2015年高考文科数学二轮复习研讨会:研究高考命题趋势

合集下载

【状元之路】2015届高考数学二轮(文理通用)专题知识突破课件:1-6-2文、3理(专题六 概率与统

【状元之路】2015届高考数学二轮(文理通用)专题知识突破课件:1-6-2文、3理(专题六 概率与统

条形统计图计算抽取的高中生近视人数.
该地区中小学生总人数为 3 500+2 000+4 500=10 000,
则样本容量为 10 000×2%=200,其中抽取的高中生近视人数
为 2 000×2%×50%=20,故选 A.
答案 A
2.(2014·山东卷)为了研究某药品的疗效,选取若干名志愿者进 行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为 [12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序 分别编号为第一组,第二组,…,第五组.下图是根据试验数据制 成的频率分布直方图.已知第一组与第二组共有 20 人,第三组中没 有疗效的有 6 人,则第三组中有疗效的人数为( )
真题感悟 1.(2014·广东卷)已知某地区中小学生人数和近视情况分别如图 ①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽
样的方法抽取 2%的学生进行调查,则样本容量和抽取的高中生近 视人数分别为( )
A.200,20
B.100,20
C.200,10
D.100,10
解析 在扇形统计图中,根据抽取的比例计算样本容量,根据
(2)分层抽样的关键是根据样本特征的差异进行分层,实质是等 比例抽样,求解此类问题需先求出抽样比——样本容量与总体容量 的比,则各层所抽取的样本容量等于该层个体总数与抽样比的乘积.
对点训练 1.(2014·天津卷)某大学为了解在校本科生对参加某项社会实践 活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中 抽取一个容量为 300 的样本进行调查.已知该校一年级、二年级、 三年级、四年级的本科生人数之比为 4:5:5:6,则应从一年级本科生 中抽取________名学生.

【状元之路】2015届高考数学二轮(文理通用)专题知识突破课件:1-1-2(专题一 集合与常用逻辑用语、函数与

【状元之路】2015届高考数学二轮(文理通用)专题知识突破课件:1-1-2(专题一 集合与常用逻辑用语、函数与

真题感悟 1.(2014·江西卷)已知函数f(x)=5|x|,g(x)=ax2-x(a∈R).若
f[g(1)]=1,则a=( )
A.1
B.2C.3D.-1 Nhomakorabea解析 先求函数值,再解指数方程. ∵g(x)=ax2-x,∴g(1)=a-1. ∵f(x)=5|x|, ∴f[g(1)]=f(a-1)=5|a-1|=1, ∴|a-1|=0,∴a=1.
答案 A
2.(2014·福建卷)已知函数f(x)=
x2+1,x>0, cosx,x≤0,
则下列结论正
确的是( )
A.f(x)是偶函数 B.f(x)是增函数
C.f(x)是周期函数 D.f(x)的值域为[-1,+∞)
解析 根据所给分段函数解析式,画出函数图象解答.
函数f(x)=
x2+1,x>0, cosx,x≤0
∴f56π=f-π6-12. ∵当0≤x<π时,f(x)=0,∴f56π=0, ∴f236π=f-π6=12.故选A.
答案 A
5.(2014·课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减, f(2)=0.若f(x-1)>0,则x的取值范围是________.
解析 因为f(x)是偶函数,所以不等式f(x-1)>0⇔f(|x- 1|)>f(2),又因为f(x)在[0,+∞)上单调递减,所以|x-1|<2,解得 -1<x<3.
4.函数的周期性的结论
(1)若y=f(x)在x∈R时,f(x+a)=f(x-a)恒成立,则函数f(x)的
周期为2|a|.
(2)若y=f(x)在x∈R时,f(x+a)=-f(x)或f(x+a)=±
1 fx
恒成

