机械原理课程设计颚式破碎机
颚式破碎机机械原理课程设计-

目录之阳早格格创做前文:安排任务指挥书籍(铰链式颚式破碎机)后文:(偏偏沉图解法)一.机构简介与安排数据 (3)二.连杆机构疏通分解 (4)三.连杆机构速度分解 (6)四.各杆加速度分解 (8)五.静力分解 (10)六.直柄仄稳力矩 (13)七.飞轮安排 (13)八.西席评语 (16)板滞本理课程安排———颚式破碎机指挥西席:安排:班级:教号:日期:板滞本理课程安排结果评阅表注:1.评介等第分为A、B、C、D四级,矮于A下于C为B,矮于C为D.2.每项得分=分值X等第系数(等第系数:A为1.0,B为0.8,C为0.6,D为0.4).“劣”、“良”、“及格”、“没有及格”之一.目录九.机构简介与安排数据 (3)十.连杆机构疏通分解 (4)十一.连杆机构速度分解 (6)十二.各杆加速度分解 (8)十三.静力分解 (10)十四.直柄仄稳力矩 (13)十五.飞轮安排 (13)十六.西席评语 (16)颚式破碎机一、机构简介与安排数据(1)机构简介颚式破碎机是一种破碎矿石的板滞,如图所示,呆板经皮戴(图中已画)使直柄2逆时针回转,而后通过构件3,4,5是动颚板6背左晃背牢固于机架1上的定额板7时,矿石即被轧碎;当动颚板6背左晃定颚板时,被轧碎的矿石即下降.由于呆板正在处事历程中载荷变更很大,将做用直柄战电效果的匀速运行.为了减小主轴速度的动摇战电效果的容量,正在O2轴的二端各拆一个大小战沉量真足相共的飞轮,其中一个兼做皮戴轮用.(2)安排数据二、连杆机构的近动分解:(1)直柄正在1位子时,构件2战3成背去线(构件4正在最矮位子)时,L=AB+AO2=1.25+0.1=1.35=1350mm以O2为圆心,以为半径画圆,以O4为圆心,以1m为半径画圆,通过圆心O2正在二弧上量与1350mm,进而决定出1位子连杆战直柄的位子.再以O6为圆心,以1960mm为半径画圆,正在圆O6战O4的圆弧上量与1150mm进而决定出B4C1杆的位子.(2)直柄正在2位子时,正在1位子前提上逆时针转化2400.以O2为圆心,以m为半径画圆,则找到A面.再分别以A战O4为圆心,以战1m为半径画圆,二圆的下圆的接面则为B面.再分别以B战O6为圆心,以战为半径画圆,二圆的下圆的接面则为C面,再对接AB、O4B、BC战O6C.此机构各杆件位子决定.(3)直柄正在3位子时,正在1位子前提上逆时针转化180°过A4面到圆O4的弧上量与1250mm,决定出B4面,从B3面到圆弧O6上量与1150mm少,决定出C4,此机构诸位子决定.三.连杆机构速度分解(1)位子2ω2=nVB4= V A4 + VB4A4X AO2·ω2 X⊥O4B⊥AO2⊥ABV A4= AO2·ω2X17.8=/s根据速度多边形,按比率尺μ(m/S)/mm,正在图2中量与VB4战VB4A4的少度数值:则VB4=Xμ=m/sVB4A4=Xμ=m/sVC4= VB4 + VC4B4X √ X⊥O6C√⊥BC根据速度多边形,按比率尺μ1(m/S)/mm,正在图3中量与VC4战VC4B4的少度数值:VC4=×μ=m/sVC4B4=×μ=m/s四.加速度分解:ω2=a B4=a n B404 + a t B404= a A4+a n B4A4 + a t A4B4√X √√X//B 4O 4⊥B 4O 4 //A 4O 2//B 4A4⊥A4B4′a A4=A 4O 2×ω22=m/s 2a n B4A4=VB4A4VB4A4/B 2A2=m/s 2a n B404=VB4VB4/BO 4=m/s 2根据加速度多边形图4按比率尺μ=0.05(m/s 2)/mm 量与a t B204a t A2B2战a B3 值的大小: a t B404=be ×μ= m/s 2a t A4B4=ba ′×μ=m/s 2a B4′=pb ×μ= m/s 2a C4′= a n 06C4′+ a t 06C4′= a B4′+ a t C4B4′+a n C4B4√X √X √//O6C ⊥O6C √⊥CB //CB根据加速度多边形按图3按比率尺μ=0.05(m/s 2)/mm 量与a C4′、a t 06C4战a t C4B4数值: a C4′=pe ×μ =m/s 2 a t 06C4=pc ×μ =m/s 2 a t C4B4=bc ×μ =m/s 2 五.