计量经济学讲义11.

合集下载

计量经济学讲义

计量经济学讲义

计量经济学讲义浙江工商大学金融学院姚耀军目录第一讲 OLS的代数 (2)第二讲 OLS估计量 (17)第三讲假设检验 (33)第四讲异方差 (63)第五讲自相关 (82)第六讲多重共线 (107)第七讲虚拟变量 (122)第八讲时间序列初步:平稳性与单位根 (134)第九讲协整与误差修正模型 (158)第十讲 ARCH模型及其扩展 (165)第一讲 OLS 的代数一、 问题假定y 与x 具有近似的线性关系:01y x ββε=++,其中ε是随机误差项。

我们对01,ββ这两个参数的值一无所知。

我们的任务是利用样本去猜测01,ββ的取值。

现在,我们手中就有一个样本容量为N 的样本,其观测值是:1122(),(),...,()N N y x y x y x 。

问题是,如何利用该样本来猜测01,ββ的取值?一个简单的办法是,对这些观察值描图,获得一个横轴x ,纵轴y 的散点图。

既然y 与x 具有近似的线性关系,那么我们就在散点图中拟合一条直线:1ˆˆˆx yββ=+。

该直线是对y 与x 的真实关系的近似,而01ˆˆ,ββ分别是对01,ββ的猜测(估计)。

问题是,如何确定0ˆβ与1ˆβ,以使我们的猜测看起来是合理的呢?二、 O LS 的两种思考方法法一:12(,...,)N y y y '与12ˆˆˆ(,...,)N y y y '是N 维空间的两点,0ˆβ与1ˆβ的选择应该是这两点的距离最短。

这可以归结为求解一个数学问题:01012201ˆˆˆˆ,,11ˆˆˆ()()N Ni i i i i i Min y y Min y x ββββββ==-=--∑∑在这里ˆi i y y -定义了残差ˆi ε。

法二:给定i x ,看起来i y 与ˆi y 越近越好(最近距离是0)。

然而,当你选择拟合直线使得i y 与ˆi y是相当近的时候,j y 与ˆj y的距离也许变远了,因此,存在一个权衡。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【

第11章OLS 用于时间序列数据的其他问题11.1复习笔记一、平稳和弱相关时间序列1.平稳和非平稳时间序列平稳时间序列过程,就是概率分布在如下意义上跨时期稳定的时间序列过程:如果从这个序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。

(1)平稳随机过程对于随机过程{ 1 2 }t x t =:,,…,如果对于每一个时间指标集121m t t t ≤<<⋅⋅⋅<和任意整数h≥1,()12m t t t x x x ⋅⋅⋅,,,的联合分布都与()12 m t h t h t h x x x ++⋅⋅⋅+,,,的联合分布相同,那么这个随机过程就是平稳的。

这种平稳经常称为严平稳,它是从概率分布的角度去定义的。

其含义之一是(取m=1和t 1=1):对所有t=2,3,…,x 1与x t 都有相同的分布。

序列{ 1 2 }t x t =:,,…是同分布的。

不平稳的随机过程称为非平稳过程。

因为平稳性是潜在随机过程而非其某单个实现的性质,所以很难判断所搜集到的数据是否由一个平稳过程生成。

但是,要指出某些序列不是平稳的却很容易。

(2)协方差平稳过程(宽平稳,弱平稳)对于一个具有有限二阶矩()2t E x ⎡⎤∞⎣⎦<的随机过程{ 1 2 }t x t =:,,…,若:(i)E(x t )为常数;(ii)Var(x t )为常数;(iii)对任何t,h≥1,Cov(x t ,x t+h )仅取决于h,而不取决于t,那它就是协方差平稳的。

协方差平稳只考虑随机过程的前两阶矩:这个过程的均值和方差不随着时间而变化,而且,x t 和x t+h 的协方差只取决于这两项之间的距离h,与起始时期t 的位置无关。

由此立即可知x t 与x t+h 之间的相关性也只取决于h。

如果一个平稳过程具有有限二阶矩,那么它一定是协方差平稳的,但反过来未必正确。

由于严平稳的条件比较苛刻,在实际中从概率分布的角度去验证是无法实现的,所以在实际运用中所指的平稳都是指宽平稳,即协方差平稳。

计量经济学复习讲义

计量经济学复习讲义

计量经济学复习讲义吉林⼤学经济学院《计量经济学》复习讲义配套教材:计量经济学(李⼦奈、潘⽂卿编著,第三版)第⼆章、⼀元线性回归模型⼀、相关与回归相关系数计算:回归分析:变量间关系不⼀致⼆、参数估计1.总体/样本回归模型:2.最⼩⼆乘法(OLS)β0、β1的估计值β0、β1的⽅差与概率分布总体⽅差估计值3.统计检验拟合优度检验可决系数:R2=ESS/TSS显著性检验:H0:βi=0,H1:βi≠0置信区间估计(1-α)缩⼩置信区间:增⼤样本容量n、提⾼模型拟合优度。