2015高考数学大二轮总复习课件:第1部分专题1第2讲

2015高考数学大二轮总复习课件:第1部分专题1第2讲

当且仅当 x=3 时取“=”. 答案 C
热点聚焦 ·题型 第九页,编归辑于纳星期总五:结十五·点思四分。
热点二 含参不等式恒成立问题 [微题型 1] 运用分离变量解决恒成立问题 【例 2-1】 关于 x 的不等式 x+4x-1-a2+2a>0 对 x∈(0, +∞)恒成立,则实数 a 的取值范围为________. 解析 设 f(x)=x+4x,因为 x>0,所以 f(x)=x+4x≥2 x·4x= 4.又关于 x 的不等式 x+4x-1-a2+2a>0 对 x∈(0,+∞)恒成 立,所以 a2-2a+1<4,解得-1<a<3,所以实数 a 的取值 范围为(-1,3).
答案 D
热点聚焦 ·题型 第二十一页归,编纳辑于总星期结五:·十思五点 四分。
1.利用基本不等式求最大值、最小值时应注意:一正、二定
、三相等,即:
(1)函数中的相关项必须是正数;
(2)求积xy的最大值时,要看和x+
y是否为定值,求和x+y的最小值时,要看积xy是否为定值,
求解时,常用到“拆项”“凑项”等解题技巧;
[微题型 2] 带有约束条件的基本不等式问题 【例 1-2】 若 x,y∈R+,且 2x+y=3,则1x+1y的最小值为 ________. 解析 ∵2x+y=3,∴13(2x+y)=1. ∴1x+1y=1x+1y·132x+y =133+yx+2yx≥13(3+2 2). 当且仅当 x=3-322,y=3 2-3 时等号成立.
热点聚焦 ·题型 第十页,编归辑于纳星期总五:结十五·点思四分。
答案 (-1,3) 规律方法 求解含参不等式恒成立问题的关键是过好双关:第 一关是转化关,即通过分离参数,先转化为 f(a)≥g(x)(或 f(a)≤g(x)) 对 ∀ x ∈ D 恒 成 立 , 再 转 化 为 f(a)≥g(x)max( 或 f(a)≤g(x)min);第二关是求最值关,即求函数 g(x)在区间 D 上 的最大值(或最小值)问题.

2015届高考文科数学二轮复习提能专训3 分类讨论思想

2015届高考文科数学二轮复习提能专训3 分类讨论思想

提能专训(三) 分类讨论思想 一、选择题 1.(2014·沈阳质检)已知中心在坐标原点,焦点在坐标轴上的双曲

线的渐近线方程为y=±34x,则该双曲线的离心率为( ) A.54 B.53 C.54或53 D.35或45 答案:C 解析:焦点在x轴上时,ba=34,此时离心率e=ca=54;焦点在y轴上时 ,ab=34,此时离心率e=ca=53,故选C.

2.(2014·天津河北区质检)已知函数f(x)= log3x,x>0,13x,x≤0,那么不等式f(x)≥1的解集为( ) A.{x|-3≤x≤0} B.{x|x≤-3或x≥0} C.{x|0≤x≤3} D.{x|x≤0或x≥3} 答案:D

解析:由 x>0,log3x≥1,得x≥3;

由 x≤0,13x≥1,得x≤0. 故f(x)≥1的解集为{x|x≤0或x≥3}. 3.(2014·成都质检)从1,2,3,4,5,6这六个数中,每次取出两个不同

的数记为a,b,则共可得到2ba的不同值的个数是( ) A.20 B.22 C.24 D.28 答案:B

解析:注意到y=2x是单调递增函数,故只需求ba的个数.由于(1,2)和(2,4),(3,6)重复,(1,3)和(2,6)重复,(2,3)和(4,6)重复,故总的个数为A26-8=22. 4.(2014·山西忻州联考)设Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,且a2+a5=2am,则m等于( ) A.6 B.7 C.8 D.10 答案:C 解析:∵S3,S9,S6成等差数列,∴2S9=S3+S6.若公比q=1,显

然有2S9≠S3+S6,因此q≠1,从而2a11-q91-q=a11-q31-q+a11-q61-q,2q9-q6-q3=0, 即2q6-q3-1=0,∴q3=-12,q3=1(舍去). ∵a2+a5=2am,∴a2(1+q3-2qm-2)=0,1+q3-2qm-2=0, ∴qm-2=14,∴m=8. 5.(2014·河南洛阳统考)已知三棱锥S-ABC的所有顶点都在球O的球面上,AB=BC=CA=3,SA=SB=SC,球心O到平面ABC的距离为1,则SA与平面ABC所成角的大小为( ) A.30° B.60° C.30°或60° D.45°或60° 答案:C 解析:球心位置有以下两种情况:球心在三棱锥内部;球心在三棱锥外部.球心在三棱锥内部时,三棱锥为正三棱锥,设O′为△ABC的中心,在△ABC中,可求得O′A=3,所以可得OA=2,SO′=

