分子发光分析.
分子发光分析法

3.检测器 3.检测器
荧光计采用光电管作检测器 荧光分光光度计采用光电倍增管作检测器 电感耦合器件(charge couple device, CCD)
四、荧光分析方法与应用
1. 特点: 特点: (1)灵敏度高 比紫外-可见分光光度法高2~4个数量级
?
光度法 A = lg I0/I = KC 荧光法 I= KC
(c) 刚性平面结构:可减少分子振动,减少与溶剂的相互作用 刚性平面结构:
(d) 取代基效应 取代基效应:给电子取代基使荧光增强;吸电子取代基使荧光减弱 如苯胺和苯酚荧光较强,而硝基苯为非荧光物质 (e)重原子效应 )重原子效应:卤素取代基随原子序数的增加,荧光减弱,而磷光增强
(3)荧光螯合物 荧光螯合物
I p = 2 . 3ϕ p I o c
式中:Ip 为磷光效率,Io 为激发光的强度人为磷光物质的摩尔吸收系数,b为 试样池的光程。在一定的条件下,ϕ 、I p、 、b均为常数,因此上式可写成: κ
I p = Kc
根据上式可以用磷光强度对磷光物质浓度制作定量分析的标准曲线
2. 温度对磷光强度的影响:随着温度的降低,磷光逐渐增强 温度对磷光强度的影响: 3.重原子效应: 3.重原子效应:重原子的高核电荷使磷光分子的电子能级交错,容易引 重原子效应 起或增强磷光分子的自旋轨道偶合作用,从而使S 起或增强磷光分子的自旋轨道偶合作用,从而使S1→ T1的体系间窜跃 概率增大,有利于增大磷光效率。 4.室温磷光 4.室温磷光 (1)固体基质:在室温下以固体基质吸附磷光体,增加分子刚性、减少三重 态猝灭等非辐射跃迁,从而提高磷光量子效率。 (2)胶束增稳:利用表面活性剂在临界浓度形成具多相性的胶束,改变磷光 体的微环境、增加定向约束力,从而减小内转换和碰撞等去活化的几率,提 高三重态的稳定性。 (3)敏化磷光: 激发三重态将能量转移于另一易发磷光的受体,让其法磷光
仪器分析课件chap12 分子发光分析法

电子处于激发态是不稳定状态,返回基态时,
通过辐射跃迁(发光)和非辐射跃迁(热)等方式失去能
量。
传递途径
辐射跃迁
非辐射跃迁
荧光 延迟荧光 磷光
系间窜越 内转换 外转换 振动弛豫
返回速度快的途径,发生几率大!
上 页 下 页 结束
总目录
内容导航 第一节 分子荧光磷光产生基本原理 重点与难点
(一)、非辐射跃迁
e
上 页 下 页 结束
总目录
内容导航 第一节 分子荧光磷光产生基本原理 重点与难点
3. 系间窜越:不同多重态在有重叠的振动能级间的 非辐射跃迁。电子自旋改变,跃迁禁阻,通过自旋轨道耦合等跃迁。
S2 S1
S0 e
上 页 下 页 结束
总目录
内容导航 第一节 分子荧光磷光产生基本原理 重点与难点
4. 外转换:激发态分子与溶剂或其他分子之 间产生相互作用而损失能量回到基态的非辐射 跃迁。
f
S0
T1
i
e
i
上 页 下 页 结束
总目录
内容导航 第一节 分子荧光磷光产生基本原理 重点与难点
2. 磷光发射:电子由第一激发三重态的最低振动能 级→基态各振动能级。发光时间:10-4~100s 。
I I f
aS2
S1
T1
hv′
S0
e
S0 →激发态→振动弛豫→内转换→系间窜越→ T1→振动弛豫→ S0
电子由基态跃迁到激发态,当电子由激发态返回基态
时,以发射电磁辐射(即光)的形式释放能量。
电能
电致发光
分子 发光
+
化学能 光能
生物活性参 与化学发光
