高程布置计算
城污水厂高程布置

适用于污水厂内短距离输送 ;
设计坡度采用 0.01~0.02; (2) 压力流输泥管道:
最小管径 DN200,中途设清通口。 适用于长距离输送,或加压设备加压后输送;
部分污水厂总高差统计
东区污水厂2.7m(至二沉池) 曹阳污水厂2.5m(至二沉池) 北郊污水厂1.3m(至二沉池) 天山污水厂3.05m(至二沉池) 泗塘污水厂5.31m(至接触池) 程桥污水厂2.4m(至接触池) 闵行污水厂3.7m(至接触池)
在初步设计时,压力流输泥管道也可采用以下简单的
计算方法:[崔玉川编, 城市污水厂处理设施设计计算, P432]
按清水计算,并乘以比例系数;
在紊流状态下,污泥含水率大于98%时,污泥管道的 水头损失为清水的2~4倍;含水率为90%~92%时,为清 水的6~8倍。
当污泥管道较长时,为了不使水头损失过大,一般流 速采用1.0m/s。丹麦Kruger 公司设计指南中对污泥管道的计 算做如下规定:
时为0.4~0.6m/s; 3. 在确定连接管时,可考虑留有水量发展的余地; 4. 生化池至二沉池的管道流量为:设计流量+回流污泥量。
9
四、高程布置的计算
(3)计量设备:水头损失应通过计算确定。初 步设计时可按 0.2m估算。 (4)配水设备:配水井的水头损失可按一般水 力学公式计算。
10
四、高程布置的计算
污水处理厂高程布置
1
污水处理高程布置图
一. 目的 二. 任务 三. 一般规定 四. 计算 五. 绘图
2
一、高程布置的目的
1. 确保污水、污泥通畅流动。 2. 降低水头损失,节省运行费用。
高程布置计算

7.3高程布置在处理工艺流程中,各构筑物之间水流应为重力流,两构筑物之间的水面差,即为流程中的水头损失,包括构筑物本身,连接管道计量设备水头损失。
水头损失通过计算确定,并留有发展余地当各项水头损失确定之后,便可进行构筑物高程布置。
构筑物高程布置与厂区地形、地质条件及所采用的构筑物形式有关。
为使土方量平衡,在进行高程布置时,以清水池最高水位与清水池所在地面标高相平为依据。
7.3.1处理构筑物水头损失处理构筑物中的水头损失与构筑物的型式和构造有关,具体根据设计手册第3册表15-13(P865)进行估算,估算结果如下表所示:表7-2 净水构筑物水头损失估算值7.3.2构筑物之间的水头损失水头损失一般应通过计算确定,也可参照规范进行估算,并考虑水头跌落损失,本次设计构筑物内部的水头损失参照规范,构筑物之间的水头损失通过计算,计算公式如下所示:∑∑∑gv ξil h h h j f 2+=+=2;式中h f - 两构筑物之间的沿程损失,m ;h j - 两构筑物之间的局部损失,m ; i - 管道坡度; l - 管道长度,m ; v - 管道流速,m/s ;1. 清水池至吸水井清水池到吸水井管线长15m ,管径DN1000,最大时流量Q=640L/s ,查水力计算表可知,水力坡度i=0.00072,v=0.82m/s ,沿线设有两个闸阀,进口和出口,局部阻力系数分别为0.06,1.0,1.0,则管线中的水头损失为:设计中取=0.09m2.滤池到清水池滤池到清水池之间的管线长为15m ,设两根管,管径为DN800,每根流量为429L/s 查水力计算表,v=0.89m/s ,i=0.00125,沿线有两个闸阀,进口和出口局部阻力系数分别是0.06,1.0,1.0,则水头损失设计中取=0.11m滤池的最大作用水头为2.0-2.5m,设计中取2.3m 。
2. 沉淀池到滤池沉淀池到滤池管长为L=15m ,Q=0.859m 3/s ,v=1.05m/s ,DN1000,i=0.00128,沿线有两个闸阀,进口和出口局部阻力系数分别是0.06,1.0,1.0,则水头损失设计中取=0.14m表7-3 水厂各构筑物当各项水头损失确定之后,便可进行构筑物高程布置。
