-≠=∞
-n
j
i i jj
ij j
T
a a max A
D I
定理2 设
21B B ,分别为雅可比迭代矩阵与高斯—塞德尔迭代矩阵,则
∞
∞
≤1
2
B B (10)
从而,当
1
11
<∑
=≠=∞
n
i
j j ii
ij i
a a max B
时,高斯—塞德尔迭代法(8)收敛. 证明 由
21B B ,的定义,它们可表示成
()U L D B +=-11
()()U D L D I U L D B 1111
2-----=-=
用e 表示n 维向量()T
,...,,e 111=,则有不等式
e
B e B ∞≤11。