推荐--新课标[原创]2018年广东省深圳市高一数学普通班级9月月考试卷 精品
广东省深圳市高级中学2018_2019学年高一数学下学期期中试题(含解析)

广东省深圳市高级中学2018-2019学年高一数学下学期期中试题(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,且,则()A. B. C. D.【答案】C【解析】【分析】由集合确定a值,然后取交集即可.【详解】∵,且;∴;∴.故选:C.【点睛】本题考查集合的交集并集的运算,属于简单题.2.下列函数中,在其定义域内既是增函数又是奇函数的是()A. B. C. D.【答案】D【解析】【分析】根据指数函数,对数函数,幂函数的单调性和奇偶性对选项逐个进行判断即可.【详解】解:由题意,可知:对于A:很明显是偶函数,所以排除A;对于B:在其定义域内是减函数,所以排除B;对于C:不是奇函数,所以排除C;对于D:,由幂函数的性质可知是增函数,∵,∴是奇函数.故选:D.【点睛】本题考查基本初等函数的奇偶性和单调性的判断,属于基础题.3.是第三象限角,且,则()A. B. C. D.【答案】B【解析】【分析】根据和角的范围求得,然后由可得答案.【详解】因为是第三象限角,且,所以,所以.故选:B .【点睛】本题考查同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值符号错误.4.已知向量的夹角为60°,且,,则()A. 2B.C.D.【答案】D【解析】【分析】由向量的模长公式和数量积公式求解即可得到答案.【详解】根据已知条件,;∴.故选:D.【点睛】本题考查向量的模以及向量数量积的运算法则,向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.5.在中,角所对的边分别为己知,则()A. 45°或135°B. 135°C. 45°D. 以上都不对【答案】C【解析】【分析】由的度数求出的值,再利用正弦定理求出的值,由小于,得到小于,即可求出的度数.【详解】解:∵,,∴由正弦定理得:,∵,∴,则.故选:C.【点睛】本题主要考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于基础题。
高一数学第一次月考试题与答案

2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。
广东省深圳市明德外语实验学校2024-2025学年九年级上学期9月月考数学试题

广东省深圳市明德外语实验学校2024-2025学年九年级上学期9月月考数学试题一、单选题1.方程2430x x ++=的两个根为( )A .121,3x x ==B .121,3x x =-=C .121,3x x ==-D .121,3x x =-=- 2.已知关于x 的一元二次方程2610x x k -++=的两个实数根为1x ,2x ,且221224x x +=,则k 的值为( )A .5B .6C .7D .83.下列四种说法:①矩形的两条对角线相等且互相垂直;②菱形的对角线相等且互相平分;③有两边相等的平行四边形是菱形;④有一组邻边相等的菱形是正方形.其中正确的有( ) A .0个 B .1个 C .2个 D .3个4.根据下列表格的对应值:由此可判断方程212150x x +-=必有一个根满足( )A .1 1.1x <<B .1.1 1.2x <<C .1.2 1.3x <<D . 1.3x >5.若关于x 的一元二次方程()2500ax bx a ++=≠的一个解是=1x -,则2017a b -+的值是( )A .2016B .2018C .2020D .20226.如图,▱ABCD 的对角线AC 、BD 相交于点O ,那么下列条件中,能判断▱ABCD 是菱形的为( )A.AO=CO B.AO=BO C.∠AOB=∠BOC D.∠BAD=∠ABC 7.如图,在矩形ABCD中,对角线AC、BD交于点O,自点A作AE⊥BD于点E,且BE:ED=1:3,过点O作OF⊥AD于点F,若OF=3cm,则BD的长为()cm.A.6 B.9 C.12 D.158.如图,在菱形ABCD中,菱形的边长为5,对角线AC的长为8,延长AB至E,BF平分CBE,则ACGV的面积为()A.20B.C.12D.249.如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E,PF⊥AB 于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4 B.245C.6 D.48510.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A .2B .4C .D .2二、填空题11.若关于x 的方程2(1)210k x x +--=有实数根,则k 的取值范围是.12.如图,三个边长均为2的正方形重叠在一起,1O 、2O 是其中两个正方形的中心,则阴影部分的面积是.13.已知:如图所示,E 是正方形ABCD 边BC 延长线一点,若EC AC =,AE 交CD 于F ,则AFC ∠=度.14.如图,在菱形ABCD 中,AC =24,BD =10,AC 、BD 相交于点O ,若CE //BD ,BE //AC ,连接OE ,则OE 的长是.15.如图,菱形ABCD 中,∠ABC =60°,AB =2,E 、F 分别是边BC 和对角线BD 上的动点,且BE =DF ,则AE +AF 的最小值为 .三、解答题16.解方程:(1)22950x x --=(2)244x x x -=-17.阅读下面的例题:分解因式:221x x +-.解:令2210x x +-=得到一个关于x 的一元二次方程,121a b c ===-Q ,,,1x ∴===-解得11x =-21x =-()()(((212211111x x x x x x x x x x ⎡⎤⎡⎤∴+-=--=----=++⎣⎦⎣⎦. 这种因式分解的方法叫求根法,请你利用这种方法完成下面问题:(1)已知代数式22x x k --对应的方程解为5-和7,则代数式22x x k --分解后为 ;(2)将代数式231x x --分解因式.18.如图,在矩形ABCD 的BC 边上取一点E ,连接AE ,使得AE =EC ,在AD 边上取一点F ,使得DF =BE ,连接CF .过点D 作DG ⊥AE 于G .(1)求证:四边形AECF 是菱形;(2)若AB =4,BE =3,求DG 的长.19.某农场要建一个饲养场(矩形ABCD )两面靠现有墙(AD 位置的墙最大可用长度为27米,AB 位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.设饲养场(矩形ABCD )的一边AB 长为x 米.