静力分解:三位子(1)杆件5、6为一动构件组(谦脚二杆三矮副)参瞅大图静力分解: (1)对于杆6F I6=m 6a s6=9000××/9.8=2204NM I6=J S6α6=J S6a t o6c/L6=50×/1.96=122H p6=M I6/F I6=122/2204=正在直柄中量出2角度为2400则Q/85000=60/240得Q=21250N∑M C=0-R t76×L6+F I6×-G6×94-Q·DC=0R t76=(-2204×+9000×94+21250×6)/=14142N(2)对于杆5F I5=m5a s5=2000××/9.8=2019NM I5=J S5α5=9×/1.15=148N·mH p5=M I5/F I5=148/2019=m∑M C=0R t345×L5-G5×0.6+F I5×0.497=0R t345=(2000×0.6-2019×0.497)/=N(3)对于杆4F I4=m4a s4=2000×1/2×/9.8=1959NM I4=J S4α4=9×/1=171N·mH p4=M I4/F I4=171/1959=m∑M B=0R t74×L4-G5×+F I4×0.406=0R t74=(2000×9-1959×0.406)/1=N(4)对于杆3F I3=m3a s3=5000××/9.8=1112NM I3=J S3α3×/1.25=593N·mH p3=M I3/F I3=593/1112=m∑M B=0-R t23×L3-G3×4-F I3×0.77=0R t23=(-1112×0.77-5000×4)/1.25=-N三位子各构件收反力由静力分解启关多边形量与,μ1=100N/mm,μ2=/mm供各图收反力值(参瞅大图)R76=R76×μ1=17NR56=R56×μ1=340NR B345=R B345×μ1=3NR23=R23×μ1=5059N六、直柄仄稳力矩L=M仄=5059×69=N·m七、飞轮安排稳力矩M y,具备定传动比的构件的转化惯量,电效果直柄.以上真量做正在2号图纸上.步调:1)列表:正在动背静力分解中供得的各机构位子的仄稳力矩My.2数,且一个疏通循环中驱能源、功等于阳力功,故得一个线图.3)供最大动背结余功该线图纵坐标最下面与最矮面的距离,即表示最大动背结余功:通过图解法积分法,供得,M a N·m,图中μMΦ/mmμMm=50N/mmμA=μm×μMΦ×H=50N·m/mm所以[A’]=μA×A’1测=52×85=4420N·mJ e=J s3×(ω3/ω2)2+m3×(v s3/ω1)2+J s4×(ω4/ω2)2+m4×(v s4/ω2)2+J s5×(ω5/ω2)2+m5×(v s5/ω2)2+J s6×(ω6/ω2)2+m6×(v s6/ω2)2=+++++0442++=Kgm2J F=900·Δωmax/∏2n2[δ]-J e=900×2×1702×=Kgm2八.西席评语:参照文件1.西北工业大教板滞本理及板滞整件教研室编,孙恒,陈做摸主编.板滞本理.第六版.北京下等培养出版社,20002.哈我滨工业大教表里力教教研室编,王译,程勒主编.表里力教,第六版,北京下等培养出版社,20023.刘鸿文主编.资料力教.第四版.北京下等培养出版社20034.李建新,缓眉举,李东降主编.估计机画图前提教程.哈我滨工业大教出版社,20045.板滞安排试验(建订版),王世刚刚编;哈我滨工业大教出版社,2003安排心得经本次安排,本组成员相识掌握了板滞安排的要领战步调.通过对于颚式破碎机疏通.速度及处事简图的安排让咱们进一步掌握了《板滞本理》,加深了对于各知识面的明白战使用.那次安排咱们本着严肃.准确的准则,使咱们巩固了自自疑心,也为咱们将去处事挨下良佳前提.本次安排使咱们正在试验.表里圆里皆有了很大的普及,也为板滞安排的课程干了充分的准备.本次安排得没有是很完好,但是咱们脆疑以去咱们将干得更佳.正在安排咱们真真明白搞安排的艰易,激励咱们以去越收的齐力教习相关知识.共时也开开教授给的那次安排机会以及正在本次安排中赋予的指挥,共时对于正在本次安排中赋予助闲的共教正在此表示感动.。
颚式破碎机机械原理课程设计-

06
课程设计总结与展望
课程设计的收获与不足
收获:深入了解颚式破碎机的工 作原理和结构特点,提高了机械 设计能力
不足:对颚式破碎机的实际应用 和维护保养方面了解不足
添加标题
添加标题
添加标题
添加标题
收获:掌握了机械设计的基本方 法和步骤,提高了解决问题的能 力