【名师伴你行】2015届高考文科数学二轮复习专题突破课件:2-8-3选修4系列

【名师伴你行】2015届高考文科数学二轮复习专题突破课件:2-8-3选修4系列
重 访 好 题
合基本不等式即得证.
热 点 盘 点
(2)明确不等式后解关于a的绝对值不等式,再分类讨论求解 即可.
[二轮备考讲义]
第二部分 专题八 第3讲
第19页
名师伴你行 · 高考二轮复习 · 数学(文)
[解析]
基 础 记 忆
(1)证明:由a>0,有f(x)=
1 x+ a
+|x-
名师伴你行 · 高考二轮复习 · 数学(文)
1 当0<a≤3时,f(3)=6-a+ , a
基 础 记 忆
1+ 5 由f(3)<5,得 2 <a≤3.
1+ 综上,a的取值范围是 2
5 5+ 21 , 2 .

重 访 好 题
热 点 盘 点
[二轮备考讲义]
第二部分 专题八 第3讲
第21页
[二轮备考讲义]
第二部分 专题八 第3讲
第10页
名师伴你行 · 高考二轮复习 · 数学(文)
4.证明不等式的基本方法
基 础 记 忆
(1)比较法:作差或作商比较. (2)综合法:根据已知条件、不等式的性质、基本不等式, 通过逻辑推理导出结论. (3)分析法:执果索因的证明方法.
重 访 好 题
热 点 盘 点
1 1 a|≥x+a-x-a= +a≥2. a
所以f(x)≥2.
1 (2)f(3)=3+a+|3-a|.
热 点 盘 点
重 访 好 题
1 当a>3时,f(3)=a+a, 5+ 21 由f(3)<5,得3<a< . 2
[二轮备考讲义] 第二部分 专题八 第3讲
第20页
重 访 好 题
[二轮备考讲义]

2015年高考全国2卷文科数学试题(含解析)

2015年高考全国2卷文科数学试题(含解析)