3.线性性与⽆偏性的证明⽅法线性性:⽆偏性:4.预测对条件均值:对个别值:第三章、多元线性回归模型⼀、.总体回归函数:⼀般形式:Y=β0+β1X1+β2X2+…+βk X k+µ⼀般形式:Y=Xβ+µ⼆、基本假定(略)三、参数估计-普通最⼩⼆乘估计参数估计:µ的⽅差估计:四、统计性质五、样本容量问题n≥k+1,不能少于解释变量(含常数⾹)数⽬n≥30或⾄少≥3(k+1)时满⾜模型估计基本要求六、统计检验1.拟合优度检验调整的可决系数⾚池信息准则和施⽡茨准则变⼩的话允许增加解释变量2.显著性检验⽅程显著性H0:β1~k全为零H1:不全为零太⼤就接受备择假设,说明模型的线性关系显著成⽴。

总体线性关系⼗分显著时不必苛求⾼可决系数。

变量显著性参数的置信区间缩⼩置信区间:增⼤样本容量n、提⾼模型拟合优度、提⾼样本观测值的分散度。

七、预测1.均值的预测2.单个值的预测⼋、⾮线性化为线性变换⾮线性普通最⼩⼆乘法九、受约束回归1.条件约束约束后e'*e*≥e'e,即残差平⽅和可能变⼤。

除⾮约束条件为真,模型解释能⼒可能降低。

若F太⼤则约束⽆效2.增减解释变量少变量模型可看做对多变量模型加以约束⽽形成。

q=kU-kR,kU=k+q3.参数稳健性-邹⽒参数稳定性检验(n2>k):结构不变式相当于对变动式施加k+1个约束:H0:β=α,进⾏F 检验判断是否合适。

计量经济学讲义11

计量经济学讲义11

Tests of Predictive Accuracy
In sample1 (n1 ), y1 X 1 1 In sample2 (n 2 ), y2 X 2 2 H 0 : P arameter constancy H 0 : 0 ( ) y1 X 1 0 b1 e1 y X I d e 2 2 2 1 b1 b1 ( X 1 ' X 1 ) X 1 ' y1 OLS: 1 y X b d y X ( X ' X ) X ' y 2 2 1 2 1 1 1 1 2 ˆ 2 predictionerror e2 0 d y2 X 2b1 y2 y RSSu e1 ' e1 e2 ' e2 e1 ' e1 (e ' e e1 ' e1 ) / n2 F , where (n1 n2 k 1 n2 ) (n1 k 1) e1 ' e1 /(n1 k 1) Large valuesof F - stat reject the null hypothesis of parameter constancy.
2 2 ˆ2 y ˆ3 y ˆ4 , y ˆ Xb, y ˆ2 y ˆ12 y ˆ2 ˆn Z y y ˆ is excluded because its inclusion makes X Z haveless thanfull rank. Note that y




Tests of Parameter Constancy
Tests of Predictive Accuracy

第十一章 非平稳时间序列分析 《计量经济学》PPT课件

第十一章  非平稳时间序列分析  《计量经济学》PPT课件
GENR DY = Y – Y(-1) 生成差分序列Δy,用OLS法估计模型
Δyt = δyt-1 + ut 的参数,如图11.2.4所示:
图11.2.4
由图11.2.4可知,ˆ =0.105475, Tδ=9.987092。此结
果也可以由EViews软件中的单位根检验功能(选择 不包含常数项和滞后项数为零)直接给出, 如图11.2.5所示:
第十一章 非平稳时间序列分析 【本章要点】(1)非平稳时间序列基本概念 (2)时间序列的平稳性检验(3)协整的概念以 及误差修正模型(ECM) 本章将只对非平稳时间序列的基本概念、时间序 列的平稳性的单位根检验以及协整理论等进行简 要讲述。
时间序列的非平稳性,是指时间序列的统计规律随 着时间的位移而发生变化,即生成变量时间序列数 据的随机过程的统计特征随时间变化而变化。只要 宽平稳的三个条件不全满足,则该时间序列便是非 平稳的。当时间序列是非平稳的时候,如果仍然应 用OLS进行回归,将导致虚假的结果或者称为伪回 归。这是因为其均值函数、方差函数不再是常数, 自协方差函数也不仅仅是时间间隔的函数。
就是带趋势项的随机游走过程。
(二)单位根检验的基本思想
在(11.2.6)式中,若α = 0,则式(11.2.6)可以
写成:
yt = ρyt-1 + ut
(11.2.7)
式(11.2.7)称为一阶自回归过程,记作AR(1),可以
证明当| ρ | <1时是平稳的,否则是非平稳的。
AR(1)过程也可以写成算符形式:
(三)DF检验 (Dickey-Fuller Test) 1.DF检验 DF检验的具体作法是用传统方法计算出的参数的T— 统计量,不与t 分布临界值比较而是改成DF分布临界 值表。