不足:对机械设计的创新和优化 方面考虑不足
对颚式破碎机未来的展望
技术进步:提高破碎效率,降低 能耗
环保要求:减少粉尘和噪音污染
添加标题
添加标题
添加标题
添加标题
智能化:实现远程监控和故障诊 断
应用领域:拓展到更多行业,如 建筑、矿山等
提高颚式破碎机性能的建议
优化设计:改进颚板结构,提高破碎效率 材料选择:选用耐磨、耐腐蚀的材料,延长使用寿命 控制系统:采用智能控制系统,实现自动调节和故障诊断 节能环保:降低能耗,减少噪音和粉尘排放,提高环保性能
单击此处添加副标题
颚式破碎机机械原理课程
设计
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 颚式破碎机概述 颚式破碎机的机械结构 颚式破碎机的机械原理分析 颚式破碎机的优化设计 课程设计总结与展望
01
添加目录项标题
02
颚式破碎机概述
颚式破碎机简介
颚式破碎机是一种 用于破碎坚硬物料 的机械设备
颚式破碎机的安装与调试
安装前准备:检查设备、工具和材料 安装步骤:按照说明书进行安装 调试方法:检查各部件是否正常工作 调试注意事项:注意安全,遵守操作规程
04
颚式破碎机的机械原理分析
颚式破碎机的运动学分析
颚式破碎机的运动形式:曲柄连杆机构 颚式破碎机的运动轨迹:椭圆形 颚式破碎机的运动速度:随曲柄转角的变化而变化 颚式破碎机的运动方向:随曲柄转角的变化而变化
鄂破式破碎机课程设计

鄂破式破碎机课程设计
本课程设计旨在介绍鄂破式破碎机的工作原理、结构特点、操作要点及维护保养等方面的知识。
通过本课程的学习,学员将掌握鄂破式破碎机的基本知识,能够正确地进行操作和维护保养,提高设备的使用寿命和效率。
本课程的内容包括:鄂破式破碎机的分类和结构、工作原理、用途和适用范围、操作要点、维护保养和故障排除等方面。
具体来说,将包括以下内容:
1. 鄂破式破碎机的分类和结构:介绍鄂破式破碎机的常见分类和主要结构部件,对破碎机的各个部分进行详细说明。
2. 工作原理:详细介绍鄂破式破碎机的工作原理和破碎过程,从破碎机的进料、破碎、排料等方面进行阐述。
3. 用途和适用范围:探讨鄂破式破碎机的应用领域和适用范围,以及与其他类型破碎机的比较优劣。
4. 操作要点:详细介绍鄂破式破碎机的操作要点,包括设备的开机、调整、停机等操作,以及日常维护保养工作。
5. 维护保养:介绍鄂破式破碎机的维护保养方法,包括设备的清洁、润滑、检查等方面,以及常见故障的排查与修复。
6. 故障排除:针对鄂破式破碎机的常见故障,介绍其排除方法和注意事项,以及如何预防故障的发生。
通过本课程的学习,学员将掌握鄂破式破碎机的基本知识和操作技能,能够正确地进行操作和维护保养,提高设备的使用寿命和效率。
机械原理课程设计任务书颚式破碎机

机械原理课程设计任务书设计题目:颚式破碎机机构设计及分析 1 课程设计的目的和任务课程设计的目的机械原理课程设计是机械原理教学的一个重要组成部份。
机械原理课程设计的目的在于进一步巩固和加深学生所学的机械原理理论知识,培育学生独立解决实际问题的能力,使学生对机械的运动学和动力学的分析和设计有一较完整的概念,并进一步提高电算、画图和利用技术资料的能力,更为重要的是培育开发和创新机械的能力。
课程设计的任务一、方案设计(至少3种方案)二、选择最优方案(为任务书中给出方案)3、用图解法对牛头刨床的连杆机构进行运动分析和动力分析。
要求画出A1图纸一张,写出计算说明书一份。
2 机构简介颚式破碎机是一种用来破碎矿石的破碎机械,如图1所示。
机械带动皮带传动(图上未示出)使曲柄2顺时针方向回转,然后通过构件3-4-5使动颚板作往复摆动。
当颚板6向左摆向固定于机架1上的定颚板时,矿石即被压碎;当动颚板6向右摆离定颚板时,被压碎的矿石落下。
如此反复进行能够达到破碎的目的。
图1 颚式破碎机机构简图3 已知数据颚式破碎机机构简图如图1所示,题目数据列于表1。
表1 设计数据设计内容 连杆机构的运动分析符号2n 2O A l 1l 2l 1h 2h AB l 4O B l BC l单位 /min rmm数据 17010010009408501000125010001150设计内容 运动分析连杆机构的动态静力分析符号 6O C l6O D l 3G 3S J 4G 4S J 5G 5S J 6G单位 mmN2kgmN2kgmN2kgmN数据 196060050002000 9200099000设计内容符号 6S J 单位 2kgm数据50在连杆机构中,曲柄有30个持续等分的位置1~30,取构件2和3成一直线(即构件4在最下方)时为起始位置1,两个工作行程的极限位置1和16',和16和17中间位置16''。