(1)饲养场另一边BC=____米(用含x 的代数式表示).(2)若饲养场的面积为180平方米,求x 的值.20.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,延长DC 到点E ,使C E C D =,延长BC 到点F ,使CF BC =,顺次连接点B ,E ,F ,D ,且1BD =,AC =(1)求菱形ABCD 的面积;(2)求证:四边形BEFD 是矩形;(3)求四边形BEFD 的周长及面积.21.数学课上,师生们以“利用正方形和矩形纸片折叠特殊角”为主题开展数学活动.(1)操作判断小明利用正方形纸片进行折叠,过程如下:步骤①:如图1,对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;步骤②:连接AF ,BF .可以判定ABF △的形状是: .(直接写出结论) 小华利用矩形纸片进行折叠,过程如下:如图2,先类似小明的步骤①,得到折痕EF 后把纸片展平;在BC 上选一点P ,沿AP 折叠AB ,使点B 恰好落在折痕EF 上的一点M 处,连接AM .小华得出的结论是:30BAP PAM MAD ∠=∠=∠=︒.请你帮助小华说明理由.(2)迁移探究小明受小华的启发,继续利用正方形纸片进行探究,过程如下:如图3,第一步与步骤①一样;然后连接AF ,将AD 沿AF 折叠,使点D 落在正方形内的一点M 处,连接FM 并延长交BC 于点P ,连接AP ,可以得到:PAF ∠= ︒(直接写出结论);同时,若正方形的边长是4,可以求出BP 的长,请你完成求解过程.(3)拓展应用如图4,在矩形ABCD 中,6AB =,8BC =.点P 为BC 上的一点(不与B 点重合,可以与C 点重合),将ABP V 沿着AP 折叠,点B 的对应点为M 落在矩形的内部,连接MA ,MD ,当△MAD 为等腰三角形时,可求得BP 的长为 .(直接写出结论) 22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接PG ,PC .(1)探究PG 与PC 的位置关系及PG PC的值(写出结论,不需要证明); (2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=度.探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明; (3)如图3,将图2中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的边BG 恰好与菱形ABCD 的边AB 在同一条直线上,问题(2)中的其他条件不变.你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.。
2018年广东省深圳市第二高级中学高一数学理月考试卷含解析

2018年广东省深圳市第二高级中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 直线的倾斜角和斜率分别是A. B. C.,不存在 D.,不存在参考答案:C略2. 若幂函数在上是增函数,则()A.>0 B.<0 C.=0 D.不能确定参考答案:A3. 下列四个函数中,在(0,+∞)上是增函数的是()A.f(x)=﹣B.f(x)=x2﹣3x C.f(x)=3﹣x D.f (x)=﹣|x|参考答案:A【考点】函数单调性的判断与证明.【分析】根据常见函数的性质判断函数的单调性即可.【解答】解:对于A:函数在(0,+∞)递增,符合题意;对于B:函数的对称轴是x=,在(0,)递减,不合题意;对于C:函数在R递减,不合题意;对于D:函数在(0,+∞)递减,不合题意;故选:A.4. 函数的图象是下列图象中的 ( )参考答案:A5. 已知函数,则的值为().A.1 B.2 C.4 D.5参考答案:D6. 已知,,,则()A. B. C.D.参考答案:B7. 某市原来居民用电价为 0.52元/kW·h.换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/ kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元/ kW·h.对于一个平均每月用电量为200 kW·h的家庭,换装分时电表后,每月节省的电费不少于原来电费的 10%,则这个家庭每月在峰时段的平均用电量至多为( )A. 110 kW·hB. 114 kW·hC. 118 kW·hD. 120 kW·h参考答案:C略8. 计算的值()A.0 B.1 C.2 D.3参考答案:C略9. 函数f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函数,则a的范围是()A.a≥5B.a≥3C.a≤3D.a≤-5参考答案:A10. .设a n=2n,b n=n,(n=1,2,3,。
广东省深圳市高级中学2018_2019学年高一数学下学期期中试题(含解析)

B.
C.
和角的范围求得
,然后由
D. 可得答案.
【详解】因为 是第三象限角,且
,
所以
,
所以
.
故选:B. 【点睛】本题考查同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值 符号错误.
4.已知向量 的夹角为 60°,且
,
,则
()
A. 2
B.
C.
D.
【答案】D
【解析】
【分析】
由向量的模长公式和数量积公式求解即可得到答案.
【答案】
,
.
【解析】
【分析】
先求得集合 A 和 B,然后对集合 A 和集合 B 取交集和并集即可.
【详解】
,
;
∴
,
.
【点睛】本题考查集合的交集和并集运算,属于简单题.
18.已知在 中,角 的对边分别为 ,
.
(1)求角 的值;
(2)若
,求 .
【答案】(1)
(2)
【解析】 【分析】 (1)由正弦定理和两角和的正弦公式化简即可得到角 C;(2)由余弦定理可得
由已知求出第 层楼房每平方米建筑费用为 万元,得到第 层楼房建筑费用,由楼房每
升高一层,整层楼建筑费用提高 万元 ,然后利用等差数列前 项和求建筑 层楼时的综合费
用
;
- 11 -
如果您喜欢这份文档,欢迎下载!
设楼房每平方米的平均综合费用为 ,则
,然后利用基本不等式求最值.
【详解】解: 由建筑第 5 层楼房时,每平方米建筑费用为 万元,
本题选择 C 选项. 点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函 数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的 奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、 筛选选项.