计量经济学讲义

计量经济学讲义

计量经济学讲义第一部分:引言计量经济学是研究经济现象的量化方法,它结合了统计学和经济学原理,旨在提供对经济现象进行定量分析的工具和技术。

本讲义将介绍计量经济学的基本概念和方法,帮助读者理解和应用计量经济学的基本原理。

第二部分:经济数据和计量经济学模型1. 经济数据的类型- 我们将介绍经济数据的两种主要类型:时间序列数据和截面数据。

时间序列数据是在一段时间内收集的数据,而截面数据是在同一时间点上收集的数据。

2. 计量经济学模型- 我们将讨论计量经济学模型的基本原理和应用,例如最小二乘法和线性回归模型。

这些模型可以帮助我们分析经济数据之间的关系,并进行预测和政策评估。

第三部分:经济数据的描述性统计分析1. 描述性统计分析的概念- 我们将介绍描述性统计分析的基本概念和方法,包括中心趋势测量、离散度测量和分布形态测量。

这些方法可以帮助我们理解和总结经济数据的基本特征。

2. 经济数据的描述性统计分析实例- 我们将通过实例演示如何使用描述性统计分析方法来分析和解释经济数据。

例如,我们可以使用均值和方差来描述一个国家的经济增长和收入分配。

第四部分:计量经济学的统计推断1. 统计推断的概念- 我们将讨论统计推断的基本概念和方法,包括假设检验和置信区间。

这些方法可以帮助我们从样本数据中推断总体参数,并评估推断的精度和可靠性。

2. 统计推断的实例- 我们将通过实例演示如何使用统计推断方法来研究和解释经济现象。

例如,我们可以使用假设检验来判断一个政策措施对经济增长的影响。

第五部分:计量经济学的回归分析1. 单变量线性回归模型- 我们将介绍单变量线性回归模型的基本原理和应用。

这个模型可以帮助我们分析一个因变量和一个自变量之间的关系,并进行预测和政策评估。

2. 多变量线性回归模型- 我们将讨论多变量线性回归模型的基本原理和应用。

这个模型可以帮助我们分析多个自变量对一个因变量的影响,并进行政策评估和变量选择。

第六部分:计量经济学的时间序列分析1. 时间序列模型的基本概念- 我们将介绍时间序列模型的基本概念和方法,包括自回归模型和移动平均模型。

计量经济学课件很详细共99页

计量经济学课件很详细共99页
计量经济学课件很详细
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
43、重复别人所说的话,只需要教育; 而Байду номын сангаас挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国

计量经济学讲义

计量经济学讲义

第一章绪论第一节什么是计量经济学计量经济学含义.计量经济学是一个迅速发展的经济学分支,其目标是给出经济关系的经济内容。

.计量经济学可以定义为实际经济现象的定量分析,这种分析根据的是适当推断方法联系在一起的理论和观测的即时发展。

计量经济学运用数理统计知识分析经济数据,对构建于数理经济学基础上的数学模型提供经验支持,并得出数量结果。

.计量经济学是将经济理论、数学方法和统计推断等工具应用于经济现象分析的社会科学。

第二节计量经济学方法计量经济学方法的内容计量经济学研究包括两个基本要素:经济理论和事实。

将经济理论与现实情况结合起来,用统计技术估计经济关系。

最可用的形式就是模型。

计量经济分析步骤.陈述理论。

例如有关价格变动与需求量之间的关系的经济理论:在其他条件不变的情况下,一商品的价格上升(下降),则对该商品的需求量减少(增加)。

建立计量经济模型⑴需求函数的数学模型例如线性函数模型。

如果需求量与价格之间的关系式线性的,则数学上需求函数可以表示为Q P αβ=+()αβ和称为该函数的参数。

等号左边的变量称为因变量或被解释变量,等号右边的变量称为自变量或解释变量。

⑵计量经济模型式()假定需求量与价格之间的关系是一种确定关系,而现实的经济变量之间,极少有这种关系,更常见的是一种不确定性关系(见散点图),线性模型应该为Q P αβε=++()ε是随机扰动项。