水准仪在测量工程中是如何计算高程

②曲线在某点突然回升。
原因:水准点或观测点被碰动所致且水准点碰动后标高低于碰前标高,观测点碰后高于碰前。
处理措施:取相邻另一观测点的相同期间沉降量作为被碰观测点之沉降量。
③曲线自某点起渐渐回升原因:一般是水准点下沉所致。
措施:确定水准点下沉值,与高级水准点符合测量,确定下沉重新奥法的原理在大量的地下工程实践中,人们普遍认识到,隧道及地下洞室工程,其核心问题,都归结在开挖和支护两个关键工序上。
即如何开挖,才能更有利于洞室的稳定和便于支护:若需支护时,又如何支护才能更有效地保证洞室稳定和便于开挖。
这是隧道及地下工程中两个相互促进又相互制约的问题。
在隧道及地下洞室工程中,围绕着以上核心问题的实践和研究,在不同的时期,人们提出了不同的理论并逐步建立了不同的理论体系,每一种理论体系都包含和解决(或正在研究解决)了从工程认识(概念)、力学原理,工程措施到施工方法(工艺)等一系列工程问题。
一、隧道设计施工的两大理论(1)松弛荷载理论其核心内容是:稳定的岩体有自稳能力,不产生荷载:不稳定的岩体则可能产生坍塌,需要用支护结构予以支撑。
这样,作用在支护结构上的荷载就是围岩在一定范围内由于松弛并可能塌落的岩体重力。
这是一种传统的理论,其代表人物有泰沙基和普氏等人。
⑵岩承理论其核心内容是:围岩稳定显然是岩体自身有承载自稳能力:不稳定围岩丧失稳定是有一个过程的,如果在这个过程中提供必要的帮助或限制,则围岩仍然能够进入稳定状态。
这种理论体系的代表性人物有拉布西维兹、米勒-菲切尔、芬纳-塔罗勃和卡斯特奈等人•由以上可以看出,前一种理论更注意结果和对结果的处理:而后一种理论则更注意过程和对过程的控制,即对围岩自承能力的充分利用。
由于有此区别,因而两种理论体系在过程和方法上各自表现出不同的特点。
新奥法是岩承理论在隧道工程实践中的代表方法。
二、新奥法New Austrian Tunnelling Method设计高程怎么计算nyyyoh7u |Lv3 被浏览129 次2012-11-26 19:09满意回答检举|2012-11-26 23:21做毕业设计了连高程怎么算都不知道……真是……这就是大学的素质教育???你随便找个测量方面的书都有。
高程计算——精选推荐

高程计算污水处理厂的高程布置污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。
计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。
污水处理厂的水流常依靠重力流动,以减少运行费用。
为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。
水头损失包括:(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。
表1 处理构筑物的水头水损失构筑物名称水头损失(cm) 构筑物名称水头损失(cm)格栅 10~25 生物滤池(工作高度为2m时):沉砂池 10~25沉淀池:平流竖流辐流 20~40 1)装有旋转式布水器 270~28040~50 2)装有固定喷洒布水器 450~47550~60 混合池或接触池 10~30双层沉淀池 10~20 污泥干化场 200~350曝气池:污水潜流入池 25~50污水跌水入池 50~150(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。
(3)水流流过量水设备的水头损失。
水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。
计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。
