河南省实验中学2017_2018学年高二数学下学期期中试题理2-含答案 师生通用
河南省实验中学2022-2023学年下期期中高二数学试卷含答案

河南省实验中学2022-2023学年下期期中试卷高二 数学(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数()sin cos f x x x x =+,则()(f x '= ) A .cos x xB .cos x x -C .2sin cos x x x +D .sin x x2.已知等比数列{}n a 的各项均为正数,且3781a a =,则313539log log log (a a a ++= ) A .3B .4C .5D .63.将3名男生和2名女生排成一队照相,要求女生相邻,共有( )排法. A .120B .24C .48D .964.已知n S 表示等差数列{}n a 的前n 项和,且51013S S =,那么520(=SS ) A .19B .110C .18D .135.若443243210(1)x a x a x a x a x a -=++++,则41032(-+-=+a a a a a ) A .1-B .1C .15D .166.数列{}n a 中,11a =,12(2nn n a a n a +=+为正整数),则(n a = ) A .12n + B .21n + C .21nn + D .12n n+ 7.函数3211()132=++-f x x ax x 存在两个极值点,则实数a 的取值范围是( )A .()()+∞-∞-,,22B .(][)+∞-∞-,,22C .()22,-D .[]22,-8.将4个A 和2个B 随机排成一行,则2个B 不相邻的概率为( ) A .13B .25C .23D .459.函数2()2f x lnx ax =+-在区间(1,4)内存在单调递减区间,则实数a 的取值范围是( ) A .1(,)32-∞-B .1(,)2-∞-C .1(,]32-∞-D .1(,]2-∞-10.数列{}n a 满足14a =,132n n a a +=-,*n N ∀∈,(1)28n n a a λ-<-,则实数λ的取值范围是( ) A .(,9)-∞-B .(,8)-∞-C .(12,9)--D .(12,7)--11.设函数()f x 的定义域为R ,其导函数为()f x ',且满足()()1f x f x >'+,(0)2023f =,则不等式()2022x x e f x e -->+(其中e 为自然对数的底数)的解集是( ) A .(2022,)+∞ B .(,2023)-∞C .(0,2022)D .(,0)-∞12.设1111,tan ,101011a lnb c ===,则( ) A .a b c << B .c b a << C .a c b << D .c a b <<二、填空题(本题共4小题,每小题5分,共20分) 13.在26(21)+x 的展开式中,2x 的系数为 .(用数字作答) 14.设数列{}n a ,{}n b 均为等差数列,它们的前n 项和分别为n S ,n T ,若2339-=+n n S n T n ,则22=a b . 15.在学雷锋志愿活动中,安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有 种.16.已知正实数x ,y 满足xe ylnx ylny =+,则-xe lny x的最小值为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17题10分,其 余试题每题12分)17.已知{a n }满足:()*+-∈≥+=N n ,n a a a n n n 2211,11=a ,3235a a =.(1)求a n ; (2)令()*n n n N n a a b ∈⋅=+11,求数列{b n }的前n 项和T n .18.已知函数f (x )=x 2-2x +a ln x ()R a ∈.(1)若函数在x =1处的切线与直线x -y -2=0垂直,求实数a 的值; (2)当a >0时,讨论函数的单调性.19.设数列{}n a 的前n 项和为n S ,且()*∈=+N n a S n n 312. (1)求n a ; (2)求数列{}n na 的前n 项和n T .20.如图,四棱锥P -ABCD 的底面是矩形,PD ⊥底面ABCD ,PD CD AD 22==,M 为BC 的中点.(1)证明:AM ⊥平面PBD ; (2)求二面角P -AM -D 的正弦值.21.已知椭圆()2222:10+=>>x y C a b a b ,离心率12=e ,过点31,2⎛⎫ ⎪⎝⎭. (1)求C 的方程;(2)直线l 过点()10,M ,交椭圆与A 、B 两点,记()30,N ,证明0=+NB NA k k .22.已知函数()1=--x f x e ax .(1)若0>x 时,()0>x f 恒成立,求a 的取值范围; (2)记()221x x g =,讨论函数()x f 与()x g 的交点个数.河南省实验中学2022--2023高二数学期中考试答案13. 12 14.615.150 16.1 9.解:函数2()2f x lnx ax =+-的定义域是(0,)+∞,2121()20+'=+=<ax f x ax x x在()41,有解,即大212⎪⎭⎫⎝⎛-<x a ,即1612-<a ,解得132a <-,所以a 的取值范围是1(,)32-∞-.10.解:数列{}n a 满足132n n a a +=-,则113(1)n n a a +-=-,且113a -=,∴数列{1}n a -是以3为首项,3为公比的等比数列,则11333n n n a --=⨯=,即31n n a =+,又*n N ∀∈,(1)28n n a a λ-<-,转化为3327n n λ<-对*n N ∈恒成立,即2713nλ<-, 又数列27{1}3n -是递增数列,则当1n =时,27(1)83min n-=-,即8λ<-, 故实数λ的取值范围是(,8)-∞-. 11.解:设()1()xf xg x e -=,()()1f x f x >'+,即()()10f x f x '-+<,()()1()0xf x f xg x e '-+∴'=<,()g x ∴在R 上单调递减,又(0)2023f =,∴不等式0()1(0)1()20222022(0)1x x x f x f e f x e f e e ---->+⇔>=-=, 即()(0)g x g >,0x ∴<,∴原不等式的解集为(,0)-∞. 12.