广东省深圳市市松岗中英文实验学校高中部2018-2019学年高一数学理月考试卷含解析

广东省深圳市市松岗中英文实验学校高中部2018-2019学年高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,且,那么tanα等于()A.B.C.D.参考答案:B【考点】GH:同角三角函数基本关系的运用.【分析】由条件利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα和cosα的值,可得tanα的值.【解答】解:∵已知①,∴1+2sinαcosα=,sinαcosα=﹣②,∵,∴sinα<0,cosα>0,再结合①②求得sinα=﹣,cosα=,∴tanα==﹣,故选:B.2. 已知点关于轴、轴的对称点分别为、,则( )A. B.C. D.参考答案:C3. 已知函数f(x)是定义在R上的偶函数,且f(2)=﹣1,对任意x∈R,有f(x)=﹣f (2﹣x)成立,则fA.1 B.﹣1 C.0 D.2参考答案:A【考点】抽象函数及其应用;函数奇偶性的性质.【分析】确定f(x)是以4为周期的函数,结f(2)=﹣1,即可求得f是定义在R上的偶函数,对任意x∈R,有f(x)=﹣f(2﹣x)成立,∴f(x+4)=﹣f(2﹣x)=f(x),∴f(x)是以4为周期的函数,∴f=f(0)=﹣f(2﹣0)=﹣f(2)=1,故选:A4. 在平行四边形ABCD中,O是对角线的交点,E是边CD上一点,且CE=CD,=m+n,则m+n=()A.B.C.D.参考答案:B【考点】平面向量的基本定理及其意义.【分析】由=,即可求出m,n即可.【解答】解:=∴m+n=故选:B.5. 已知点,,则线段PQ的中点为()A. (4,2)B. (2,1)C. (2,4)D. (1,2)参考答案:B【分析】利用中点坐标公式直接求解出的中点的坐标.【详解】因为点,,所以的中点的横坐标为,纵坐标为,所以线段的中点为,故本题选B.【点睛】本题考查了中点坐标公式,熟记中点坐标公式是解题的关键.6. 已知f(x)= ,则f[f(―1)]=( )A.0B.1C. πD. π+1参考答案:C略7. 在等差数列中,,则的前5项和()A.7 B.15 C.20 D.25参考答案:B8. 已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5}则?U(A∪B)()A.{6,8} B.{5,7} C.{4,6,7} D.{1,3,5,6,8}参考答案:A【考点】补集及其运算;并集及其运算.【专题】计算题.【分析】由已知中U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},我们根据集合并集的运算法则求出A∪B,再利用集合补集的运算法则即可得到答案.【解答】解:∵U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5}∴A∪B={1,2,3,4,5,7},∴C u(A∪B)={6,8}故选A【点评】本题考查的知识点是集合补集及其运算,集合并集及其运算,属于简单题型,处理时要“求稳不求快”9. 在△ABC中,若,则△ABC的形状(▲ )A.直角三角形B.等腰或直角三角形C.不能确定D.等腰三角形参考答案:B略10. 要使函数在上恒成立,则实数a的取值范围是()A.B. C. D.参考答案:C令,原问题等价于在区间上恒成立,分离参数有:,则,,结合二次函数的性质可知当时,,即实数的取值范围是.本题选择C选项.二、填空题:本大题共7小题,每小题4分,共28分11. 设定义在N上的函数满足,则________.参考答案:2010【分析】根据函数的解析式以及自变量所满足的范围选择合适的解析式可计算出的值.【详解】定义在上的函数满足,.故答案为:.【点睛】本题考查分段函数值的计算,要结合自变量所满足的范围选择合适的解析式进行计算,考查计算能力,属于中等题.12. 已知A(1,2),B(3,2),向量与相等,则x= ,y= 。
高中高一数学上学期9月月考试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市文华高中高一(上)9月月考数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{a,b,c}当中的元素是△ABC的三边长,则该三角形是()A.正三角形 B.等腰三角形C.不等边三角形 D.等腰直角三角形2.集合{1,2,3}的子集共有()A.5个B.6个C.7个D.8个3.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.4.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是()A.0 B.0 或1 C.1 D.不能确定5.已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥﹣2} B.{x|x<2} C.{x|﹣2<x<2} D.{x|﹣2≤x<2}6.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A.1 B.2 C.3 D.47.下列各组函数f(x)与g(x)的图象相同的是()A.f(x)=x,g(x)=()2B.f(x)=x2,g(x)=(x+1)2C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=8.函数的定义域是()A.(﹣∞,3)B.(3,+∞)C.(﹣∞,3)∩(3,+∞)D.(﹣∞,3)∪(3,+∞)9.设集合M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为()A.11 B.10 C.16 D.1510.设U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,3∉B B.3∉A,3∈B C.3∈A,3∉B D.3∈A,3∈B11.函数f(x)=x2﹣2x∈{﹣2,﹣1,0,1}的值域是()A.{2,﹣1,﹣2} B.{2,﹣1,﹣2,﹣1} C.{4,1,0,﹣1} D.[2,﹣1,﹣2]12.已知f(x)=3x2+1,则f[f(1)]的值等于()A.25 B.36 C.42 D.49二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.{x|x>3}用区间表示为,{x|﹣2≤x≤5}用区间表示为,{x|﹣2≤x<5}用区间表示为.14.0N,Q,N*, Z.15.如图,全集为U,A和B是两个集合,则图中阴影部分可表示为.16.若A={1,4,x},B={1,x2},且A∩B=B,则x=.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.已知集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,某某数a的取值集合.18.设A={x|a≤x≤a+3},B={x|x<﹣1或x>5},当a为何值时,①A∩B=∅;②A∩B≠∅;③A⊆B.19.已知函数(1)求函数的定义域(2)求f(4)20.已知函数,(1)点(3,14)在函数的图象上吗?;(2)当x=4时,求g(x)的值;(3)当g(x)=2时,求x的值.21.已知f(x)=,求f(f(3))的值.22.已知集合U={x|﹣3≤x≤3},M={x|﹣1<x<1},C U N={x|0<x<2}.求:(1)集合N;(2)集合M∩(C U N);(3)集合M∪N.2015-2016学年某某省某某市文华高中高一(上)9月月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{a,b,c}当中的元素是△ABC的三边长,则该三角形是()A.