化学发光 光致发光 生物发光
第12章 分子发光分析

配合物(荧光) 配合物(荧光)
28
(4)取代基: (4)取代基: 取代基 OH、 NHR、 a 给电子基团 如-NH2、-OH、-OCH3、-NHR、 CN、 产生的p 共轭作用增加了的 -CN、-NR2等,产生的p-π共轭作用增加了的 电子共扼程度,使荧光效率提高, π电子共扼程度,使荧光效率提高,荧光波 长长移。 长长移。 COOH、 C=O、 b 吸收电子基团如 -COOH、 -NO2 、-C=O、 NO、 SH、 减弱分子的π -NO、-SH、-NHCOCH3、-X等;减弱分子的π 电子共轭程度,使荧光减弱甚至熄灭, 电子共轭程度,使荧光减弱甚至熄灭, 电子共轭体系作用较小, c 对π电子共轭体系作用较小,如:-R、对荧光的影响也不明显。 SO3H、-NH3+等,对荧光的影响也不明显。
5
• 电子能级的多重性可用M=2S+1表示,S为 电子能级的多重性可用M 2S+1表示, 表示 电子自旋量子数的代数和,其数值为0 电子自旋量子数的代数和,其数值为0或1。 • 当S=0时,分子的多重性M=1,此时分子 分子的多重性M 所处的电子能态称为单重态,用符号S 所处的电子能态称为单重态,用符号Si表 示。 • 当S=1时,分子的多重性M=3,此时分子 分子的多重性M 所处的电子能态称为三重态。用符号T 所处的电子能态称为三重态。用符号Ti表 示。
6
7
激发单重态与激发三重态的区别: 激发单重态与激发三重态的区别: 激发单重态分子是抗磁性分子,激发三重 激发单重态分子是抗磁性分子, 态分子是顺磁性分子; 态分子是顺磁性分子; 激发单重态的平均寿命大约10 激发单重态的平均寿命大约10-8s,激发三 重态的平均寿命大约10 1s; 重态的平均寿命大约10-4~1s; 电子由S 电子由S0→S1,S2等的跃迁较容易,属于允 等的跃迁较容易, 许跃迁。电子由S 许跃迁。电子由S0→T1,T2等的跃迁较难发 属于禁阻跃迁。 生,属于禁阻跃迁。 激发三重态比激发单重态能级稍低一些。 激发三重态比激发单重态能级稍低一些。
分子发光分析法

只有在极稀的溶液中,当 b c <0.02时才成立,对于浓度较 高的溶液,由于自猝灭和自吸收等原因,使荧光强度和荧光 物质浓度不呈线性关系。
3 .荧光的产生与分子结构的关系
• 分子产生荧光必须具备两个条件: • 物质分子必须具有能吸收一定频率紫外可见辐射
的特征结构,分子必须具有吸光的结构 • 吸光后被激发的分子还必须具有高的荧光量子产
荧光发射光谱 荧光激发光谱
磷光光谱
200 260 320
380 440醇溶液荧(磷)光光谱
7-1 概述
• 分子发光分析法包括荧光分析法、磷光分析法和化学发光 分析法。这三种都是通过测量被激发的分子回到基态时所 发射的光辐射来进行分析的,不同之处在于光谱产生的机 制。
荧光强度 If正比于吸收的光量Ia和荧光量子效率 :
•
If = Ia
•
由朗-比耳定律: Ia = I0(1-10- b c )
•
If = I0(1-10- b c ) = I0(1-e-2.3 b c )
• 浓度很低时,将括号项近似处理后:
•
If = 2.3 I0 b c = Kc
② 荧光 (或磷光)发射光谱
• 固定激发光波长(选最大激发波长), 化合物发射的荧光(或 磷光强度)与发射光波长关系曲线。
荧光发射光谱 荧光激发光谱
磷光光谱
200
260 320