解:由11(1)tan 1010a b ln -=+-,令()(1)tan f x ln x x =+-,0x >, 所以211()1cos f x x x '=-+,因为21cos [1,1],(,1]cos x x∈--∈-∞-, 因为0x >,所以11x +>,1011x <<+,故()0f x '<,所以()f x 在(0,)+∞上单调递减, 又(0)(10)tan00f ln =+-=,所以1()(0)010f f <=,所以11(1)tan 01010ln +-<,即111tan 1010ln <,所以a b <. 由11(1)1111a c ln -=---,令()(1)gx l n x x =---,01x <<,所以1()1011xg x x x'=-=>--,所以()g x 在(0,1)上单调递增,所以1()(0)10011g g ln >=--=,所以11(1)01111ln --->,即1111011ln>,所以a c >,综上,c a b <<. 16.解:x e ylnx ylny =+,x e ylnxy ∴=即x xe xylnxy =,设()x f x xe =,则()()f x f lnxy =,且()(1)x f x e x '=+,所以()f x 在(1,)-+∞上单调递增, 正实数x ,y ,01x e ylnxy e ∴=>=,即10l n x y y>>,所以()()f x f lnxy =,等价于x lnxy =, 即=x e y x ,则ln 1⎛⎫-=-=-≥⎪⎝⎭x xx e e e lny ln y y x x x,于是最小值为1. 17.解:(1){a n }满足:()*+-∈+=N n a a a n n n 112,则{a n }为等差数列,11=a ,3235a a =, 即()()d d 21315+=+,解得2=d ,12-=n a n ;......................5分 (2) ()()⎪⎭⎫⎝⎛+--=+-=⋅=+121121*********n n n n a a b n n n ,则12121121121121513131121+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛+--++-+-=n nn n n T n .......................10分 18.解:函数定义域为(0,+∞),求导得f ′(x )=2x -2+ax .(1)由已知得f ′(1)=2×1-2+a =-1,得a =-1...............4分(2)f ′(x )=2x -2+a x =2x 2-2x +a x(x >0),对于方程2x 2-2x +a =0,记Δ=4-8a . ①当Δ≤0,即a ≥12时,f ′(x )≥0,函数f (x )在(0,+∞)上单调递增;②当Δ>0,即0<a <12时,令f ′(x )=0,解得x 1=1-1-2a 2,x 2=1+1-2a 2.又a >0,故x 2>x 1>0. 当 ⎪⎪⎭⎫⎝⎛--∈22110a ,x ⎪⎪⎭⎫⎝⎛+∞-+,a 2211时,f ′(x )>0,函数f (x )单调递增, 当⎪⎪⎭⎫⎝⎛-+--∈22112211a ,a x 时,f ′(x )<0,函数f (x )单调递减. 综上所述,当a ≥12时,函数f (x )在(0,+∞)上单调递增;当0<a <12时,函数f (x )在⎪⎪⎭⎫ ⎝⎛--22110a ,上单调递增,⎪⎪⎭⎫ ⎝⎛-+--22112211a ,a 上单调递减, 在⎪⎪⎭⎫⎝⎛+∞-+,a 2211上单调递增...............12分 19.解:(1)当n =1时,2a 1+1=3a 1,∴a 1=1,又 ,∴可知a n ≠0, 当n ≥2时,由 ,得2S n ﹣1+1=3a n ﹣1, 两式相减得2a n =3a n ﹣3a n ﹣1,∴a n =3a n ﹣1,∴{a n}是以1为首项,以3为公比的等比数列,∴ ...............6分(2)由(1)可得 ,∴ , ∴ , ∴,∴...............12分 20.解: (1)证明:M 为BC 的中点,∴AD ABAB AM==又四棱锥P ABCD -的底面是矩形, ∴2DAB MBA π∠=∠=,Rt DAB Rt ABM ∴∆∆∽,DBA AMB ∴∠=∠, 又2MBD DBA π∠+∠=,∴2MBD ANB AM DB π∠+∠=⇒⊥,PD ⊥底面ABCD ,AM ⊂底面ABCD , PD AM ∴⊥,又DBPB B =,且DB ,PB ⊂平面PBD ,AM ∴⊥平面PBD .........5分(2)PD ⊥平面ABCD ,又AD ,DC ⊂平面ABCD ,PD AD ∴⊥,PD DC ⊥,又四棱锥P ABCD -的底面是矩形,AD DC ∴⊥,∴建立如下图所示的空间直角坐标系,设1=CD :(0,0,0),(0,0,1),D P A M ,∴(2,0,1)=-PA ,2(1,0)2=-MA ,(0,0,1)=DP , PD ⊥平面ABCD ,∴平面AMD 的法向量为(0,0,1)=DP ,设平面APM 的法向量为(,,)n x y z =, 则20202⎧⋅=-=⎪⎨⋅=-=⎪⎩n PA x z n MA x y ,取(2,1,2)n =, ∴二面角P -AM -D 的余弦值为:||4|cos ,|||||27DP n DP n DP n ⋅<>===,于是二面角P -AM -D 的正弦值为721...............12分21.解:(1)由题得22222191412⎧+=⎪⎪⎪==⎨⎪⎪=+⎪⎩a b c e a a b c ,解得32==b ,a ,于是22:143+=x y C ;..............4分(2)直线l 的斜率不存在时,易得0=+NB NA k k ;直线l 的斜率存在时,可设为1+=kx y :l ,联立方程即221431⎧+=⎪⎨⎪=+⎩x y y kx , 消y 可得()0884322=-++kx x k ,易得0>∆,设()()2211y ,x B ,y ,x A , 韦达定理可得221221438438k x x ,k k x x +-=+-=+; 212121221122112211222233x x x x k x x k x kx x kx x y x y k k NB NA +-=⎪⎪⎭⎫ ⎝⎛+-=-+-=-+-=+, 韦达代入得08822222221212121=---=+-=+-=+kk x x x x k x x x x k k k NB NA ,得证...............12分 22..解:(1)()1=--x f x e ax ,()∴'=-x f x e a .0x >,1x e ∴>,当1a …时,()0x g x e a '=-…,()g x 单调递增,()(0)0g x g ∴>=,不等式成立, 当1a >时,()0g lna '=.(0,)x lna ∴∈,()0g x '<,()g x 单调递减,()(0)0g x g ∴<=,这与题设矛盾.