正三角形 B.等腰三角形C.不等边三角形 D.等腰直角三角形【考点】集合的确定性、互异性、无序性.【专题】阅读型;集合思想;分析法;集合.【分析】由集合中元素的互异性可知,a,b,c互不相等,又a,b,c是△ABC的三边长,由此可得三角形的形状.【解答】解:由集合中元素的互异性可知,a,b,c互不相等,又a,b,c是△ABC的三边长,∴该三角形是不等边三角形.故选:C.【点评】本题考查集合中元素的互异性,考查了三角形形状的判断,是基础题.2.集合{1,2,3}的子集共有()A.5个B.6个C.7个D.8个【考点】子集与真子集.【专题】计算题.【分析】集合{1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.【解答】解:集合{1,2,3}的子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}共8个.故选:D.【点评】本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.3.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【专题】集合.【分析】先化简集合N,得N={﹣1,0},再看集合M,可发现集合N是M的真子集,对照韦恩(Venn)图即可选出答案.【解答】解:.由N={x|x2+x=0},得N={﹣1,0}.∵M={﹣1,0,1},∴N⊂M,故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、一元二次方程的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.4.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是()A.0 B.0 或1 C.1 D.不能确定【考点】元素与集合关系的判断.【专题】分类讨论.【分析】从集合A只有一个元素入手,分为a=0与a≠0两种情况进行讨论,即可得到正确答案.【解答】∵A={x|ax2+2x+1=0}中只有一个元素,当a=0时,A={x|2x+1=0},即A={}.当a≠0时,需满足△=b2﹣4ac=0,即22﹣4×a×1=0,a=1.∴当a=0或a=1时满足A中只有一个元素.故答案为:B【点评】本题考查了元素与集合的关系,需分情况对问题进行讨论,为基础题.5.已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥﹣2} B.{x|x<2} C.{x|﹣2<x<2} D.{x|﹣2≤x<2}【考点】交集及其运算;函数的定义域及其求法.【专题】集合.【分析】求出f(x)的定义域确定出M,求出g(x)的定义域确定出N,找出M与N的交集即可.【解答】解:由f(x)=,得到2﹣x>0,即x<2,∴M={x|x<2},由g(x)=,得到x+2≥0,即x≥﹣2,∴N={x|x≥﹣2},则M∩N={x|﹣2≤x<2},故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.6.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A.1 B.2 C.3 D.4【考点】集合的含义.【专题】阅读型.【分析】据“∈”于元素与集合;“∩”用于集合与集合间;判断出①⑤错,∅是不含任何元素的集合且是任意集合的子集判断出②④的对错;据集合元素的三要素判断出③对【解答】解:对于①,“∈”是用于元素与集合的关系故①错对于②,∅是任意集合的子集,故②对对于③,集合中元素的三要素有确定性、互异性、无序性故③对对于④,因为∅是不含任何元素的集合故④错对于⑤,因为∩是用于集合与集合的关系的,故⑤错故选C【点评】本题考查集合部分的一些特定符号、一些特殊的集合、集合中元素的三要素.7.下列各组函数f(x)与g(x)的图象相同的是()A.f(x)=x,g(x)=()2B.f(x)=x2,g(x)=(x+1)2C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】两个函数的定义域相同,对应关系也相同,这样的函数是同一函数,它们的图象相同.【解答】解:对于A,f(x)=x(x∈R),与g(x)=()2=x(x≥0)的定义域不同,∴不是同一函数,图象不同;对于B,f(x)=x2(x∈R),与g(x)=(x+1)2(x∈R)的对应关系不同,∴不是同一函数,图象不同;对于C,f(x)=1(x∈R),与g(x)=x0=1(x≠0)的定义域不同,∴不是同一函数,图象不同;对于D,f(x)=|x|=,与g(x)=的定义域相同,对应关系也相同,∴是同一函数,图象相同.故选:D.【点评】本题考查了判断两个函数是否为同一函数的问题,是基础题目.8.函数的定义域是()A.(﹣∞,3)B.(3,+∞)C.(﹣∞,3)∩(3,+∞)D.(﹣∞,3)∪(3,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】利用分式函数的定义域求解.【解答】解:要使函数有意义,则x﹣3≠0,所以x≠3,即函数的定义域为(﹣∞,3)∪(3,+∞).故选D.【点评】本题主要考查分式函数的定义域,比较基础.9.设集合M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为()A.11 B.10 C.16 D.15【考点】并集及其运算.【专题】集合思想;分析法;集合.【分析】直接由M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },找出M、N中的元素,则M∪N中元素的个数可求.【解答】解:∵M={x|x∈Z且﹣10≤x≤﹣3}={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3},N={x|x∈Z且|x|≤5 }={﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5},∴M∪N={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3}∪{﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5}={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5}.则M∪N中元素的个数为:16.故选:C.【点评】本题考查了并集及其运算,是基础题.10.设U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,3∉B B.3∉A,3∈B C.3∈A,3∉B D.3∈A,3∈B【考点】交、并、补集的混合运算.【专题】计算题.【分析】利用集合间的关系画出韦恩图,结合韦恩图即可得到答案.【解答】解:因为:U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},对应的韦恩图为:故只有答案C符合.故选:C.【点评】本题考查集合的表示法,学会利用韦恩图解决集合的交、并、补运算.11.函数f(x)=x2﹣2x∈{﹣2,﹣1,0,1}的值域是()A.{2,﹣1,﹣2} B.{2,﹣1,﹣2,﹣1} C.{4,1,0,﹣1} D.[2,﹣1,﹣2] 【考点】函数的值域.【专题】函数思想;综合法;函数的性质及应用.【分析】根据条件,x取﹣2,﹣1,0,1时,可以求出对应的f(x)的值为2,﹣1,﹣2,﹣1,这样便可得出f(x)的值域.【解答】解:x∈{﹣2,﹣1,0,1};∴f(x)∈{2,﹣1,﹣2};∴f(x)的值域为{2,﹣1,﹣2}.故选A.【点评】考查函数值域的概念,定义域为孤立点函数的值域的求法,以及列举法表示集合.12.