绝密★启用前 2015年高考全国2卷文科数学试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3- B .()1,0- C .()0,2 D .()2,32.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .43.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关4.已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()1A.81B.71C.61D.57.已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.334D.38.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B.2C.4D.149.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.11C.21D.810.已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( ) A.36π B. 64π C.144π D. 256π11.如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠= ,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )12.设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.已知函数()32f x ax x=-的图像过点(-1,4),则a=.14.若x,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y 的最大值为.15.已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为. 16.已知曲线lny xx =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a=.三、解答题(题型注释)17.(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC. (Ⅰ)求sin sin BC∠∠ ;(Ⅱ)若60BAC ∠=,求B ∠.18.(本小题满分12分)某公司为了了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频率分布表 满意度评分分组[50,60)[50,60)[50,60)[50,60)[50,60)频数 2814106(Ⅰ)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意满意非常满意估计那个地区的用户的满意度等级为不满意的概率大,说明理由.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中AB=16,BC=10,18AA =,点E,F 分别在1111,A B DC上,11 4.A E D F ==过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法与理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>,点(在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不经过原点O,且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 中点为M,证明:直线OM 的斜率与直线l 的斜率乘积为定值.21.(本小题满分12分)已知()()ln 1f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形ABC 内一点,圆O 与△ABC 的底边BC 交于M,N 两点,与底边上的高交于点G,且与AB,AC 分别相切于E,F 两点.(Ⅰ)证明EFBC ;(Ⅱ)若AG 等于圆O 半径,且AE MN ==求四边形EBCF 的面积. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ==(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB最大值.24.(本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明:(Ⅰ)若ab cd > ,>>a b c d-<-的充要条件.参考答案1.A 【解析】因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A.考点:本题主要考查不等式基础知识及集合的交集运算. 2.D【解析】由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:本题主要考查复数的乘除运算,及复数相等的概念. 3. D【解析】由柱形图可知2006年以来,我国二氧化碳排放量基本成递减趋势,所以二氧化碳排放量与年份负相关,故选D.考点:本题主要考查统计知识及对学生柱形图的理解 4.C 【解析】试题分析:由题意可得2112=+=a ,123,⋅=--=-a b 所以()222431+⋅=+⋅=-=a ba a ab .故选C.考点:本题主要考查向量数量积的坐标运算. 5.A 【解析】试题解析:由13533331a a a a a ++==⇒=,所有()15535552a a S a +===.故选A. 考点:本题主要考查等差数列的性质及前n 项和公式的应用. 6.D 【解析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为15,故选D. 考点:本题主要考查三视图及几何体体积的计算. 7.B 【解析】试题分析:△ABC 外接圆圆心在直线BC 垂直平分线上即直线1x =上,设圆心D ()1,b ,由DA=DB得3b b =⇒=,所以圆心到原点的距离3d ==. 故选B. 考点:本题主要考查圆的方程的求法,及点到直线距离公式. 8.B 【解析】试题分析:由题意可知输出的a 是18,14的最大公约数2,故选B. 考点:本题主要考查程序框图及更相减损术. 9.C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C. 考点:本题主要考查等比数列性质及基本运算.【解析】试题分析:设球的半径为R,则△AOB 面积为212R ,三棱锥O ABC - 体积最大时,C 到平面AOB 距离最大且为R,此时313666V R R ==⇒= ,所以球O 的表面积24π144πS R ==.故选C.考点:本题主要考查球与几何体的切接问题及空间想象能力. 11.B 【解析】试题分析:由题意可得ππππ12424f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由此可排除C,D ;当π04x <<时点P 在边BC 上,tan PB x =,PA =,所以()tan f x x =可知π0,4x ⎛⎫∈ ⎪⎝⎭时图像不是线段,可排除A,故选B. 考点:本题主要考查函数的识图问题及分析问题解决问题的能力. 12.A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以()()()()()2212121212113f x f x f x f x x x x x x >-⇔>-⇔>-⇔>-⇔<< .故选A.考点:本题主要考查函数的奇偶性、单调性及不等式的解法. 13.-2 【解析】试题分析:由()32f x ax x=-可得()1242f a a -=-+=⇒=- .考点:本题主要考查利用函数解析式求值.【解析】试题分析:不等式组50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩表示的可行域是以()()()1,1,2,3,3,2为顶点的三角形区域,2z x y =+的最大值必在顶点处取得,经验算,3,2x y ==时max 8z =. 考点:本题主要考查线性规划知识及计算能力.15.2214x y -= 【解析】试题分析:根据双曲线渐近线方程为12y x =±,可设双曲线的方程为224x y m -= ,把(代入224x y m -=得1m =.所以双曲线的方程为2214x y -=.考点:本题主要考查双曲线几何性质及计算能力. 