颚式破碎机 课程设计

颚式破碎机课程设计颚式破碎机是一种常见的破碎设备,广泛应用于矿山、建筑材料、公路、铁路、水利工程等领域。
在颚式破碎机的课程设计中,我们将通过理论学习和实际操作相结合的方式,深入研究颚式破碎机的工作原理、结构特点、性能参数等内容,以及如何进行设备的维护和保养,从而使学生能够全面掌握颚式破碎机的相关知识和技能。
首先,我们将对颚式破碎机的工作原理进行深入的理论学习。
颚式破碎机主要由固定颚板和动颚板组成,通过动颚板的周期性运动,使物料在破碎腔内受到挤压、撞击和剪切力的作用,从而实现破碎作业。
通过学习颚式破碎机的工作原理,学生可以了解到物料在破碎腔内的破碎过程、破碎效率和能耗等相关因素,为后续的实际操作提供理论基础。
其次,我们将进行颚式破碎机的结构特点和性能参数的学习。
颚式破碎机的结构特点包括进料口尺寸、排料口尺寸、破碎腔形状等,而性能参数则包括生产能力、电机功率、排料粒度等。
通过学习这些内容,学生可以了解到不同类型颚式破碎机的适用范围和技术指标,为后续的设备选择和使用提供依据。
接下来,我们将进行颚式破碎机的实际操作。
在实际操作中,学生将亲自操作颚式破碎机,学习如何正确设置破碎机的参数、如何安全运行破碎机、如何进行设备的维护和保养等内容。
通过实际操作,学生可以更直观地了解颚式破碎机的工作原理和性能特点,掌握正确操作破碎机的技能。
最后,我们将进行颚式破碎机的维护和保养的学习。
颚式破碎机是一种重要的设备,正常的维护和保养对于保证设备的正常运行和延长设备的使用寿命至关重要。
在维护和保养学习中,学生将学习如何进行设备的润滑、更换易损件、检查设备的故障等内容,以及如何制定合理的维护计划和保养规范。
通过学习这些内容,学生可以培养良好的设备维护和保养意识,提高设备的可靠性和稳定性。
综上所述,颚式破碎机的课程设计通过理论学习和实际操作相结合的方式,使学生能够全面掌握颚式破碎机的工作原理、结构特点、性能参数等内容,以及如何进行设备的维护和保养。
机械原理课程设计-颚式破碎机

600
5000
25.5
2000
9
2000
9
9000
50
0.15
团队项目总结
设计任务分析
小组设计方案
最终优选方案
结构分析
模型仿真分析
团队项目总结
设计任务分析
小组设计方案
最终优选方案
结构分析
模型仿真分析
团队项目总结
该机构为六杆铰链式破碎机可拆分为机架和主动件2,构件3和构件4组成基本杆 组,构件5和构件6组成基本组。图如下:
模型仿真分析
团队项目总结
总结
经过本次课程设计,我们了解掌握了机械设计的方法和步骤。通过对颚式破碎机运动分析.速 度加速度分析及工作简图的设计让我们进一步掌握了《机械原理》的深刻内容,加深了对各知识 点的理解和运用。通过近一周小组自的查阅资料研究和学习,深刻体会到了团队协作对项目成功 的重要性。设计过程中我们时刻提醒自己要认真.准确,并听从老师安排,踏踏实实做好每一步设 计准备工作,并且仔细钻研了老师提供的软件,通过运用软件简化了很多复杂的运算和作图,为 这次课程设计提供了一个很好的工具。使我们增强了自心, 也为我们将来工作打下良好基础。
方案比较
比较选择
方案一由于结构简单所以对各个构件的强度 要求较高,还有就是出料口太小,不利于出料方 案二凸轮接触应力较大,易磨损,只宜用于传力 不大的场合,而且凸轮轮廓加工困难,费用较 高。;方案三由于结构复杂,生产成本高。方案 四皮带传动结构。运转稳、低噪音:自身通过带打 滑起过载保护。但也有传递降速的效率比较低,
n2
LO2A
l1
l2
h1
h2
lAB
LO4B
lBC
r/mi n
机械原理课程设计铰链式颚式破碎机

目录一、选择方案二、原动机的选择、传动比计算与分配三、机构分析四、机构简介设计数据五、机构的运动位置分析六、机构的运动速度分析七、机构运动加速度分析八、静力分析九、飞轮设计十、设计总结一、方案的选择方案一:该方案的优点就是结构相对简单,由于结构简单所以对各个构件的强度要求较高,还有就就是出料口太小,不利于出料。
方案二:该方案与方案一类似结构简单,优点就是出料口每次碾压后会变大,这样有利于出料,提高生产效率。