综上,a 的取值范围为(-∞,1]...............5分(2) 记()()()2112=-=---x F x f x g x e x ax ,则()00=F ,()'=--x F x e x a . 记()()'==--x h x F x e x a ,则()1'=-x h x e ,()'h x 单调递增,且由唯一零点0,于是()h x 在()0,∞-单调递减,()∞+,0单调递增,()h x 在0处取得最小值()01=-h a .当()010=-≥h a ,即1≤a 时,()0≥h x ,故()F x 在R 上单调递增,()F x 在R 上有唯一零点0;当()010=-<h a ,即1>a 时,()()lim lim →+∞→+∞=--→+∞x x x h x e x a ,()()lim lim →-∞→-∞=--→-∞x x x h x e x a ,于是()h x 有两个零点,且210x x <<,于是()F x 在()1x ,∞-单调递增,()21x x ,单调递减,()∞+,2x 单调递增, 又()00=F ,则()10>F x ,()20<F x ,()21lim lim 12→+∞→+∞⎛⎫=---→+∞ ⎪⎝⎭x x x F x e x ax ,()21lim lim 12→-∞→-∞⎛⎫=---→-∞ ⎪⎝⎭x x x F x e x ax ,则由零点存在定理可得()F x 在()1x ,∞-存在唯一零点,()F x 在()∞+,2x 存在唯一零点,故此时有三个零点. 综上可得1≤a 时,有一个交点;1>a 时,有三个交点...............12分。
学校17—18学年下学期高二第二阶段考试物理试题(附答案)

2017—2018学年度下学期第二次阶段考试高二物理试卷答题时间:90分钟命题校对:高二物理备课组一、选择题:(每小题4分,1-7题为单选题,8-12为多选题)1、酷热的夏天,在平坦的柏油公路上,你会看到在一定距离之外,地面显得格外明亮,仿佛是一片水面,似乎还能看到远处车、人的倒影,但当你靠近“水面”时,它也随你的靠近而后退,对此现象正确的解释是()A.同海市蜃楼具有相同的原理,是由于光的全反射造成的B.“水面”不存在,是由于酷热难耐,人产生的幻觉C.太阳辐射到地面,使地表空气温度升高,折射率大,发生全反射D.太阳辐射到地面,使地表空气温度升高,折射率小,发生全反射2、以下电场中能产生电磁波的是()A.E=10 N/C B.E=5sin(4t+1) N/C C.E=(3t+2) N/C D.E=(4t2-2t) N/C3、若一列火车以接近光速的速度在高速行驶,车上的人用望远镜来观察地面上的一只排球,如果观察的很清晰,则观察结果是()A.像一只乒乓球(球体变小) B.像一只篮球(球体变大)C.像一只橄榄球(竖直放置) D.像一只橄榄球(水平放置)4、1995年科学家“制成”了反氢原子,它是由一个反质子和一个围绕它运动的正电子组成的,反质子和质子有相同的质量,带有等量异种电荷。
反氢原子和氢原子有相同的能级分布,氢原子能级如图所示,则下列说法中正确的是()A.反氢原子光谱与氢原子光谱不相同B.基态反氢原子的电离能为13.6 eVC.基态反氢原子能吸收11 eV的光子而发生跃迁D.大量处于n=4能级的反氢原子向低能级跃迁时,从n=2能级跃迁到基态辐射的光子的波长最短5、如图所示,光滑斜面AE被分成四个相等的部分,一物体由A点从静止释放,下列结论不正确的是()A.物体到达各点的速率之比v B:v C:v D:v E=12B.物体到达各点经历的时间t E=2tCt DABCDEC .物体从A 到E 的平均速度v=v BD .物体通过每一部分时,其速度增量v B -v A =v C -v B =v D -v C =vE -v D6、2008年北京奥运会上何雯娜夺得中国首枚奥运会女子蹦床金牌。
2017-2018学年第二学期高二数学文科期中考试试卷含答案

密 封 装 订 线2017—2018学年度第二学期八县(市)一中期中联考 高中二年数学科(文科)试卷命 题: 复 核:完卷时间:120分钟 满 分:150分第Ⅰ卷一、选择题(每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1、若212(1),1z i z i =+=-,则12z z 等于( ) A .1i + B .1i -+ C .1i - D .1i --2、在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是( ) A. 100个吸烟者中至少有99人患有肺癌 B. 1个人吸烟,那么这人有99%的概率患有肺癌 C. 在100个吸烟者中一定有患肺癌的人D. 在100个吸烟者中可能一个患肺癌的人也没有3、下图是解决数学问题的思维过程的流程图:在此流程图中,①、②两条流程线与“推理与证明” 中的思维方法匹配正确的是( ) A .①—综合法,②—反证法 B .①—分析法,②—反证法 C .①—综合法,②—分析法 D .①—分析法,②—综合法4、用三段论推理命题:“任何实数的平方大于0,因为a 是实数,所以20a >”,你认为这个推理( ) A .大前题错误 B .小前题错误 C .推理形式错误 D .是正确的5、已知变量x 与y 负相关,且由观测数据算得样本平均数2, 1.5x y ==,则由该观测数据算得的线性回归方程可能是( )A .y=3x ﹣4.5B .y=﹣0.4x+3.3C .y=0.6x+1.1D . y=﹣2x+5.5 6、极坐标方程2cos 4sin ρθθ=所表示的曲线是( )A .一条直线B .一个圆C .一条抛物线D .一条双曲线7、甲、乙、丙三位同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么满分的同学是( )A .甲B .乙C .丙D .不确定8、如右图所示,程序框图输出的所有实数对(x ,y )所对应的点都在函数( ) A .y =x +1的图象上 B .y =2x 的图象上 C .y =2x 的图象上 D .y =2x -1的图象上 9、定义运算a b ad bc c d=-,若1201812z i i =(i 为虚数单位)且复数z满足方程14z z -=,那么复数z 在复平面内对应的点P 组成的图形为( )A. 以(-1,-2)为圆心,以4为半径的圆B. 以(-1,-2)为圆心,以2为半径的圆C. 以(1,2)为圆心,以4为半径的圆D. 以(1,2)为圆心,以2为半径的圆10、若下列关于x 的方程24430x ax a +-+=,2220x ax a +-=,22(1)0x a x a +-+= (a 为常数)中至少有一个方程有实根,则实数a 的取值范围是( ) A .3(,1)2-- B .3(,0)2- C .3(,][1,)2-∞-⋃-+∞ D .3(,][0,)2-∞-⋃+∞ 11、以下命题正确的个数是( )①在回归直线方程82^+=x y 中,当解释变量x 每增加1个单位时,预报变量^y 平均增加2个单位; ②已知复数21,z z 是复数,若221121z z z z z z ⋅=⋅=,则;③用反证法证明命题:“三角形三个内角至少有一个不大于060”时,应假设“三个内角都大于060”;④在平面直角坐标系中,直线x y l 6:=经过变换⎩⎨⎧==yy x x ''23:ϕ后得到的直线'l 的方程:x y =; A .1B .2C .3D .412、《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术。