已知f(x)=3x2+1,则f[f(1)]的值等于()A.25 B.36 C.42 D.49【考点】函数的值.【专题】计算题;函数的性质及应用.【分析】直接利用函数的解析式求解函数值即可.【解答】解:f(x)=3x2+1,则f(1)=3+1=4,f[f(1)]=f(4)=3×42+1=49.故选:D.【点评】本题考查函数值的求法,解析式的应用,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.{x|x>3}用区间表示为(3,+∞),{x|﹣2≤x≤5}用区间表示为[﹣2,5],{x|﹣2≤x<5}用区间表示为[﹣2,5).【考点】区间与无穷的概念.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用区间的表示求解即可.【解答】解:{x|x>3}用区间表示为:(3,+∞);{x|﹣2≤x≤5}用区间表示为:[﹣2,5];{x|﹣2≤x<5}用区间表示为:[﹣2,5);故答案为::(3,+∞);[﹣2,5];[﹣2,5);【点评】本题考查区间与集合的表示,是基础题.14.0∈N,∉Q,∈N*,∉ Z.【考点】元素与集合关系的判断.【专题】集合思想;演绎法;集合.【分析】分析给定元素的分类,进而可得元素与集合的关键.【解答】解:0是自然数,故0∈N,是无理数,故∉Q,=4是正整数,故∈N*,是分数,故∉Z;故答案为:∈,∉,∈,∉【点评】本题考查的知识点是元素与集合关系的判断,熟练掌握各种数集的字母表示,是解答的关键.15.如图,全集为U,A和B是两个集合,则图中阴影部分可表示为C U(A∪B).【考点】Venn图表达集合的关系及运算.【专题】应用题;数形结合;定义法;集合.【分析】根据所给图形知,阴影部分所表示的集合代表着不在集合A∪B中的元素组成的.【解答】解:∵图中阴影部分所表示的集合中的元素为不在集合A∪B中元素,即为C U(A∪B),故答案为:C U(A∪B).【点评】本小题主要考查Venn图表达集合的关系及运算等基础知识,考查数形结合思想.属于基础题.16.若A={1,4,x},B={1,x2},且A∩B=B,则x= 0,2,或﹣2 .【考点】交集及其运算.【专题】计算题.【分析】由A∩B=B转化为B⊆A,则有x2=4或x2=x求解,要注意元素的互异性.【解答】解:∵A∩B=B∴B⊆A∴x2=4或x2=x∴x=﹣2,x=2,x=0,x=1(舍去)故答案为:﹣2,2,0【点评】本题主要考查集合的子集运算,及集合元素的互异性.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.已知集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,某某数a的取值集合.【考点】集合的包含关系判断及应用.【专题】计算题;集合.【分析】利用子集的定义,即可解得实数a的取值集合.【解答】解:∵集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,∴a≥4∴实数a的取值集合为{a|a≥4}.【点评】本题主要考查了集合的包含关系判断及应用,属于以不等式为依托,求集合的子集的基础题,也是高考常会考的题型.18.设A={x|a≤x≤a+3},B={x|x<﹣1或x>5},当a为何值时,①A∩B=∅;②A∩B≠∅;③A⊆B.【考点】交集及其运算.【专题】计算题;集合.【分析】①由A与B,以及A与B的交集为空集,确定出a的X围即可;②由A与B,以及A与B的交集不为空集,确定出a的X围即可;③由A与B,以及A是B的子集,确定出a的X围即可.【解答】解:①∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A∩B=∅,∴,解得:﹣1≤a≤2;②∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A∩B≠∅,∴a<﹣1或a>2;③∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A⊆B,∴a+3<﹣1或a>5,解得:a<﹣4或a>5.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.19.已知函数(1)求函数的定义域(2)求f(4)【考点】函数的定义域及其求法;函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】(1)利用分母不为0,开偶次方被开方数非负,列出不等式组求解即可.(2)利用函数的解析式直接求解函数值即可.【解答】解:(1)要使函数有意义,自变量的取值需要满足.函数的定义域为:(0,+∞).(2)=.【点评】本题考查函数的定义域的求法,函数值的求法,是基础题.20.已知函数,(1)点(3,14)在函数的图象上吗?;(2)当x=4时,求g(x)的值;(3)当g(x)=2时,求x的值.【考点】函数的值;函数的图象.【专题】计算题;函数的性质及应用.【分析】(1)把x=3代入g(x),求出g(3)的值,即可作出判断;(2)把x=4代入g(x),求出g(x)的值即可;(3)根据g(x)=2,求出x的值即可.【解答】解:(1)把x=3代入得:g(3)==﹣≠14,则点(3,14)不在函数的图象上;(2)把x=4代入得:g(4)==﹣3;(3)根据g(x)=2,得到=2,解得:x=14.【点评】此题考查了函数的值,以及函数的图象,熟练掌握运算法则是解本题的关键.21.已知f(x)=,求f(f(3))的值.【考点】函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用分段函数化简求值即可.【解答】解:f(x)=,f(f(3))=f(32+1)=f(10)=10﹣5=5,∴f(f(3))=5.【点评】本题考查分段函数的应用,函数值的求法,是基础题.22.已知集合U={x|﹣3≤x≤3},M={x|﹣1<x<1},C U N={x|0<x<2}.求:(1)集合N;(2)集合M∩(C U N);(3)集合M∪N.【考点】并集及其运算;交集及其运算;补集及其运算.【专题】常规题型;转化思想.【分析】(1)由集合U={x|﹣3≤x≤3},C U N={x|0<x<2},利用数轴即可解答;(2)由M={x|﹣1<x<1},C U N={x|0<x<2}结合数轴即可获得解答;(3)结合(1)由数轴即可获得解答..【解答】解:(1)∵U={x|﹣3≤x≤3},C U N={x|0<x<2}.∴N={x|﹣3≤x≤0或2≤x≤3};(2)∵M={x|﹣1<x<1},C U N={x|0<x<2}.∴M∩(∁U N)={x|0<x<1};(3)由(1)知N={x|﹣3≤x≤0或2≤x≤3}又∵M={x|﹣1<x<1}∴M∪N={x|﹣3≤x<1或2≤x≤3}.【点评】本题考查的是集合的交集、并集、补集及其运算.在解答的过程当中充分体现了数形结合的思想以及集合交并补的运算.值得同学们体会反思.。
广东省深圳高中2018-2019年九年级(下)第二次月考数学试卷 解析版