380 440 500 560 620
室温下菲的乙醇溶液荧(磷)光光谱
③ 激发光谱与发射光谱的关系
(1) Stokes(斯托克斯)位移 激发光谱与发射光谱之间的波长差值。发射光谱的波长比
激发光谱的长,振动弛豫消耗了能量。 (2) 荧光光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量(如l2
第七章 分子发光分析

如8-巯基喹啉在下列四种不同极性溶剂中的情况
溶剂 介电常数 四氯化碳 2.24 氯仿 5.2 丙酮 21.5 乙腈 38.8
荧光峰λ/nm 荧光效率
390
0.002
398
0.041
405
0.055
410
0.064
22:50
③ 溶液pH值对荧光强度的影响 不同的pH值,化合物所处状态不同,不同的 化合物或化合物的分子与其离子在电子构型上有 所不同。 对于金属离子与有机试剂形成的发光鏊合物, 一方面pH会影响鏊合物的形成,另一方面还会 影响鏊合物的组成,因而影响它们的荧光性质。 如:苯酚在酸性溶液中呈现荧光,但在碱性 溶液中,无荧光。
浓度范围为:10-5μg/ml~100μg/ml 。对于较 浓溶液,由于猝灭现象和自吸收等原因,使荧光 强度和浓度不呈线性关系,将向浓度轴偏离。
22:50
(2)影响荧光强度的因素 ① 溶剂对荧光强度的影响 一般来说,随着溶剂介电常数的增大,荧光 峰的波长越大,荧光效率也越大。 ② 温度对荧光强度的影响 温度上升使荧光强度下降。
22:50
① 碰撞猝灭 处于激发单重态的荧光分子与猝灭剂分子相碰 撞,使激发单重态的荧光分子以无辐射跃迁的方 式回到基态,产生猝灭作用。 。
② 静态猝灭(组成化合物的猝灭) 由于部分荧光物质分子与猝灭剂分子生成非荧 光的配合物而产生的。此过程往往还会引起溶液 吸收光谱的改变。
22:50
③ 氧的猝灭作用 分子由于系间的跨越跃迁,由单重态跃迁到三 重态。转入三重态的分子在常温下不发光,它们 在与其它分子的碰撞中消耗能量而使荧光猝灭。 溶液中的溶解氧对有机化合物的荧光产生猝灭 效应是由于三重态基态的氧分子和单重激发态的 荧光物质分子碰撞,形成了单重激发态的氧分子 和三重态的荧光物质分子,使荧光猝灭。
第六章荧光法

CH3
CH3
CH3 CH3
维生素E: 激发波长295nm 发射波长324nm
硫色素荧光法
K 3 Fe(CN ) 6 NaOH 维生素B1
溶解后 (铁氰化钾)氧化
酸 正丁醇 荧光消失 硫色素 蓝色荧光 碱
激发λ=365nm; 发射λ=435nm
N H3C N
4.猝灭剂(quencher)的影响 荧光猝灭:是指荧光物质分子与溶剂或其它 溶质分子相互作用,引起荧光强度降低、消 失或荧光强度与浓度不呈现线性关系的现象。
引起荧光猝灭的物质,称为猝灭剂,如 卤素离子、重金属离子、氧分子、硝基化合 物、重氮化合物、羰基化合物等吸电子极性 物质。
荧光猝灭的主要原因是碰撞猝灭。 碰撞猝灭:处于激发单重态的荧光分子 与猝灭剂碰撞后,使激发态分子以无辐 射跃迁回到基态,产生猝灭。
CH 2 NH 2 HCl
N S
CH 3 C 2 H 4 OH
硫胺素
N H3C N N
N S
CH 3 C 2H 4OH
硫色素
四、环境对荧光的影响
1.温度的影响 一般说来,大多数荧光物质的溶液随 着温度的降低,荧光效率和荧光强度将增 加,相反,温度升高荧光效率将下降。 如荧光素的乙醇溶液在0℃以下每降低10 ℃,荧光效率增加3%,冷至-80℃时,荧光 效率为100%。