2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.365.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.166.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.368.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.1811.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.15.(5分)如图所示,在圆内接四边形ABCD中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD的面积为.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.2017-2018学年河南省洛阳市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}【分析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】解:集合A={x|x2﹣x﹣6<0}={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},B={x|x2+2x﹣8>0}={x|(x+4)(x﹣2)>0}={x|x<﹣4或x>2},则A∪B={x|x<﹣4或x>﹣2}.故选:D.【点评】本题考查了解不等式与集合的运算问题,是基础题.2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【分析】由,利用正弦定理可得tanA=tanB=tanC,再利用三角函数的单调性即可得出.【解答】解:由正弦定理可得:=,又,∴tanA=tanB=tanC,又A,B,C∈(0,π),∴A=B=C=,则△ABC是等边三角形.故选:D.【点评】本题考查了正弦定理、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c【分析】对于A,根据不等式的性质即可判断,举反例即可判断B,C,D【解答】解:A、∵a﹣b>0,c2>0,∴>0B、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项不一定成立,C、c=0时,ac=bc,本选项不一定成立;D、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;故选A【点评】此题考查了不等式的性质,利用了反例的方法,是一道基本题型.4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.36【分析】先求出公比q,即可求出答案.【解答】解:设公比为q,由a1=6,a1+a2+a3=78,可得6+6q+6q2=78,解得q=3或q=﹣4(舍去),∴a2=6q=18,故选:B【点评】本题考查了等比数列的通项公式,属于基础题.5.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.16【分析】直接利用函数的关系式及均值不等式求出函数的最小值.【解答】解:正实数a,b满足2a+3b=1,则=(2a+3b)()=+9≥13+12=25,故的最小值为25.故选:D.【点评】本题考查的知识要点:函数的关系式的恒等变换,均值不等式的应用.6.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.【分析】作出示意图,根据等腰三角形锐角三角函数的定义即可求出继续航行的路程.【解答】解:设海岛位置为A,海伦开始位置为B,航行8n mile后到达C处,航行到D处时,海岛在正北方向,由题意可知BC=8,∠ABC=15°,∠BCA=150°,∠ADC=90°,∠ACD=30°,∴∠BAC=15°,∴AC=BC=8,∴CD=AC•cos∠ACD=4.故选C.【点评】本题考查了解三角形的应用,属于基础题.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.36【分析】运用等差数列的通项公式,以及等比数列的中项的性质,化简整理解方程即可得到k的值.【解答】解:等差数列{a n}的公差d≠0,且a2=﹣d,可得a1=a2﹣d=﹣2d,则a n=a1+(n﹣1)d=(n﹣3)d,若a k是a6与a k+6的等比中项,即有a k2=a6a k+6,即为(k﹣3)2d2=3d•(k+3)d,由d不为0,可得k2﹣9k=0,解得k=9(0舍去).故选:C.【点评】本题考查等差数列的通项公式和等比数列中项的性质,考查化简整理的运算能力,属于基础题.8.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【分析】要使函数有意义,则2﹣1≥0,解得即可.【解答】解:要使函数有意义,则2﹣1≥0,即x2+ax+1≥0,∴△=a2﹣4≤0,解得﹣2≤a≤2,故选:D【点评】本题考查了函数的定义域和不等式的解法,属于基础题.9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.【分析】已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB的值,确定出B的度数,利用三角形面积公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.【解答】解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.【点评】此题考查了正弦、余弦定理,基本不等式以及三角形的面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.18【分析】由于S15==15a8>0,a8+a9<0,可得a8>0,a9<0,进而得出.【解答】解:∵S15==15a8>0,a8+a9<0,∴a8>0,a9<0,∴S16==8(a8+a9)<0,则使<0成立的最小自然数n的值为16.