收集数据估计计量经济模型中的参数之前,必须得到适当的数据。

在经验分析中常用的数据有两种:时间序列数据(纵向数据)和横截面数据(横向数据)。

有时会同时出现前面的纵向数据和横向数据,称之为混合数据。

面板数据是混合数据的一种特殊类型。

估计参数如利用收集的数据估计出式()中的参数,得回归模型76.05 3.88Q P =-()假设检验对回归模型以及模型中的系数进行检验。

预测和政策分析例如在回归模型()中,想预测价格时的需求量值时,则有76.05 3.8876.05 3.88 4.558.59Q P =-=-⨯=第二章线性回归分析第一节线性回归概述2.1.1回归模型简介如果(随机)变量y 与12,,,p x x x L存在相关关系12(,,,)p y f x x x ε=+L (2.1.1)其中y 是可观测的随机变量,12,,,p x x x L 为一般变量,ε是不可观测的随机变量;y 称为因变量(被解释变量),12,,,p x x x L 称为自变量(解释变量),ε称为随机误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Specification
(1) y X ; (2a) i ~ iid (0, 2 ), i 1,2,...,n; (2b) i ~ iidN (0, ), i 1,2,...,n;
2
(3) E ( X ij i ) 0, j 1,2,...,k ; i 1,2,...,n; (4) X is nonstochas tic with full column rank (k 1).
• In an estimated equation, parameters are assumed to be constant over all observations in the sample: “Structural stability”. • 1.Tests of Structural Change • The estimated equation has relevance for data outside the sample data used in the estimation, which is embodied in the notion of parameter constancy: “Predictive accuracy” or “Out-of-sample prediction”. • 2.Tests of Predictive Accuracy
Tests of Structural Change
T estsof StructuralChange T heunrestrict ed modelis specifiedas y1 X 1 0 1 1 y 0 X , n n1 n2 2 2 2 2 H 0 : No structuralbreak H 0 : 1 2 T he test of H 0 is based on thetest of linear restrictio ns in termsof a restrictedand an unrestrict ed regression: y1 X 1 y1 X 1 0 b1 e1 y X b e with RSS r e ' e ; y 0 X b e Байду номын сангаас with RSS u e1 ' e1 e2 ' e2 2 2 2 2 2 2 [e ' e (e1 ' e1 e2 ' e2 )] /(k 1) F ~ F k 1, n 2(k 1) (e1 ' e1 e2 ' e2 ) /[n 2(k 1)] Large valuesof F - stat reject the null hypothesis of no structuralbreak.
2 2 ˆ2 y ˆ3 y ˆ4 , y ˆ Xb, y ˆ2 y ˆ12 y ˆ2 ˆn Z y y ˆ is excluded because its inclusion makes X Z haveless thanfull rank. Note that y




Tests of Parameter Constancy
Specification Error
• Problems with X
(1) Exclusionof relevant v ariables; (1) Inclusionof irrelevantvariables ; (1) Incorrectfunct ional form Nonlinearform,ie. quadratic form; (3) E ( X ij i ) 0, j 1,2,...,k ; i 1,2,...,n Simultaneo us equat ions,Endogeneit y; (4) T heX matrixhas less thanfull column rank Multicolli nearityor Collineari ty; Here notethatperfectcollineari ty means thatest imatesof b are not unique, but tosome degree collineari ty onlyincreasesstandarderrors.
Specification Error
• Problems with Functional Form
(1) Linearitydoes not hold Nonlineari ty between y and X. Loglineari ty or otherforms
Specification Error
• Problems with b
(1) Constancyof does not hold Structuralbreak
Specification Error
• Problems with u
(2a) E ( i2 ) i2 2 Heterosced asticity; (2a) E ( i j ) 0 Autocorrel ationor Serial correlatio n; (2b) Normality does not hold OLSis BLUE, but theinferenceis only asymptotic ally valid ;
Econometric Theory
Lecturer: Dr.Jingtao Yi Room 715 Business School, RUC
Lecture 11: k-Variable Linear Regression VIIII
• 1. Specification Error;
• 2. Tests of Parameter Constancy; • 3. Tests of Structural Change.
Test of Specification Error
• The Ramsey RESET Test
Ramsey argues that vari ous specificat ion errors (omittedvariables , incorrectfunctional form,correlatio n between X and ) give rise to a nonzero vector. H 0 : ~ N (0, 2 I ) H1 : ~ N (u , 2 I ), u 0 T he test of H 0 is based on an augmentedregression: y X Z T he test for specificat ion erroris 0. Z containspowers of thepredictedvaluesof thedependentvariable.
相关文档
最新文档