荧光
延迟荧光
磷光
系间串越 内转换
外转换
振动弛豫
激发态停留时间短、返回速度快的途径,发生的几率大, 发光强度相对大。 荧光:10-7~10 -9 s,第一激发单重态的最低振动能级→基态。 磷光:10-4~10s,第一激发三重态的最低振动能级→基态。
辐射跃迁: 荧光:受光激发的分子从第一激发单重态的最低振 动能级回到基态所发出的辐射。寿命为10-9 ~ 10 -7s。 由于是相同多重态之间的跃迁,几率较大,速度快。 磷光: 从第一激发三重态的最低振动能级回到基态 所发出的辐射。由于磷光的产生伴随自旋多重态的 改变,辐射速度远小于荧光,磷光寿命为10-4 ~10s。
分子发光分析法

第五章 分子发光分析法: 基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光。
第一节 荧光分析法一、概 述 :分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
与分光光度法相比,荧光分析法的最大优点是灵敏度高和选择性高。
二、荧光产生的基本原理(一)分子荧光的产生(二)荧光效率及其影响因素1.荧光效率2.荧光与分子结构的关系(1)产生荧光的条件①必须含有共轭双键这样的强吸收基团,并且体系越大, 电子的离域性越强,越容易被激发产生荧光;大部分荧光物质都含有一个以上的芳香环,且随共轭芳环的增大,荧光效率越高,荧光波长越长。
②分子的刚性平面结构有利于荧光的产生③.取代基对荧光物质的荧光特征和强度的影响 给电子基团:-OH 、-NH2、-NR2和-OR 等可使共轭体系增大,导致荧光增强。
吸电子基团:-COOH 、-NO 和-NO2等使荧光减弱。
随着卤素取代基中卤原子序数的增加,使系间窜跃加强,物质的荧光减弱,而磷光增强。
3.环境因素对荧光强度的影响(1)溶剂极性对荧光强度的影响: 一般来说,电子激发态比基态具有更大的极性。
溶剂的极性增强,对激发态会产生更大的稳定作用,结果使物质的荧光波长红移,荧光强度增大. 奎宁在苯、乙醇和水中荧光效率的相对大小为1、30和1000。
(2)温度荧光强度的影响: 一般情况下,辐射跃迁的速率基本不随温度而改变,而非辐射跃迁的速率随温度升高而显著增大。
对大多数的荧光物质而言,升高温度会使非辐射跃迁概率增大,荧光效率降低。
由于三重态的寿命比单重激发态寿命更长,温度对于磷光的影响比荧光更大。
(3)pH 对荧光强度的影响:共轭酸碱两种体型具有不同的电子氛围,往往表现为具有不同荧光性质的两种体型,各具有自己特殊的荧光效率和荧光波长。
另外,溶液中表面活性剂的存在,可以使荧光物质处于更有序的胶束微环境中,对处于激发单重态的荧光物质分子起保护作用,减小非辐射跃迁的概率,提高荧光效率。
90350-仪器分析-第八章 分子发光分析法

以系间窜跃方式转至第一激发三重态,经过振动弛豫 转至其最低振动能级,跃回至基态时便发射磷光。
3、荧光/磷光光谱曲线
§4.2 分子荧光与磷光光谱分析法
• 激发光谱曲线-荧光强度与激
发光波长的关系
• 固定测量波长为荧光/磷光的最 大发射波长,改变激发波长, 测量荧光或磷光强度;
荧光发射光谱 荧光激发光谱
磷光光谱
• 荧光或磷光光谱曲线-荧光
或磷光强度与发射光波长的关 系
• 固定激发光波长为其最大激发 波长,测量发射不同波长的荧 光或磷光强度.