故选:B.【点评】本题考查了等差数列的通项公式与求和公式及其性质、不等式的性质,考查了推理能力与计算能力,属于中档题.11.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.【分析】由约束条件作出可行域,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.结合直线与圆的位置关系求得答案.【解答】解:∵不等式组(r为常数)表示的平面区域的面积为π,∴圆x2+y2=r2的面积为4π,则r=2.由约束条件作出可行域如图,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由=2,解得k=0或k=﹣.∴z=的最小值为1﹣=﹣.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016=a n2+a n=a n(a n+1)≥6,推导出=,从而【分析】a n+1,进而T m=m﹣(﹣)<m﹣,由此能求出正整数m的最大值.【解答】解:由a n﹣a n=a n2,得a n+1=a n2+a n=a n(a n+1)≥6,+1∴=,∴=﹣,∴++…+=(﹣)+(﹣)+…+(﹣)=﹣∈(0,),∵,∴T m==m﹣(﹣)=m﹣+<m﹣+=m﹣∵T m<2018,∴m﹣<2018,∴m<2018+∴正整数m的最大值为2018,故选:B【点评】本题考查了数列递推关系、放缩法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是(﹣1,1).【分析】先根据不等式组画出可行域,再验证哪些当横坐标、纵坐标为整数的点是否在可行域内.【解答】解:根据不等式组画出可行域如图:由图象知,可行域内的点的横坐标为整数时x=﹣1,纵坐标可能为﹣1或﹣2即可行域中的整点可能有(﹣1,1)、(﹣1,2),经验证点(﹣1,1)满足不等式组,(﹣1,2)不满足不等式组,∴可行域中的整点为(﹣1,1),故答案为:(﹣1,1),【点评】本题考查一元二次不等式表示的区域,要会画可行域,同时要注意边界直线是否能够取到,还要会判断点是否在可行域内(点的坐标满足不等式组时,点在可行域内).属简单题.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.【分析】利用三角恒等变换求出A,再利用正弦定理得出C.【解答】解:∵sinA+cosA=2,即2sin(A+)=2,∵0<A<π,∴A+=,即A=,由正弦定理得:,即,∴sinC=,∴C=或C=(舍).故答案为:.【点评】本题考查了正弦定理,属于基础题.15.(5分)如图所示,在圆内接四边形ABCD 中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD 的面积为 6.【分析】利用余弦定理可求BD 2=5﹣4cosA=25+24cosA ,解得cosA=,结合范围0<A <π,利用同角三角函数基本关系式可求sinA ,利用三角形面积公式即可计算得解.【解答】解:∵四边形ABCD 圆内接四边形, ∴∠A +∠C=π,∵连接BD ,由余弦定理可得BD 2=AB 2+AD 2﹣2AB•AD•cosA=36+25﹣2×6×5cosA=61﹣60cosA , 且BD 2=CB 2+CD 2﹣2CB•CD•cos (π﹣A ) =9+16+2×3×4cosA=25+24cosA , ∴61﹣60cosA=25+24cosA , ∴cosA= 又0<A <π, ∴sinA=.∴S 四边形ABCD =S △ABD +S △CBD =AB•AD•sinA +CD•CB•sin (π﹣A )=×6×5×+×3×4×=6,故答案为:6【点评】本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.S n=S n﹣1﹣S n,可得数列{}是首项为1,公差为的等【分析】由已知得S n﹣1差数列,从而能求【解答】解:∵2a n+S n2=a n S n,∴S n2=a n(S n﹣2),a n=S n﹣S n﹣1(n≥2),∴S n2=(S n﹣S n﹣1)(S n﹣2),S n=S n﹣1﹣S n,…①即S n﹣1•S n≠0,由题意S n﹣1•S n,得﹣=,将①式两边同除以S n﹣1∵a1=l,∴=1∴数列{}是首项为1,公差为的等差数列,∴=1+(n﹣1)=(n+1)∴S n=,∴S10=,故答案为:【点评】本题考查数列的递推公式和前n项和,属于中档题三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.【分析】(1)直接利用关系式的恒等变换,转化为余弦定理的形式,进一步求出B的值.(2)利用正弦定理已知条件求出结果.【解答】解:(1)△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.则:,由于:0<B<π,解得:B=.(2)由于,所以:a=2c,由及a2+c2﹣b2=﹣ac.得到:a2+c2+ac=7.解得:a=2,c=1.【点评】本题考查的知识要点:余弦定理的应用,正弦定理的应用.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.【分析】(1)当方程有两个负根时,利用判别式△≥0和根与系数的关系求出a的取值范围;(2)根据方程有一个正根和一个负根时,对应二次函数满足f(0)<0,由此求出实数a的取值范围.【解答】解:方程x2+2(a+2)x+a2﹣1=0的判别式为△=4(a+2)2﹣4(a2﹣1)=16a+20,当△=16a+20≥0时,设方程x2+2(a+2)x+a2﹣1=0两个实数根为x1、x2,则x1+x2=﹣2(a+2),x1x2=a2﹣1;(1)∵方程x2+2(a+2)x+a2﹣1=0有两个负根,∴,解得,即a>1或﹣≤a<﹣1,∴实数a的取值范围是[﹣,﹣1)∪(1,+∞);(2)∵方程x2+2(a+2)x+a2﹣1=0有一个正根和一个负根,∴对应二次函数满足f(0)=a2﹣1<0,解得﹣1<a<1,∴实数a的取值范围是(﹣1,1).【点评】本题考查了一元二次方程根的分布情况以及判别式和根与系数的关系应用问题,是中档题.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.【分析】(1)设数列{a n}的公比为q,(q>0),由题意列方程组求得首项和公比,则数列{a n}的通项公式可求;(2)由{b n}的前n项和求得通项,代入,然后利用错位相减法求其前n项和T n.【解答】解:(1)设数列{a n}的公比为q,(q>0),由a1+a2=6,a1a2=a3,得,解得a1=q=2.∴;(2)当n=1时,b1=S1=1,当n≥2时,b n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,∴,∴,,∴=,∴.