2018-2019学年九年级(下)第二次月考数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中正数有()A.1个B.2个C.3个D.4个2.(3分)2017年中秋、国庆假日八天里,中国民航共运送旅客1295万人次,将1295万用科学记数法表示应为()A.0.1295×108B.1295×104C.12.95×106D.1.295×107 3.(3分)如图是一个由4个相同的长方体组成的立体图形,它的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.x2•x6=x12B.(﹣6x6)÷(﹣2x2)=3x3C.2a﹣3a=﹣a D.(x﹣2)2=x2﹣45.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个6.(3分)一个等腰三角形两边长分别为20和10,则周长为()A.40 B.50 C.40或50 D.不能确定7.(3分)已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.(3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.12 B.16 C.8 D.49.(3分)如图,在长方形ABCD中,点E在AB边上,将长方形ABCD沿直线DE折叠,点A 恰好落在BC边上的点A处.若AE=5,BF=3,则CF的长为()A.9 B.10 C.12 D.1510.(3分)已知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤111.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m的值为()A.﹣1或2 B.1或﹣2 C.﹣2 D.112.(3分)已知如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点BD是对角线,AG∥DB,交CB的延长线于G,连接GF,若AD⊥BD.下列结论:①DE∥BF;②四边形BEDF 是菱形;③FG⊥AB;④S△BFG=.其中正确的是()A.①②③④B.①②C.①③D.①②④二、填空题(本题共有2小题,每小题3分,共6分)13.(3分)已知3a=5,9b=10,则3a﹣2b=.14.(3分)分解因式:25(x+y)2﹣4(x﹣y)2=.三、解答题(本题共2小题,第15题3分,第16题5分,共8分)15.(3分)解方程:+=316.(5分)求值:(1﹣)÷﹣,其中x2+2x﹣1=0.一、填空题(本题共2小题,每小题3分,共6分)17.(3分)已知等腰三角形的两边长分别为x和y(x≠y),且x和y满足x2﹣8x+y2﹣12y+52=0,则这个等腰三角形的面积为.18.(3分)如图,矩形OABC的边OC在y轴上,边OA在x轴上,C点坐标为(0,3),点D 是线段OA上的一个动点,连结CD,以CD为边作矩形CDEF,使边EF过点B.连结OF,当点D与点A重合时,所作矩形CDEF的面积为18.在点D的运动过程中,线段OF最大值为.二、解答题(本题共5小题,第19题8分,第20题8分,第21题8分第22题8分,第23题12分,共44分)19.(8分)某中学为了了解本校学生喜爱的球类运动,在本校范围内随机调查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次一共调查了多少名学生?(2)补全条形统计图;(3)求“足球”在扇形统计图中所占圆心角的度数;(4)若已知该校有500名学生,请你根据调查的结果估计爱好“足球”和“排球”的学生共有多少人?20.(8分)小兵和小宁玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张.小宁说:“若抽出的两张牌上的数都是偶数,你获胜;否则,我获胜.”(1)请用树状图表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由.21.(8分)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)22.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是200件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.(1)每件玩具的售价定为多少元时,月销售利润恰为2160元?(2)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?23.(12分)已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中正数有()A.1个B.2个C.3个D.4个【分析】根据相反数、负数的立方根是负数,可化简各数,根据正数大于零,可得答案.【解答】解:﹣(﹣5)=5>0,﹣(﹣5)2=﹣25<0,﹣|﹣5|=﹣5<0,(﹣5)3=﹣125<0,故﹣(﹣5)是正数,故选:A.2.(3分)2017年中秋、国庆假日八天里,中国民航共运送旅客1295万人次,将1295万用科学记数法表示应为()A.0.1295×108B.1295×104C.12.95×106D.1.295×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字1295万用科学记数法可简洁表示为:1.295×107.故选:D.3.(3分)如图是一个由4个相同的长方体组成的立体图形,它的左视图是()A.B.C.D.【分析】左视图是从左边看所得到的视图,根据左视图所看的位置找出答案即可.【解答】解:立体图形的左视图是.故选:A.4.(3分)下列运算正确的是()A.x2•x6=x12B.(﹣6x6)÷(﹣2x2)=3x3C.2a﹣3a=﹣a D.(x﹣2)2=x2﹣4【分析】由整式的运算法则分别进行计算,即可得出结论.【解答】解:∵x2•x6=x8≠x12.∴选项A错误;∵(﹣6x6)÷(﹣2x2)=3x4,∴选项B错误;∵2a﹣3a=﹣a,∴选项C正确;∵(x﹣2)2=x2﹣4x+4,∴选项D错误;故选:C.5.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.6.(3分)一个等腰三角形两边长分别为20和10,则周长为()A.40 B.50 C.40或50 D.不能确定【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当10为腰时,10+10=20,故此种情况不存在;②当20为腰时,20﹣10<20<20+10,符合题意.故此三角形的周长=10+20+20=50.故选:B.7.(3分)已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【解答】解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.8.(3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.12 B.16 C.8 D.4【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AB的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOB为直角三角形.∵OE=2,且点E为AB的中点,∴AB=2OE=4.C菱形ABCD=4AD=4×4=16.故选:B.9.(3分)如图,在长方形ABCD中,点E在AB边上,将长方形ABCD沿直线DE折叠,点A 恰好落在BC边上的点A处.若AE=5,BF=3,则CF的长为()A.9 B.10 C.12 D.15【分析】由四边形ABCD是长方形,可得∠B=90°,AB=CD,由折叠的性质可得:EF=AE=5,然后由勾股定理求得BE的长,可得AB=CD=9,由勾股定理可求CF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,AB=CD,AD=BC,由折叠的性质可得:EF=AE=5,∴BE===4,∴AB=AE+BE=9,∴CD=9,∵DF2=CD2+CF2,∴(CF+3)2=81+CF2,∴CF=12,故选:C.10.(3分)已知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤1【分析】先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a的取值范围.