200 260 320 380 440 500 560 620 室温下菲的乙醇溶液荧(磷)光光谱
§4.2 分子荧光与磷光光谱分析法
4. 荧光、磷光与分子结构的关系
荧光激发光谱荧光发射光谱
200 蒽25的0 激30发0光3谱50和4荧00光4光50n谱m500
§4.2 分子荧光与磷光光谱分析法
6、荧光强度与溶液浓度的关系(定量分析)
溶液的荧光强度(If )与溶液吸收的光强度(Ia)及荧光量
子产率( f)的关系 :
If = Ia
由朗伯-比耳定律:
A=lg(I0/ It), Ia= I0- It
§4.2 分子荧光与磷光光谱分析法
9. 影响分子发光的环境因素
a.溶剂的影响
除一般溶剂效应外,溶剂的极性、氢键、配位键的形成 都将使化合物的荧光发生变化;
b.温度的影响
荧光强度对温度变化敏感,温度增加,外转换去活的几 率增加。
c. 溶液pH
酸碱化合物受溶液pH的影响较大,需要严格控制.
§4.2 分子荧光与磷光光谱分析法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T1
比分子吸收的能量小
λ
3
>λ
2
>λ
1
S0 吸光1 吸光2
荧光3
荧光
11
磷光发射:
S1
电子由基态单重态激发至第一 激发三重态的几率很小,因为这 是禁阻跃迁。 但是,由第一激发单重态的最 低振动能级,有可能以系间窜跃 方式转至第一激发三重态,再经 过振动驰豫,转至其最低振动能 级,由此激发态跃回至基态时,S0 便发射磷光,
S1 S2 T1
S0 吸光1 吸光2 9
S1
系间窜跃:
S2
T1
指不同多重态间 的无辐射跃迁, 例如S1→T1就是一 种系间窜跃。 通常,发生系间 窜跃时,电子由S1 的较低振动能级转 移至T1的较高振动 能级处。
10
S0 吸光1 吸光2 荧光3
辐射能量传递过程 荧光发射: 电子由第一激发单重态的最低振动能级→基态 得到最大波长为λ 3的荧光 由图可见,发射荧光的能量
① 分子必须具有与所照射的辐射频率(紫外-可 见光)相适应的结构(π→π*和n→π*); 才能吸收 激发光; ② 吸收了与其本身特征频率相同的能量之后, 必须具有一定的荧光量子产率。
20
1.荧光效率
它表示物质发射荧光的能力,通常用下式表示
f
发荧光的分子数 激发分子的总数
Kf Kf
荧光效率越高; 物质发射荧光越强
荧光是由激发单重态最低振动能层至基态
区别
磷光是由激发三重态最低振动能层至基态
13
(二 )荧光的激发光谱和发射光谱
激发光谱:(ex)
以不同波长的入射光激发荧光物质,在荧 光最强的波长处测量荧光强度 即以激发光波长为横坐标,以荧光强度为 纵坐标绘制曲线即可得到激发光谱曲线。
发射光谱:(em)
固定激发光波长(最大) 然后测定不同的波长时所发射的荧光强度 即可绘制荧光发射光谱曲线
440
500
560
620
17
λቤተ መጻሕፍቲ ባይዱ
室温下菲的乙醇溶液荧(磷)光光谱
激发光谱与发射光谱的关系
a. Stokes位移 激发光谱与发射光谱之间的波长差值。发射光谱的波
长比激发光谱的长,由于振动弛豫、内转化消耗了能量
b. 发射光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量(如 能级图2, 1),产生不同吸收带,但均回到第一激发单重 态的最低振动能级再跃迁回到基态,产生波长一定的荧
f
Ki
kf为荧光发射过程的速率常数(与化学结构有关) ki为其它有关过程的速率常数的总和(化学环境)
凡使kf 值升高而使ki值降低的因素,都可增强荧光。
21