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,是中档题.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?(1)设AM=x米,AN=y米,则x+y=400,△AMN的面积S=xysin120°=xy,【分析】利用基本不等式,可得结论;(2)由题意得,即x+y=600,要使竹篱笆用料最省,只需MN最短,利用余弦定理求出MN,即可得出结论.【解答】解:设AM=x米,AN=y米,则(1)x+y=400,A=120°,△AMN的面积S=xysin120°=xy≤,当且仅当x=y=200时取等号;(2)由题意得150x+1.5y•100=90000,即x+y=600,要使竹篱笆用料最省,只需MN最短,所以MN2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2+y2﹣xy=360000﹣xy所以x=y=300时,MN有最小值300.∴AM=AN=300米时,所用费用最少为3×5000=15000元.【点评】本题考查利用数学知识解决实际问题,考查三角形面积的计算,余弦定理的运用,属于中档题.21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.【分析】(1)利用余弦定理列出关系式,代入已知等式变形求出sinA的值,即可确定出角A的大小;(2),由(1)可得A,由正弦定理可得,从而利用三角函数恒等变换的应用可得2b﹣c=2sin(B﹣),结合B的范围B,可得2b﹣c 取值范围.【解答】解:(1)由(b2+c2﹣a2)tanA=bc.及余弦定理b2+c2﹣a2=2bccosA,得sinA=∵△ABC为锐角三角形,∴A=.(2)由正弦定理可得,∴2b﹣c=4sinB﹣2sinC=4sinB﹣2sin()=3sinB﹣cosB=2sin(B﹣).∵△ABC为锐角三角形,∴,∴∴,2∴2b﹣c的取值范围为(0,3)【点评】本题主要考查了三角函数恒等变换的应用,考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,属于中档题.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.【分析】(1)由已知可得2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,进而可得数列{b n}为等差数列,并得到{b n}的通项公式;(2)存在n=1,使得不等式成立,且9≤λ≤10,利用对勾函数和反比例函数的图象性质,可得答案.【解答】解:(1)∵数列{a n}的前n项和为S n,且S n=4﹣a n﹣.∴当n=1时,a1=S1=4﹣a1﹣,即a1=1,=4﹣a n﹣1﹣.当n≥2时,S n﹣1则a n=S n﹣S n﹣1=a n﹣1﹣a n﹣,即2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,即2n﹣1•a n﹣2n﹣2•a n﹣1=1,∵b n=2n﹣1•a n,即{b n}是以1为首项,以1为公差的等差数列;即b n=n;(2)由(1)知:⇔,根据对勾函数的性质,可得:在n=3时取最小值,由反比例函数的性质,可得:在n=1时取最大值10;当n=1时,9≤λ≤10;当n=2时,6≤λ≤5,不存在满足条件的λ值;当n=3时,≤λ≤,不存在满足条件的λ值;当n≥4时,不存在满足条件的λ值;综上可得:存在n=1,使不等式成立,9≤λ≤10.【点评】本题考查的知识点是数列与不等式及函数的综合应用,难度中档.。
河南省实验中学2018年高二下期数学期中考试参考答案高二理科数学答案

河南省实验中学2018年高二下期数学期中考试参考答案一、 选择题:二、填空题: 13.12 14.142π- 15.1 16.1417、【解析】(1)11221i z i i -=+=-+.1z =(2)设()22z a i a R =+∈,则212224255z a i a a i i z ++-+==++,∴40,4a a -+=⇒=. ∴242z i =+.18、【解析】(1)由()22111,S S -=得11;2S =由()()222121,S S S S -=-得22;3S = 由()()233231,S S S S -=-得33.4S = (2)猜想:.1n n S n =+ 证明: ○1当1n =时,显然成立;○2假设当*(1)且n k k k N =≥∈时,1k kS k =+成立。
则当1n k =+时,由()21111,k k k S a S +++-=得1111.2221k k k S S k k ++===-+-+从而1n k =+时,猜想也成立。
综合○1○2得结论成立。
19. 【解析】(Ⅰ) 10,'()x f x a x>=+ ,'(1)1f a ∴=+,切点是(1,1)a +, 所以切线方程为(1)(1)(1)y a a x -+=+-,即(1)y a x =+. (Ⅱ)(法一)10,'()axx f x x+>=, 1.当0a ≥时, (0,)x ∈+∞,'()0f x >,()f x 单调递增, 显然当1x >时,()0f x >,()0f x ≤不恒成立.2.当0<a 时, )(),1,0(x f a x -∈单调递增,)(),,1(x f ax +∞-∈单调递减, 1,0)1ln()1()()(max -≤∴≤-=-==a aa f x f x f 极大值所以不等式0)(≤x f 恒成立时,a 的取值范围(]1--,∞ (法二)0>x ,所以不等式0)(≤x f 恒成立, 等价于, 令xx x h 1ln )(--=,则,当)1,0(∈x 时,)(x h 单调递减,当),(∞+∈1x 时,)(x h 单调递增.1,1)1()()(m i n -≤∴-===a h x h x h 极小值所以不等式0)(≤x f 恒成立时,a 的取值范围(]1--,∞.20. 【解析】解:因,故问题转化为在区间有两个实数根,即在区间有两个实数根,也即在区间只有一个实数根,所以,令,由于,所以,即,又时,,故所求实数的取值范围是21、【解析】(Ⅰ)()f x 的定义域为R ,且()xf x e a '=+,令()0f x '=,得()ln x a =-若()ln 0a -≤,即10a -≤<时()0f x '≥,()f x 在[0,2]x ∈上为增函数,若ln()2a -≥,即2a e ≤-时,()0f x '≤,()f x 在[0,2]x ∈上为减函数,()()min 01f x f ==∴2min ()(2)2f x f e a ==+;若0ln()2a <-<,即21e a -<<-时,由于[0,ln())x a ∈-时,()0f x '<;(ln(),2]x a ∈-时,()0f x '>,所以min ()(ln())ln()f x f a a a a =-=--综上可知22min21, 10()2, ln(),1a f x e a a e a a a e a -≤<⎧⎪=+≤-⎨⎪---<<-⎩(ⅠⅠ)()g x 的定义域为)(0,,+∞且()11'=.ax g x a x x--= 0a < 时,()()'0,g x g x ∴<∴在)(0,+∞上单调递减。