【解答】解:去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠﹣1,∴a≤﹣1且a≠﹣2,∴a≤﹣1且a≠﹣2.故选:B.11.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m的值为()A.﹣1或2 B.1或﹣2 C.﹣2 D.1【分析】根据根与系数的关系结合x1+x2=1﹣x1x2,即可得出关于m的一元二次方程,解之即可得出m的值,再根据方程有实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,从而可确定m的值.【解答】解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1•x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,∴2m=1﹣(m2﹣m﹣1),即m2+m﹣2=0,解得:m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选:D.12.(3分)已知如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点BD是对角线,AG∥DB,交CB的延长线于G,连接GF,若AD⊥BD.下列结论:①DE∥BF;②四边形BEDF 是菱形;③FG⊥AB;④S△BFG=.其中正确的是()A.①②③④B.①②C.①③D.①②④【分析】根据图形及已知条件求解.【解答】解:①∵在平行四边形ABCD中,E、F分别为边AB、CD的中点∴四边形DEBF为平行四边形∴DE∥BF故①正确②由①知四边形DEBF为平行四边形∵AD⊥BD E为边AB的中点∴DE=BE=AE∴四边形BEDF是菱形故②正确③∵AG∥DB AD∥BGAD⊥BD∴AGBD为矩形∴AD=BG=BC要使FG⊥AB,则BF=BC=BG不能证明BF=BC,即FG⊥AB不恒成立故③不正确④由③知BC=BG∴S△BFG=∵F为CD中点∴S△FCG=S平行四边形ABCD∴S△BFG=故④正确.故选:D.二、填空题(本题共有2小题,每小题3分,共6分)13.(3分)已知3a=5,9b=10,则3a﹣2b=50 .【分析】根据幂的乘方以及同底数幂的除法法则解答即可.【解答】解:∵3a=5,9b=32b=10,∴3a﹣2b=3a•32b=5×10=50.故答案为:50.14.(3分)分解因式:25(x+y)2﹣4(x﹣y)2=(3x+7y)(7x+3y).【分析】原式利用平方差公式分解即可.【解答】解:原式=[5(x+y)﹣2(x﹣y)][5(x+y)+2(x﹣y)]=(3x+7y)(7x+3y),故答案为:(3x+7y)(7x+3y)三、解答题(本题共2小题,第15题3分,第16题5分,共8分)15.(3分)解方程:+=3【分析】观察可得方程最简公分母为:(x+2)(x﹣2).方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘(x+2)(x﹣2),得3x(x﹣2)+2(x+2)=3(x+2)(x﹣2),整理得﹣6x+2x+4=﹣12,解得x=4.检验:将x=4代入(x+2)(x﹣2)≠0.∴x=4是原方程的解.16.(5分)求值:(1﹣)÷﹣,其中x2+2x﹣1=0.【分析】根据分式的运算法则即可求出答案.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1原式=•=﹣=又∵x(x+2)=x2+2x=1,∴原式==4一、填空题(本题共2小题,每小题3分,共6分)17.(3分)已知等腰三角形的两边长分别为x和y(x≠y),且x和y满足x2﹣8x+y2﹣12y+52=0,则这个等腰三角形的面积为3或8.【分析】利用配方法把原式变形,根据非负数的性质求出x、y,根据等腰三角形的性质、三角形的面积公式计算,得到答案.【解答】解:x2﹣8x+y2﹣12y+52=0,x2﹣8x+16+y2﹣12y+36=0,(x﹣4)2+(y﹣6)2=0,则x﹣4=0,y﹣6=0,解得,x=4,y=6,当三角形的腰长为4时,高==,则三角形的面积=×6×=3,当三角形的腰长为6时,高==4,则三角形的面积=×4×4=8,故答案为:3或8.18.(3分)如图,矩形OABC的边OC在y轴上,边OA在x轴上,C点坐标为(0,3),点D 是线段OA上的一个动点,连结CD,以CD为边作矩形CDEF,使边EF过点B.连结OF,当点D与点A重合时,所作矩形CDEF的面积为18.在点D的运动过程中,线段OF最大值为3+3.【分析】连接BD,由矩形的性质得出S矩形CDEF=2S△CBD=12,S矩形OABC=2S△CBD,得出S矩形=12,由OC=3,得出OA=4,由∠CFB=90°,C、B均为定点,F可以看作是在以BC OABC为直径的圆上,取BC的中点M,求出FM,OM,根据OF≤FM+OM求解即可解决问题.【解答】解:当点D与点A重合时,如图:∵S矩形CDEF=2S△CBD=18,S矩形OABC=2S△CBD,∴S矩形OABC=18,∵C点坐标为(0,3),∴OC=3,∴OA=6,∵∠CFB=90°,C、B均为定点,∴F可以看作是在以BC为直径的圆上,取BC的中点M,则MF=BC=3,OM==3,∵OF≤FM+OM,∴OF≤3+3∴OF的最大值=3+3,故答案为3+3.二、解答题(本题共5小题,第19题8分,第20题8分,第21题8分第22题8分,第23题12分,共44分)19.(8分)某中学为了了解本校学生喜爱的球类运动,在本校范围内随机调查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次一共调查了多少名学生?(2)补全条形统计图;(3)求“足球”在扇形统计图中所占圆心角的度数;(4)若已知该校有500名学生,请你根据调查的结果估计爱好“足球”和“排球”的学生共有多少人?【分析】(1)依据爱好排球的人数和百分比,即可得到调查的学生总数;(2)先求得其它部分的人数,进而得出爱好足球的人数,即可补全条形统计图;(3)依据爱好足球的百分比,即可得到“足球”在扇形统计图中所占圆心角的度数;(4)依据爱好“足球”和“排球”的学生的百分比,即可估计爱好“足球”和“排球”的学生数.【解答】解:(1)调查的学生总数=20÷20%=100(名);(2)其它:10%×100=10(名),足球:100﹣30﹣20﹣10=40(名),补全条形统计图如下:(3)“足球”在扇形统计图中所占圆心角的度数=×100%×360°=144°;(4)爱好“足球”和“排球”的学生共有×100%×500=300(名).20.(8分)小兵和小宁玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张.小宁说:“若抽出的两张牌上的数都是偶数,你获胜;否则,我获胜.”(1)请用树状图表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由.【分析】(1)根据题意画出树状图,有树状图即可求得抽牌可能出现的所有结果;(2)根据树状图,先求得两张牌的数字都是偶数的情况,然后利用概率公式即可求得小兵和小宁获胜的概率,由概率相等,即可判定这个游戏公平.【解答】解:(1)树状图为:∴共有12种等可能的结果.(2)游戏公平.∵两张牌的数字都是偶数有6种结果:(6,8),(6,10),(8,6),(8,10),(10,6),(10,8).∴小兵获胜的概率P==,∴小宁获胜的概率也为.∴游戏公平.21.(8分)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.22.