方案三:该结构相对前面两种方案来说复杂一点,多增加了几根杆链,这使得该结构运转更加稳定,同时对各杆的要求强度较前两种要低。
该机构也就是每碾压一次出料口变大,有利于出料。
综合以上三个方案,方案三最优,故选择方案三。
二、原动机的选择、传动比计算与分配2、1 原动机的选择电动机有很多种类,一般用得最多的就是交流异步电动机。
它价格低廉,功率范围宽,具有自调性,其机械特性能满足大多数机械设备的需要。
它的同步转速有3000r/min、1500r/min、1000r/min、750r/min、600r/min等五种规格。
在输出同样的功率时,电动机的转速越高,其尺寸与重量也越小,价格也越低廉。
但当执行机构的速度很低时,若选用高速电动机,势必要增大减速装置,反而可能会造成机械系统总体成本的增加。
由于该机构曲柄转速170r/min,故综合考虑选择Y132S1-2,转速为2900r/min。
2、2传动机构的设计由于电动机的转速为2900r/min,而曲柄转速要求为170r/min,所以要采取减速传动装置。
设计的传动机构如下:2、3 传动比计算与分配 (1)总传动比:06.171702900===i w n n i (2)分配各级传动比:齿轮传动比在2-6之间,不能太大,也不能太小,故设置齿轮1与齿轮2传动比为5.212=i ,齿轮2与齿轮3的传动比为323=i ,齿轮4与齿轮5的传动比为27.245=i ,这样总传动比452312i i i i ••=,经过减速传动后达到预期转速。
颚式破碎机毕业设计(含图纸)

颚式破碎机毕业设计(含图纸)篇一:毕业论文颚式破碎机的结构和电气部分设计颚式破碎机的结构和电气部分设计摘要颚式破碎机经过100多年的实践和不断改进,其结构已日益完善。
它具有构造简单、工作可靠、制造容易、维修方便等特点。
所以,至今任然是粗碎和中碎作业中最重要和使用最广泛的一种破碎机械。
它不但在建材工业,也在冶金、煤炭、化工等工矿企业中被广泛地采用着。
颚式破碎机主要用来破碎应力不超过200Mpa的脆性物料。
如铁矿石、金矿石、钼矿石、铜矿石、石灰石和白云石等。
在建材工业中它主要用来破碎石灰石、水泥熟料、石膏、砂岩等。
近年来,随着露天开采比重的增加和大型挖掘机、大型自卸汽车的采用,露天矿运往破碎车间的矿石粒度达1.5~2m。
同时被采矿石的品位日益降低,要保持原有生产量就必须大大增加开采量和破碎量。
因而就使破碎机朝着大型、高生产率的方向发展。
目前,国外生产的简摆颚式破碎机的最大规格是2100mm×3000mm,复摆颚式破碎机的最大规格是1500mm×20XXmm。
关键词:粉碎,颚式破碎机,破碎。
AbstractThe structure of jaw type crusher has been beingperfected though unceasing improvement and the practice of process with more than 100 years. It is characteristic with simple structure, working reliablly, producing easily,maintenance conveniently and so on. Therefore, so far it still is a kind of the most important and extensivily used crusher weapons ,which work in crushing for rough powder and medium-sized powder .It is extensively used not only in building material industry , also in the metallurgical industry ,in coal industry ,in chemical industry and other industrial and mining enterprises. Jaw type crusher is mainly used in crushing the brittleness material which stress does not exceed 200 Mpa. As Iron ore, golden