2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。
实验中学高二数学下学期第二次月考试题理含解析

A. 144B。120C. 72D. 24
【答案】D
【解析】
试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有 种
考点:排列、组合及简单计数问题
11。若随机变量 ,则 最大时, 的值为( )
A. 1或2B. 2或3C. 3或4D。 5
【答案】D
【解析】
【分析】
由 ,两边取对数得,化简得 ,构造函数 ,然后作图可求得答案。
【详解】由 ,两边取对数得, ,然后化简得 ,
设 ,然后可以画出 的图像,如图,
明显地,当 ,且 时,只有阴影部分内的取值能成立,此时, 和 的取值在阴影部分,即 ,从图像观察可得, 的最大值是 ,没有最小值,但是 ,综上, 的范围为
【点睛】本题考查了根据函数过点和公切线求参数,求公切线,意在考查学生的计算能力和转化能力。
20。“石头、剪刀、布"是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势 次记为 次游戏,“石头”胜“剪刀”,“剪刀"胜“布”,“布”胜“石头";双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的。
4。从集合{0,1,2,3,4,5,6}中任取两个互不相等的数 , 组成复数 ,其中虚数有( )
A。 30个B. 42个C. 36个D。 35个
【答案】C
【解析】
【详解】解:∵a,b互不相等且为虚数,
∴所有b只能从{1,2,3,4,5,6}中选一个有6种,
a从剩余的6个选一个有6种,
∴根据分步计数原理知虚数有6×6=36(个).
2017-2018学年高二年级数学期末试卷(理数)含答案

2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2
a
1f
x
a
0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知
,
则
解得 的横坐标分别是 则 有 又
,又 于是
, ,
,
,即 l 与直线 平行, 一定相交,分别联立方
设
是平面
的法向量,则
,即
。
对任意
,要使
与
的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省实验中学2017——2018学年下期期中试卷高二 理科数学(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数21iz i=+(其中i 为虚数单位),则z 的共轭复数为( ) A .1i + B .1i - C .2i + D .2i - 2.用反证法证明命题“,a b 至少有一个为0”时,应假设( ) A.,a b 没有一个为0 B.,a b 只有一个为0C.,a b 至多有一个为0D.,a b 两个都为0 3.下面几种推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形内角和是180︒,归纳出所有三角形的 内角和都是180︒;(3)某次考试张军成绩是100分,由此推出全班同学成绩都是100分;(4)三角形内角和是180︒,四边形内角和是360︒,五边形内角和是540︒,由此得凸多边形内角和是()2180n -⋅︒A .(1)(2)B .(1)(3)C .(1)(2)(4)D .(2)(4) 4.已知随机变量(1,4)XN ,则(31)P X -<<=( )(参考数据()()0.6826,220.9544P X P X μσμσμσμσ-<≤+=-<≤+=)A.0.6826B.0.3413C.0.0026D.0.4772 5.甲、乙、丙、丁四位同学计划去4个景点旅游,每人只去一个景点,设事件A=“四位同学去的景点不相同”,事件B=“甲同学独自去一个景点”,则P(A|B)=( ) A.29 B.13 C.49 D.596.某运动员投篮命中率为0.6,重复投篮5次,若他命中一次得10分,没命中不得分;命中次数为X 错误!未找到引用源。
,得分为错误!未找到引用源。
,则错误!未找到引用源。
(X),错误!未找到引用源。
(Y)分别为( )A. 0.6,60B. 3,12C. 3,120D. 3,1.27.从图中的12个点中任取3个点作为一组,其中可构成三角形的组数是( )A .208B .204C .200D .196 8.在348(1)(1)(1)x x x ++++++的展开式中,含2x 的系数是( )A .83B .84C .85D .88 9.在过长方体任意两个顶点的直线中任取两条,其中异面直线有( )对. A .152 B .164 C .174 D .18210.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球 B.乙盒中红球与丙盒中黑球一样多 C.乙盒中红球不多于丙盒中红球 D.乙盒中黑球与丙盒中红球一样多 11.已知等式()()()()432432123412341111x a x a x a x a x b x b x b x b ++++=++++++++,定义映射()()12341234:,,,,,,f a a a a b b b b →,则()4,3,2,1f =( ) A.()1,2,3,4 B.()0,3,4,0 C.()0,3,4,1-- D.()1,0,2,2-- 12.现需建造一个容积为V 的圆柱形铁桶,它的盖子用铝合金材料,已知单位面积的铝合金的价格是铁的3倍.要使该容器的造价最低,则铁桶的底面半径r 与高h 的比值为( ) A.12B.13 C.23 D.14二、填空题:请把答案填在题中横线上(每小题5分,共20分) 13.定积分121x xdx --=⎰.14.()623a b c +-的展开式中23ab c 的系数为 .15.把13个相同的小球放入编号为1,2,3,4的四个不同盒子中,若使放入盒子中的小球个数不小于盒子的编号数,则不同的放法种数为 .16.