2. 荧光与有机化合物结构的关系 (1)跃迁类型 实验证明,对于大多数荧光物质,首先经历 激发,然后经过振动弛豫或其他无辐射 跃迁,再发生 跃迁而得到荧光。 (2)共轭效应 实验证明,容易实现激发 的芳香族化合物 容易发生荧光,增加体系的共轭度荧光效率一般 也将增大,主要是由于增大荧光物质的摩尔吸光 系数,有利于产生更多的激发态分子
S2
T1
吸光1
吸光2 荧光3
磷光
这个跃迁过程(T1→S0)也是 自旋禁阻的,其发光速率较慢, 约为10-4-10s。因此,这种跃迁所 发射的光,在光照停止后,仍可 持续一段时间。
磷光
12
猝灭 指激发分子与溶剂分子或其它溶质分子 的相互作用及能量转移,使荧光或磷光强 度减弱甚至消失。这一现象称为“熄灭” 或“猝灭”。 荧光与磷光的根本区别:
仪器分析
原子吸收
原子光谱 原子发射 原子荧光 光谱分析 分子吸收 分子光谱 分子发光 红外光谱 紫外-可见光谱
2
第八章 分子发光分析法
分子
吸收能量
激发为激发态
释放出能量
基态
辐射跃迁 电能 化学能 光能
光的形式释放
非辐射跃迁
以热的形式释放
称为“发光” 光致发光 分子发光 荧光 磷光
3
化学发光
分子荧光/磷光分析法 一、基本原理 (一)荧光和磷光的产生 从分子结构理论来讨论 振动能级
14
激发光谱和荧光光谱
F
激发光谱 荧光光谱
max λ ex
max λ em
λ nm
在荧光的产生过程中,由于存在各种形 式的无辐射跃迁,损失能量,所以它们的 最大发射波长都向长波方向移动,以磷光 波长的移动最多,而且它的强度也相对较 弱。
16
F 激发光谱
荧光发射光谱
磷光光谱
200
260
320
380
7
非辐射能量传递过程;
S1
S2
T1
振动弛豫:
在同一电子能级 中,电子由高振 动能级转至低振 动能级,而将多 余的能量以热 的 形式发出。发生
S0
振动弛豫的时 间为10-12s数量 级。
吸光1
吸光2
8
内转移:
当两个电子能级非常靠近以至其振动能级有重 叠时, 常发生电子由高能级以无辐射跃迁方式转移至低能级。 (S1 转移 S2)
激发单重态S与激发三重态T的不同点:
⑴ S是抗磁分子(磁矩=0),T是顺磁分子(磁矩≠0)
⑵ tS = 10-8s, tT = 10-4~1s;(发光速度很慢)
⑶ 基态单重态到激发单重态的激发为允许跃迁,
基态单重态到激发三重态的激发为禁阻跃迁;
⑷ 激发三重态的能量较激发单重态的能量低
5
荧
光 的 产 生
光 c. 镜像规则
通常荧光发射光谱与它的吸收光谱(与激发光谱形状 一样)成镜像对称关系。
18
镜像规则的原因
基态上的各振动能级
分布与第一激发态上的各
振动能级分布类似; 基态上的零振动 能级与第一激发态的
二振动能级之间的跃
迁几率最大,相反跃 迁也然。
(三)荧光的影响因素 分子产生荧光必须具备两个条件:
激发态分子
辐射跃迁 无辐射跃迁
荧 光
磷 光
猝 灭
内 转 换
系 间 跨 越
振动 弛 豫
受激发分子的去活化过程
2.分子内的光物理过程
其中S0、S1和S2分别表示分子的基态、第一和第二电子激发的单重态
T1和T2则分别表示分子的第一和第二电子激发的三重态。 V=0、1、2、3、…表示基态和激发态的振动能级。
22
(3) 刚性平面结构
实验发现,多数具有刚性平面结构的 有机分子具有强烈的荧光。 因为这种结构可以减少分子的振动, 使分子与溶剂或其它溶质分子的相互作用 减少,也就减少了碰 撞去活的可能性。
电子所处的能级
分子中电子 的能量状态
电子的多重态
转动能级
S=0, J=1 单重态S表示
(所有电子都是自旋配对的)
J=2S+1
S:为各电子自旋量子 数的代数和
大多数基态分子都处于单重态 三重态 T表示 电子在跃迁过程中伴随着
4 自旋方向的变化(自旋平行)
S=1, J=3
基态单重态S
激发态单重态S
激发态三重态T