ore, molybdenum ore, copper ore, limestone,and so on. In building material industry, it is mainly used in crushing limestone and cement , plaster ,sandstone etc..In recent years, along with the increase of the proportion of opencast working , adopting of large scale exavator and large scale dump truck, the ore transported from open-cast to broken workshop which size reach 1.5 ~ 2 m. At the same time, the grade ofmining stone is reduced increasingly, we must increase mine quantity and broken quantity greatly in order to maintain original production. Thus the crusher is developing towards large-scale, the high productivity direction. Now, Abroad, the biggest specifications of letter pendulum jaw type crusher of production is 2100 mm×3000mm and the jaw type crusher of xxpound pendulum is 1500 mm×20XXmm.Key word: Crush , the jaw type breaker , broken.目录前言 ................................................ .. 1第1章设计任务及要求 (2)1.1 设计条件 ................................................ ................................................... (2)1.2 设计内容 ................................................ ................................................... (2)1.3 设计关键 ................................................ ................................................... (2)1.4 设计要求 ................................................ ................................................... (3)第2章颚式破碎机参数的选择和计算 (4)2.1 颚式破碎机的结构及运转 ................................................ .. (4)2.2 结构参数的选择与计算 ................................................ (4)第3章主要零部件结构尺寸的计算与选择 (10)3.1 电动机功率的计算与选择 ................................................ (10)3.2 皮带及带轮的设计 ................................................ (12)3.3 初定偏心轴的直径及跨距 ................................................ (14)3.4 轴承的选择及验算 ................................................ (15)3.5 平键的选择及校核 ................................................ (17)3.6 其他构件尺寸的确定 ................................................ .. (18)第4章主要零部件的形状与结构 (21)4.1 破碎腔的形状 ................................................ .. (21)4.2 动颚及齿板结构分析 ................................................4.3 肘板(推力板) .............................................. (24)4.4 调整装置 ................................................ ................................................... . (26)4.5 保险装置 ................................................ ................................................... . (27)4.6 机架结构 ................................................ ................................................... . (28)第5章电器启动与关闭 (30)结论 .................................................31参考文献 ...........致谢 .................................................33前言此次毕业设计的主要任务是对复摆式颚式破碎机的结构和参数的设计与计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1.1 六杆铰链式破碎机
(2)设计数据
设计内容连杆机构的远动分析
符号n2L o2A L1L2h1h2l AB l O4B L BC L o6c 单位r/min mm
数据170 100 1000 940 850 1000 1250 1000 1150 1960
连杆机构远动的动态静力分析飞轮转动惯量
的确定
I O6D G3J S3G4J S4G5J S5G6J S6
mm N Kg m2 N Kg m2 N Kg m2 N Kg m2
600 5000 25.5 2000 9 2000 9 9000 50 0.15 (一)机构运动简图
曲柄在1位置时,构件4在最低位置,以O2为圆心,以1350mm为半径画圆,以O4为圆心,以1000mm 为半径画圆,交于B点,连接O2,B。
以O2为圆心,100mm为半径画圆,交O2B于点A,此时A点的位置便是1位置,顺时针旋转120°便得到5位置,再通过给定的数据确定其余构件的位置,做出机构运动简图1.4。
1.4 机构运动简图
(二)连杆机构速度分析
1 速度分析
(1)B点速度分析
n=170r/min=17/6 r/s
VA=ω2L O2A=17.8X0.1=1.78m/s
V B= V A+ V BA
大小:? 1.78 ?
方向:⊥O4B ⊥AO2⊥AB
作出B点速度多边形
图1.5 B点速度分析
根据速度多边形,按比例尺μ=0.059(m/S)/mm,在图1.5中量取V B和V BA的长度数值:
则VB=26.9×μ=1.59m/s
V BA=19×μ=1.12m/s
(2)C点速度分析
V C= V B+ V CB
大小:? 1.43 ?
方向:⊥O6C ⊥O4B ⊥BC
作出C点速度多边形
图1.6 C点速度分析
根据速度多边形, 按比例尺μ=0.059(m/S)/mm,在图1.6中量取V C和V CB的长度数值:
V C=7.6×μ=0.45m/s
V CB=25.9×μ=1.53m/s
(三)连杆机构加速度分析:
a A= AO2×ω22 =31.7m/s2
a n B= V B2/BO4 =2.53 m/s2
a n BA= V BA2/ BA =1.0m/s2
a B= a n B + a t B= a A + a n BA+ a t BA
方向: 2.53 ?31.7 1 ?