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是200件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.(1)每件玩具的售价定为多少元时,月销售利润恰为2160元?(2)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【分析】(1)根据销售利润=单件利润×销售量列一元二次方程即可求解;(2)根据销售利润=单件利润×销售量列二次函数即可求解.【解答】解:(1)设每件玩具的售价定为x元时,月销售利润恰为2520元,根据题意,得(x﹣20)[200﹣10(x﹣30)]=2160整理,得x2﹣70x+1216=0解得x=35±18,所以x1=53,x2=17,∵每件玩具售价不能高于40元,答:每件玩具的售价定为17元时,月销售利润恰为2160元.(2)设月销售利润为y元,根据题意,得:y=(x﹣20)[200﹣10(x﹣30)]=﹣10x2+700x﹣10000﹣10(x﹣35)2+2250∵﹣10<0,∴当x=35时,y有最大值为2250,答:每件玩具的售价定为35元时可使月销售利润最大,最大的月利润是2250元.23.(12分)已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.【分析】(1)由A、B的坐标可求得AO和OB的长,由旋转的性质可求得OC、OD的长,从而可求得∠AEB=90°,再由勾股定理可求得CD和AB的长,可求得AB=CD,可证得△ABE≌△DCE;(2)由B、D坐标可求得直线BD解析式,当M点在x轴上方时,则有CM∥AN,则可求得M点纵坐标,代入直线BD解析式可求得M点坐标,当M点在x轴下方时,同理可求得M点纵坐标,则可求得M点坐标;(3)由AE=DE可知A、D关于EF对称,连接CD交EF于点P,则P点即为满足条件的点,由C、D坐标可求得直线CD的解析式,则可求得P点坐标,利用勾股定理可分别求得AC和CD的长,则可求得此时△PAC的周长.【解答】解:(1)∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∵将△OAB绕O点顺时针旋转90°得△OCD,∴OC=OA=2,OD=OB=4,AB=CD,∴∠ACO=∠ECB=∠CBE=45°,∴∠CEB=90°,∴∠AEB=∠CED,且CE=BE,在Rt△ABE和Rt△DCE中∴Rt△ABE≌Rt△DCE(HL);(2)由(1)可知D(4,0),且B(0,4),∴直线BD解析式为y=﹣x+4,当M点在x轴上方时,则有CM∥AN,即CM∥x轴,∴M点到x轴的距离等于C点到x轴的距离,∴M点的纵坐标为2,在y=﹣x+4中,令y=2可得x=2,∴M(2,2);当M点在x轴下方时,同理可得M点的纵坐标为﹣2,在y=﹣x+4中,令y=﹣2可求得x=6,∴M点的坐标为(6,﹣2);综上可知M点的坐标为(2,2)或(6,﹣2);(3)由(1)可知AE=DE,∴A、D关于直线EF对称,连接CD交EF于点P,则PA=PD,∴PA+PC=PD+PC=CD,∴满足△PAC的周长最小,∵C(0,2),D(4,0),∴可设直线CD解析式为y=kx+2,∴4k+2=0,解得k=﹣,∴直线CD解析式为y=﹣x+2,∵A(﹣2,0),D(4,0),∴F(1,0),即直线EF解析式为x=1,在y=﹣x+2中,令x=1可得y=,∴P(1,),在Rt△AOC中,由勾股定理可求得AC=2,在Rt△COD中,由勾股定理可求得CD==2,∴PA+PC+AC=CD+AC=2+2,即△PAC的周长最小值为2+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2018第一学期第一次月考试卷(高一数学)
姓名 得分
一、选择题:(每小题5分)
1、y=1-3x 的定义域为 【 】 A R B ⎭⎬⎫⎩⎨⎧
≠31|x x C {}3|≠x x D ⎭
⎬⎫⎩⎨⎧∈≠
R x x x 且31| 2、若a 为R 中元素,但不是Q 中的元素,则a 可以是 【 】
A 3 .14
B -5
C 3/7
D 7
3、 已知集合{}c b a M
,,=中的三个元素可构成某一三角形的三边长,那么此三角形一
定不是 【 】 A 直角三角形 B 锐角三角形 C 钝角三角形 D 等腰三角形 4、 以下五个写法中:(1)
{}{}1,00∈ ,
(2)∅是{}1,0的真子集(3)∅∈0(4){}{}0)0,0(= ,
(5)R={}全体实数,其中错误写法的个数为 【 】 A 4 B 3 C 2 D 1 5、全集U=R ,A=
{
}
32|>x x ,a=3
21
-,则 【 】
A A a ⊆
B {}A a ∈
C c u a ∈ A D
c u a ∉ A
6、S=
{}3|≤x x , T={}1|<x x ,则T s 为 【 】
A S
B T
C R
D {}31|≥<x x x 或
7、A=
{}64|),(+-=x y y x ,B={}35|),(-=x y y x ,则B A 为 【 】
A
{}2,1 B {}1,2 C {})2,1( D {})2,1(|),(y x
8、全集{}7,5,3=U
,{}7,3-=a A ,若C U A={}7 ,则a= 【 】
A 2或12
B -2或12
C 12
D 2
9、
{}b a ,的子集个数为 【 】
A 3
B 2
C 4
D 1
10、下列函数中,与函数y=x 表示同一个函数的是 【 】 A
)
(2
x y = B
x
y x
2
=
C
3
3
x
y = D
x
y 2
=
11、已知集合A={x| ax 2
+2x+1=0 ,
R a ∈},若
A 中只有一个元素,则a 的值为
【 】
A 1
B 2
C 0
D 1,0
12、 已知f (x )=⎭
⎬⎫
⎩⎨⎧<≥002x x x x ,,,则f (f (-1)
)的值为 【 】 A 5 B 1 C 2 D 6
二、填空题:(每小题4分)
13、已知{}1|-≥x x ,{}2|<x x ,则B A =
14、已知f(x)的定义域为[0,2] , 则f(3x)的定义域为
15、1海里约合1852m ,根据这一关系,米数y 关于海里数x 的函数解析式为
16、已知函数y=f(x)的定义域为[-1,5], 则在同一坐标系中,函数y=f(x)的图象与直线的交点
个数为
三、解答题:(17题10分,18、19、20题各12分,21、22题各14分)
17、画下列函数的图象 (1)1+=x y
(2){}2,1,5.0,0,5.0,1,2,3
---∈=
x y x
18、设函数f(x)=2x+3,g(x)=3x-5 , 求 f(g(x)) , g(f(x))
19、求下列函数的值域 (1){}3,2,1,)(2
∈+=
x x x f x (2)]2,1(,1)(-∈+=x x x f
20、已知{}3|+≤≤=
a x a x A ,{}51|>-<=x x x B 或 ,若φ=B A
求a 的取值范围
21、已知集合A=[-1,2] ,对于下列全集U ,分别求C U A
(1){}2|≤=x x U
(2) {}22|≤≤-=x x U
22、如图,在边长为4的正方形ABCD 的边上有一个动点P ,沿着折线BCDA 内B 点(起点)向A 点(终点)移动,设P 点移动的路程为x , 三角形ABP 的面积为y ,
求y=f(x)的解析式.
C
P
A B
2018-2018第一学期第一次月考试卷(高一数学)答案
二、13、
{}21|<≤-x x 14、[0,2/3] 15、y=1852x(x>0) 16、1 三、解答题:
18、f(g(x))=6x-7 g(f(x))=6x+4 19 、(1)
{}12,6,2 (2) {}30|<≤x x
20、[-1,2]
21、(1)(-∞,-1) (2)
{}12|-<≤-x x
22、⎪⎩
⎪
⎨⎧∈-∈∈=]12,8(,224]8,4(,8]
3,0(,2x x x x x y。