设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。
但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。
还应考虑到因维修等原因需将池水放空而在高程上提出的要求。
在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。
高程计算

3.9给水处理厂平面高程相关布置3.9.1地表水厂组成1、生产构筑物:直接与生产有关的构筑物,如静态混合器,折板絮凝池,平流沉淀池,普通快滤池,清水池,加药间,加氯间,二级泵房,药库等。
2、辅助及附属建筑物:为生产服务所需要的建筑物,分为生产和生活辅助设施。
生产辅助设施包括化验室,检修车间,材料仓库,车库,堆砂场,管配件场,办公室。
生活辅助设施包括食堂,浴室,锅炉房,值班宿舍,门卫室等。
3、各类管道:厂区管道包括生产管道,厂区给水管道,排水管道,加药管,排雨水管,电缆沟,供热管道,消防管道等。
4、其他设施:道路,绿化照明,围墙及大门等。
4.9.2平面布置要求1. 布置紧凑,以减少水厂占地和连接管长度;但各构筑物间应留出必要的施工检修的窨和管道位置;2. 充分利用地形,力求挖填方平衡减少土石方量;3. 各构筑物间的连接管简单、短捷,尽量减少交叉,并考虑施工检离心方便。
此外应设置必要的超越管;4. 沉淀池排泥及滤池冲洗废水排除方便,重力排泥;5. 建筑物布置应注意朝向和风向;6. 有条件时将生产区和生活区分开;3.9.2平面布置按功能,将水厂分为以下三区:1、生产区:除系统流程布置要求外,还对辅助性生产构筑物进行合理安排。
加药间应尽量靠近投加点,以般可设在沉淀池附近,形成相对完整的加药区。
2、生活区:将办公楼、化验室合建,宿舍、食堂、锅炉房、浴室合建,组合在一个区内,布置水厂进门附近。
3、维修区:将机修间、车库、仓库合建,水表修理间、管配件场、堆砂场组合在一个区内,靠近生产区,两区用道路隔开。
3.9.3厂区道路布置1、主厂道布置:由厂外道路与厂内主要构筑物连接的道路采用主厂道,道路宽度为12米,两侧进行植被绿化。
2、车行道布置: 一般为双车道,宽度为5.0米,布置成环状,以便车辆回程。
3、步行道布置:加药间、加氯间、药库与絮凝池之间设步行道联系,宿舍办公楼等无物品器材运输的建筑物之间,设步行道与主厂道或车行道联系,宽度一般为1.5-2.0米。
高程布置

高程布置1.二级处理系统(1)河道——沉淀池出水井。
如下图。
图中节点1-节点3管径为DN600mm ,长度L=4.28 m,流量Q 1=0.3265m 3/s ;节点3-节点6管径DN800,长度119.61m,流量Q 2=0.653m 3/s 。
管道流速。
节点1-3管道流速为 =⨯⨯==22116.014.33265.044D Q V π 1.16 (m/s) 节点3-6管道流速为 3.18.014.3653.0442221=⨯⨯==D Q V π (m/s) 水头损失h w 。
水头损失h w 由沿程水头损失h f 和局部水头损失ξh 组成。
h f =i*L式中:i--单位长度水头损失;L--管线长度,m ;查表得:Q=0.3265m/s,DN600mm 时,1000i=2.27 ;Q=0.653m/s,DN800mm 时,1000i=2.47 ;带入数据得:30.0100061.11947.2100048.327.2=⨯+⨯=f h (m) 局部水头损失ξh查表得:DN600mm 的150度弯头1个,ξ=0.20 ;DN800mm 的90度弯头,ξ=1.05,1个;三通,ξ=1.5,1个:异径丁字管(DN600--800mm ),ξ=等径钉子管之ξ+突放之ξ=3.0+0.25=3.25,1个;出水口(流入明渠),ξ=0.81,1个;进水口,ξ=0.5,1个;带入数据得=⨯⨯++++⨯⨯+=+=81.923.1)81.025.35.105.1(81.9116.1)5.02.0(22222211g V g V h ξξξ0.62(m )h w =0.62+0.30=0.92 (m)沉淀池出水井水位h 23,考虑0.5m 的出水管自由水头,0.5m 的富余安全水头,乐城河除涝水位为42.10米,有 h 23 =42.10+0.92+0.5+0.5=44.02 (m)(2)沉淀池。