大小://BO4 ⊥BO4 //AO2 //BA ⊥AB
作出加速度多边形
图1.7 加速度多边形
根据加速度多边形图按比例尺μ=0.317(m/s2)/mm量取a t B04 a t BA和a B值的大小:
a t B =49×μ=15.53 m/s2
a t BA=71′×μ=22.51m/s2
a B′=50×μ=15.85 m/s2
a n C =V2c/CO6=0.10m/s2
a n CB=V2CB/CB=2.04m/s2
a C = a n C+ a t C = a B+ a n CB+ a t CB
大小:√X √X √
方向://O6C ⊥O6C √⊥CB //CB
在图1.7中作出加速度多边形,根据加速度多边形按比例尺μ=0.317(m/s2)/mm量取a C′、a t C和a t CB数值:
a C = 32.8×μ= 10.40m/s2
a t C = 32.7×μ= 10.37m/s2
a t CB= 49.8×μ= 15.79m/s2
(四)连杆机构各运动副反作用力分析:
对各受力杆件列力平衡方程和力矩平衡方程:
杆6 Fi6=-m6a s6=-G6/g×μ×πs’6=-4774.4N M i6=-J s6a6=-J s6×a t c/CO6=-264.5N.m
h i6=M i6/F i6=55.4mm
杆5 Fi5=-m5a s5=-2199.6N
M i5=-Js5a5=-123.6N.m
h i5=M i5/F i5=56.2mm
杆4 Fi4=-m4a s4=-1617.3N
M i4=-Js4a4=-139.8N.m
H i4=M i4/F i4=86.4mm
杆3 Fi3=-m3a s3=-11418.5N
M i3=-Js3a3=-459.2N.m
H i3=M i3/F i3=40.2mm
将整个机构拆分为3、4,5、6两个Ⅱ级杆组,并对其进行受力分析:
图1.7 5、6杆组受力分析
图1.8 3、4杆组受力分析
在图1.7和1.8中分别量出
h1=3mm,h2=51mm,h3=28mm,h4=14.5mm h5=21mm,h6=25mm,h7=24mm,h8=3mm 对构件6,由∑M C=0得:
G6·h1+F Q·CD+R t16·CO6-F’i6·h2=0
R t16=209107.8N
对构件5,由∑M C=0得:
G5·h3+R t45·BC-F’i5·h4=0
R t45=419.2N
对构件3,由∑M B=0得:
G3·h8-R t23·AB+F’i3·h7=0
R t23=4624.7N
对构件4,由∑M B=0得:
G4·h6-R t14·BO4-F’i4·h5=0
R t14=320.7N
根据杆组5、6的平衡得:
∑F=R n16+R t16+F Q+F’i6+G6+G5+F’i5+R t45+R n45=0 作出力的多边形:
图1.9 杆组5、6力的多边形
图中连接bj,gj,则jb和gj分别代表总反力R16和R45,根据μ=2200N/mm的比例量取图中bj和gj的长度可得:
R16=94×μ=206800N
R45=220×μ=484000N
又由构件6的平衡条件∑F= R16+F Q+F’i6+G6+R56=0,
知矢量ej代表反力R56,大小为R56=221.3×μ=486860N
根据杆组3、4的平衡得:
∑F=R n23+R t23+F’i3+G3+G4+F’i4+R t14+R n14=0
作出力的多边形:
图1.10 杆组3、4力的多边形
图中连接rl,rp,则rl和rp分别代表总反力R23和R14,
根据μ=100N/mm的比例量取图中bj和gj的长度可得:
R23=59×μ=5900N
R14=48.8×μ=4880N
又由构件3的平衡条件∑F= R23+F’i3+G3+R45=0,知矢量mr代表反力R23,其大小为R23=55×μ=5500N (五)需要加在曲柄上的平衡力矩
对构件2受力分析,
图1.11 杆2受力分析
知构件2受两个力R32与R12,已经求得R23,则R32=-R23 ,又由构件2力的平衡知,R12与R32大小相等方向相反,这两个力构成一个力矩:
M=R32hμ=5500×3.2×5=88000N·m。