16.8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:本题主要考查导数的几何意义及直线与抛物线相切问题. 17.(Ⅰ)12;(Ⅱ)30. 【解析】试题分析:(Ⅰ)利用正弦定理转化得:sin 1.sin 2B DC C BD ∠==∠(Ⅱ)由诱导公式可得()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(Ⅰ)知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 试题解析:(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2s i n s i n B C ∠=∠,所以tan 30.B B ∠=∠= 考点:本题主要考查正弦定理及诱导公式的应用,意在考查考生的三角变换能力及运算能力. 18.(Ⅰ)见试题解析(Ⅱ)A 地区的用户的满意度等级为不满意的概率大. 【解析】试题分析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(II )由直方图得()A P C 的估计值为0.6,()B PC 的估计值为0.25.,所以A 地区的用户的满意度等级为不满意的概率大. 试题解析:(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(Ⅱ)A 地区的用户的满意度等级为不满意的概率大.记A C 表示事件“A 地区的用户的满意度等级为不满意”;B C 表示事件“B 地区的用户的满意度等级为不满意”.由直方图得()A P C 的估计值为()0.010.020.03100.6++⨯=,()B PC 的估计值为()0.0050.02100.25.+⨯=,所以A 地区的用户的满意度等级为不满意的概率大. 考点:本题主要考查频率分布直方图及概率估计. 19.(Ⅰ)见试题解析(Ⅱ)97 或79【解析】试题分析:(Ⅰ)分别在,AB CD 上取H,G,使10AH DG ==;长方体被平面α 分成两个高为10的直棱柱,可求得其体积比值为97 或79试题解析:解:(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作,EM AB ⊥ 垂足为M,则14AM A E ==,112EB =,18EM AA ==,因为EHGF 是正方形,所以10EH EF BC ===,于是6,10, 6.MH AH HB ====因为长方体被平面α 分成两个高为10的直棱柱,所以其体积比值为97 (79也正确). 考点:本题主要考查几何体中的截面问题及几何体的体积的计算.20.(Ⅰ)2222184x y +=(Ⅱ)见试题解析【解析】试题分析:(Ⅰ)由2242,1,2a a b=+=求得228,4a b ==,由此可得C 的方程.(II )把直线方程与椭圆方程联立得()222214280.k x kbx b +++-=,所以12222,,22121M M M x x kb bx y kx b k k +-===+=++于是1,2M OM M y k x k==-12OM k k ⇒⋅=-.试题解析:解:(Ⅰ)由题意有2242,1,2a a b =+= 解得228,4a b ==,所以椭圆C 的方程为2222184x y +=. (Ⅱ)设直线():0,0l y kx b k b =+≠≠,()()()1122,,,,,M M A x y B x y M x y ,把y kx b=+代入2222184x y +=得()222214280.k x kbx b +++-=故12222,,22121M M M x x kb bx y kx b k k +-===+=++ 于是直线OM 的斜率1,2M OM M y k x k ==- 即12OM k k ⋅=-,所以直线OM 的斜率与直线l 的斜率乘积为定值. 考点:本题主要考查椭圆方程、直线与椭圆及计算能力、逻辑推理能力.21.(Ⅰ)0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a⎛⎫+∞⎪⎝⎭单调递减;(Ⅱ)()0,1.【解析】试题分析:(Ⅰ)由()1f x a x'=-,可分0a ≤,0a >两种情况来讨论;(II )由(I )知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 最大值为1ln 1.f a a a ⎛⎫=-+- ⎪⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.试题解析:(Ⅰ)()f x 的定义域为()0,+∞,()1f x a x'=-,若0a ≤,则()0f x '>,()f x 在()0,+∞是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.(Ⅱ)由(Ⅰ)知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 在1x a=取得最大值,最大值为111l n1l n 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122l n 10f a a aa ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.考点:本题主要考查导数在研究函数性质方面的应用及分类讨论思想.22. 【解析】试题分析:(Ⅰ)要证明EFBC ,可证明,AD BC ⊥AD EF ⊥;(Ⅱ)先求出有关线段的长度,然后把四边形EBCF 的面积转化为△ABC 和△AEF 面积之差来求. 试题解析:(Ⅰ)由于△ABC 是等腰三角形,,AD BC ⊥ 所以AD 是CAB ∠的平分线,又因为圆O 与AB,AC 分别相切于E,F,所以AE AF =,故AD EF ⊥,所以EFBC .(Ⅱ)由(Ⅰ)知AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 为圆O 的弦,所以O 在AD 上,连接OE,OF,则OE AE ⊥,由AG 等于圆O 的半径得AO=2OE,所以30OAE ∠=,因此,△ABC 和△AEF 都是等边三角形,,因为AE =,所以4,2,AO OE == 因为2,OM OE ==12DM MN == 所以OD=1,于是AD=5,AB = 所以四边形DBCF的面积为(221122⨯-⨯=⎝⎭考点:本题主要考查几何证明、四边形面积的计算及逻辑推理能力.23.(Ⅰ)()30,0,22⎛⎫⎪ ⎪⎝⎭;(Ⅱ)4.试题分析:(Ⅰ)把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解方程组可得交点坐标;(Ⅱ)先确定曲线1C 极坐标方程为(),0,θαρρ=∈≠R 进一步求出点A 的极坐标为()2si n ,αα,点B 的极坐标为(),αα,,由此可得2sin 4sin 43AB πααα⎛⎫=-=-≤ ⎪⎝⎭.试题解析:解:(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为220x y +-=,联立两方程解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩,所以2C 与3C 交点的直角坐标()30,0,22⎛⎫⎪ ⎪⎝⎭.(Ⅱ)曲线1C 极坐标方程为(),0,θαρρ=∈≠R 其中0απ≤< ,因此点A 的极坐标为()2sin ,αα,点B的极坐标为(),αα,所以2sin cos 4sin 3AB πααα⎛⎫=-=- ⎪⎝⎭,当56πα=时AB 取得最大值,最大值为4.考点:本题主要考查参数方程、直角坐标及极坐标方程的互化.圆的方程及三角函数的最值. 24. 【解析】试题分析:(Ⅰ)由a b c d +=+及ab cd >,可证明22>,开方即得>(Ⅱ)本小题可借助第一问的结论来证明,但要分必要性与充分性来证明.解:(Ⅰ)因为22a b c d =++=++由题设a b c d +=+,ab cd >,得22>,>(Ⅱ)(ⅰ)若a b c d-<-,则()()22a b c d -<-,即()()2244,a b ab c d cd +-<+- 因为a b c d +=+,所以ab cd >,>(ⅱ)若>,则22>,即a b c d ++>++因为a b c d +=+,所以ab cd >,于是()()()()222244,a b a b a b c d c dc d-=+-<+-=-因此a b c d-<-,综上a b c d-<-的充要条件.考点:本题主要考查不等式证明及充分条件与必要条件.。