幅流式沉淀池剖面图如下出水渠水位h 22,出水渠指出水井采用自流的方式,为防止顶托,设0.2m 的跌水,有h 22=44.02+0.2=44.22(m )环型集水槽水位h 21出水渠流速V V=Q/F式中: F---出水渠过水断面,m 2。
污水处理厂高程设计参考

1处理流程高程设计为使污水能在各处理构筑物之间通畅流动,以保证处理厂的正常运行,需进行高程布置,以确定各构筑物及连接管高程。
为降低运行费用和便于维护管理,污水在处理构筑物之间的流动已按重力流考虑为宜;污泥也最好利用重力流动,若需提升时,应尽量减少抽升次数。
为保证污泥的顺利自流,应精确计算处理构筑物之间的水头损失,并考虑扩建时预留的储备水头,高程图的比例与水平方向的比例尺一般不相同,一般垂直比例大,水平的比例小些〔⑵。
1.1主要任务污水处理厂污水处理流程高程布置的主要任务是:(1)确定各处理构筑物和泵房的标高;(2)确定处理构筑物之间连接管渠的尺寸及其标高;(3)通过计算确定各部分的水面标高,从而能够使污水沿处理流程在处理构筑物之间畅通地流动,保证污水处理厂的正常运行。
1.2高程布置的一般原则(1)计算各处理构筑物的水头损失时,应选择一条距离最长、水头损失最大的流程进行较准确的计算,考虑最大流量、雨天流量和事故时流量的增加。
并应适当留有余地,以防止淤积时水头不够而造成的涌水现象,影响处理系统的正常运行。
(2)计算水头损失时,以最大流量(设计远期流量的管渠与设备,按远期最大流量考虑)作为构筑物与管渠的设计流量。
还应当考虑当某座构筑物停止运行时,与其并联运行的其余构筑物与有关的连接管渠能通过全部流量。
(3)高程计算时,常以受纳水体的最高水位作为起点,逆废水处理流程向上倒推计算,以使处理后废水在洪水季节也能自流排出,并且水泵需要的扬程较小。
如果最高水位较高,应在废水厂处理水排入水体前设置泵站,水体水位高时抽水排放。
如果水体最高水位很低时,可在处理水排入水体前设跌水井,处理构筑物可按最适宜的埋深来确定标高。
(4)在做高程布置时,还应注意污水流程与污泥流程的配合,尽量减少需要提升的污泥量。
1.3污水高程计算在污水处理工程中,为简化计算一般认为水流是均匀流。
管渠水头损失主要有沿程水头损失和局部水头损失。
出水排至长江,最高水位为45.22m。
污水处理厂高程设计计算

污水处理厂平面及高程设计平面布置及高程布置一、污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、3高程布置
在处理工艺流程中,各构筑物之间水流应为重力流,两构筑物之间的水面差,即为流程中的水头损失,包括构筑物本身,连接管道计量设备水头损失。
水头损失通过计算确定,并留有发展余地
当各项水头损失确定之后,便可进行构筑物高程布置。
构筑物高程布置与厂区地形、地质条件及所采用的构筑物形式有关。
为使土方量平衡,在进行高程布置时,以清水池最高水位与清水池所在地面标高相平为依据。
7、3、1处理构筑物水头损失
处理构筑物中的水头损失与构筑物的型式与构造有关,具体根据设计手册第3册表15-13(P865)进行估算,估算结果如下表所示:
表7-2 净水构筑物水头损失估算值
7、3、2构筑物之间的水头损失