2015年人教A版高三数学二轮复习专题课件 1-1-5

2015年人教A版高三数学二轮复习专题课件 1-1-5

真题感悟·考点
热点聚焦·题型
归专纳题总训结练·思对第维接五页,编辑于星期五:十点 三十六分。
故 g(x)在0,1e上单调递减,在1e,+∞上单调递增, 从而 g(x)在(0,+∞)上的最小值为 g1e=-1e. 设函数 h(x)=xe-x-2e,则 h′(x)=e-x(1-x). 所以当 x∈(0,1)时,h′(x)>0; 当 x∈(1,+∞)时,h′(x)<0. 故 h(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 从而 h(x)在(0,+∞)上的最大值为 h(1)=-1e. 综上,当 x>0 时,g(x)>h(x),即 f(x)>1.
真题感悟·考点
热点聚焦·题型
归专纳题总训结练·思对第维接二十四页,编辑于星期五:十点 三十六分。
解 (1)f′(x)=ln x+1,所以切线斜率 k=f′(1)=1. 又 f(1)=0,∴曲线在点(1,0)处的切线方程为 y=x-1. 由yy==-x-x21+ax-2, ⇒x2+(1-a)x+1=0. 由 Δ=(1-a)2-4=a2-2a-3=(a+1)(a-3)可知: 当 Δ>0 时,即 a<-1 或 a>3 时,有两个公共点; 当 Δ=0 时,即 a=-1 或 a=3 时,有一个公共点; 当 Δ<0 时,即-1<a<3 时,没有公共点.
真题感悟·考点
热点聚焦·题型
归专纳题总训结练·思对第维接二十一页,编辑于星期五:十点 三十六分。
由①②可知,当 x∈(0,+∞)时,g(x)≥g(1)=-e12. 由数形结合知,当 c<-e12时, 方程|ln x|=f(x)根的个数为 0; 当 c=-e12时,方程|ln x|=f(x)根的个数为 1; 当 c>-e12时,方程|ln x|=f(x)根的个数为 2.

2015届高考文科数学二轮复习提能专训11 数列的通项与求和

2015届高考文科数学二轮复习提能专训11 数列的通项与求和

提能专训(十一) 数列的通项与求和 一、选择题 1.(2014·福建漳州七校联考)若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=( ) A.15 B.12 C.-12 D.-15 答案:A 解析:∵an+an+1=(-1)n(3n-2)+(-1)n+1(3n+1)=(-1)n(3n-2-3n-1)=-3(-1)n, ∴a1+a2+…+a10=3+3+3+3+3=15. 2.(2014·陕西西工大附中一模)已知等差数列{an}中,Sn为其前n项和,若a1=-3,S5=S10,则当Sn取到最小值时n的值为( ) A.5 B.7 C.8 D.7或8 答案:D 解析:由S5=S10,知a6+a7+a8+a9+a10=0,∴a8=0.又∵a1=-3.∴S7=S8为最小值. ∴Sn取到最小值时n的值为7或8. 3.(2014·阜新二模)已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )

A.n2n B.n2n-1 C.n2n-1 D.n+12n 答案:B 解析:an=anan-1·an-1an-2·an-2a1·…·a2a1·a1=n2n-1·n-12n-2·…·22·1·1=n2n-1.选B. 4.(2014·江西十校联考二)等比数列{an}的前n项和为Sn,若S2n

=4(a1+a3+…+a2n-1),a1a2a3=27,则a6=( ) A.27 B.81 C.243 D.729 答案:C 解析:本题考查等比数列的前n项和、通项公式等基础知识,意在考查考生的应用能力、转化化归能力和运算求解能力. 解法一:设等比数列{an}的公比为q,依题意有

 a11-q2n1-q=4a1[1-q2n]1-q2,

a1·a1q·a1q2=27,解得 a1=1,q=3,

所以a6=a1q5=35=243,故选C. 解法二:设等比数列{an}的公比为q,依题意有偶数项的和等于

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档