水头损失一般应通过计算确定,也可参照规范进行估算,并考虑水头跌落损失,本次设计构筑物内部的水头损失参照规范,构筑物之间的水头损失通过计算,计算公式如下所示:
∑∑∑g
v ξil h h h j f 2+=+=2 ; 式中h f - 两构筑物之间的沿程损失,m;
h j - 两构筑物之间的局部损失,m;
i - 管道坡度;
l - 管道长度,m ;
v - 管道流速,m/s ;
1. 清水池至吸水井
清水池到吸水井管线长15m,管径DN1000,最大时流量Q=640L/s,查水力计算表可知,水力坡度i=0、00072,v=0、82m/s,沿线设有两个闸阀,进口与出口,局部阻力系数分别为0、06,1、0,1、0,则管线中的水头损失为:
设计中取h Δ=0、09m
2、滤池到清水池
滤池到清水池之间的管线长为15m,设两根管,管径为DN800,每根流量为429L/s 查水力计算表,v=0、89m/s,i=0、00125,沿线有两个闸阀,进口与出口局部阻力系数分别就是0、06,1、0,1、0,则水头损失
设计中取h Δ=0、11m 滤池的最大作用水头为2、0-2、5m,设计中取2、3m 。
2. 沉淀池到滤池
沉淀池到滤池管长为L=15m,Q=0、859m 3/s,v=1、05m/s,DN1000,i=0、00128,沿线有两个闸阀,进口与出口局部阻力系数分别就是0、06,1、0,1、0,则水头损失
设计中取h Δ=0、14m 表7-3 水厂各构筑物
m 084.0=9.8×282.01.0+1.0+2×0.06+15×00072.0=h Δ2
)(m 104.0=9.8
×289.01.0+1.0+2×0.06+15×00125.0=h Δ2
)(m 138.0=9.8
×205.11.0+1.0+2×0.06+15×00128.0=h Δ2
)(
当各项水头损失确定之后,便可进行构筑物高程布置。
构筑物高程布置与水厂地形、地质条件及所采用的构筑物形式有关。
当地形有自然坡度时,有利于高程布置,当地形平坦时,高程布置既要避免清水池埋入地下过深,又应避免絮凝池沉淀池或澄清池在地面上抬高而增加造价,尤其当地质条件差、地下水位高时。
本设计把水厂地面标高定位清水池的水面标高。
由此来计算其她各个构筑物的高程。
7、3、3高程计算
设地面的高程为10m
1.清水池的高程计算
清水池的水面标高=地面标高=10、00m;
清水池的池底标高=清水池的水面标高-有效水深=10、00-4、00=6、00m;
超高采用0、5m。
2.V型滤池的高程计算
滤池的水面标高=清水池的水面标高+滤池至清水池之间的水头损失+滤池自身的水头损失=10、00+0、11+2、5=12、61m;
滤池的池底标高=滤池的水面标高-有效水深=12、61-3、6=9、01m;
超高采用0、4m。
3.平流沉淀池的高程计算
沉淀池的水面标高=滤池的水面标高+沉淀池至滤池之间的水头损失+沉淀池自身的水头损失=12、61+0、14+0、2=12、95m;
沉淀池的池底标高=沉淀池的水面标高-有效水深=12、95-3、5=9、45m;
超高采用0、5m。
4.絮凝池的高程计算
絮凝池与沉淀池连接渠水面标高=沉淀池的水面标高+沉淀池配水穿孔墙的水头损失=12、95+0、05=13、00m;
絮凝池水面标高=沉淀池与反应池连接渠水面标高+反应池的水头损失=13、00+0、3=13、30m;
絮凝池的池底标高=絮凝池池的水面标高-有效水深=13、30-3、7=9、60m;
超高采用0、3m。
5.吸水井的高程计算
吸水井的水面标高=清水池的水面标高-清水池至吸水井之间的水头损失=10、00-0、09=9、91m;
吸水井的池底标高=吸水井的水面标高-有效水深=9、91-4、8= 5、11m;
净水构筑的高程布置采用目前常用的高架式布置形式,因为高架式布置时,主要净水构筑物池底埋设地面下较浅,构筑物大部分高出地面,从而造价较低。