若存在正实数m ,使得关于x 的方程()()224ln ln 0x a x m ex x m x ++-+-=⎡⎤⎣⎦有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是___________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)设,,a b c 为任意三角形边长,I a b c =++,S ab bc ca =++, 证明:234S I S ≤<18.(本小题满分12分)已知复数22276(56)1a a z a a i a -+=+---,a R ∈,是否存在实数a ,使z 分别为: (1)实数;(2)虚数;(3)纯虚数,若存在,求出a 的值,若不存在,请说明理由.19.(本小题满分12分) 在二项式1(2)2nx +的展开式中(1)若第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项;(2)若前三项的二项式系数和等于79,求展开式中系数最大的项.20.(本小题满分12分)一种电脑屏幕保护画面,只有符号""O 和""K 随机地反复出现,每秒钟变化一次,每次变化只出现""O 和""K 之一,其中出现""O 的概率为p ,出现""K 的概率为q ,若第k 次出现""O ,则记1k a =错误!未找到引用源。
;若第k 次出现""K ,则记1k a =-,记12n n S a a a =++错误!未找到引用源。
. (1)若12p q ==,求3S 错误!未找到引用源。
的分布列及数学期望; (2)若13p =,23q =错误!未找到引用源。
,求82S =且0(1,2,3,4)i S i ≥=错误!未找到引用源。
的概率.21.(本小题满分12分)已知函数()ln f x ax x =+,其中a 为常数.(1)当1a =-时,求()f x 的最大值,并判断方程ln 1|()|2x f x x =+是否有实数解; (2)若()f x 在区间(0,]e 上的最大值为-3,求a 的值.22.(本小题满分12分) 设函数()ln 1f x x px =-+(1)求函数()ln 1f x x px =-+的极值点; (2)当1a ≥时,对(2,)x ∀∈+∞,是否有不等式(2)ln a x e x ->恒成立,并说明理由.参考答案一.选择题:1-6 BACDAC 7-12 CACBCD 二.填空题:13. 1 14. -6480 15. 20 16. ),21(+∞e三.解答题: 17.证明:由于ca bc ab c b a c b a I 222)(22222+++++=++=S c b a 2222+++=欲证S I S 432<≤,只需S S c b a S 423222<+++≤,只需证Sc b a S 2222<++≤,即ca bc ab c b a ca bc ab 222222++<++≤++;只需证ca bc ab c b a ++≥++222且ca bc ab c b a 222222++<++;先证cabc ab c b a ++≥++222,只需证ca bc ab c b a 222222222++≥++,即0)()()(222≥-+-+-a c c b b a ,显然,此式成立,再证ca bc ab c b a 222222++<++,只需证0222<--+--+--ca bc c bc ab b ac ab a ;只需证0)()()(<--+--+--a b c c c a b b c b a a ;只需证c b a +<且a c b +<且b a c +<,由于c b a ,,为三角形边长,显然,结论成立;故S I S 432<≤18.(1)当z 为实数时,则有⎪⎩⎪⎨⎧-+-=--有意义167065222a a a a a ,∴⎩⎨⎧±≠=-=161a a a 或,∴a=6,即a=6时,z 为实数.(2)当z 为虚数时, 则有a 2-5a-6≠0且16722-+-a a a 有意义,∴a≠-1且a≠6且a≠±1.∴a≠±1且a≠6.∴当a∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z 为虚数.(3)当z 为纯虚数时,有⎪⎩⎪⎨⎧=-+-≠--0167065222a a a a a ,∴⎩⎨⎧=≠-≠661a a a 且.∴不存在实数a 使z 为纯虚数.19.(1)由题意得564n 2C n n C C =+解得n=7或n=14当n=7时,展开式中二项式系数最大的项是T4和T5,且453470,235T x T x ==当n=14时,展开式中二项式系数最大的项是T8且783432x T =(2)由1279210==++n C C C n n n 得设第r+1项系数最大,则有552547222211212)1(21212211212)1(212122≤≤⇒⎪⎩⎪⎨⎧≥≥----+-+-r C C C C r r r r r r r r 10101012811168962T ,10,x x C r Z r ===∴∈故20.解:(1)错误!未找到引用源。
错误!未找到引用源。
, 错误!未找到引用源。
()()31331()311308888E S =-⨯+-⨯+⨯+⨯=(2)前4次有2次出现错误!未找到引用源。
的概率是错误!未找到引用源。
前4次有3次出现错误!未找到引用源。
的概率是 错误!未找到引用源。
前4次有4次出现错误!未找到引用源。
的概率是 错误!未找到引用源。
错误!未找到引用源。
21.解:(1)()ln f x ax x =+.当1a =-时,()ln f x x x -+,11'()1xf x x x-=-+=. 当01x <<时,'()0f x >;当1x >时,'()0f x <.∴()f x 在(0,1)上是增函数,在(1,)+∞上是减函数,max ()(1)1f x f ==-.∴|()|1f x ≥. 令ln 1()2x g x x =+,21ln '()xg x x-=,令'()0g x =,得x e =. 当0x e <<时,'()0g x >,()g x 在(0,)e 上单调递增;当x e >时,'()0g x <,()g x 在(,)e +∞上单调递减,∴max 11()()12g x g e e ==+<,∴()1g x <,∴|()|()f x g x >,即ln 1|()|2x f x x >+, ∴方程ln 1|()|2x f x x =+没有实数解.(2)∵1'()f x a x =+,(0,]x e ∈,∴11[,)x e∈+∞.①若1a e≥-,则'()0f x ≥,()f x 在(0,]e 上为增函数,∴max ()()10f x f e ae ==+≥不合题意.②若1a e <-,则由'()0f x >⇒10a x +>,即10x a <<-,由()0f x <⇒10a x+<,即1x e a-<≤. 从而()f x 在1(0,)a-上为增函数,在1(,)e a-上为减函数,∴max 11()()1ln()f x f a a =-=-+-.令11ln()3a -+-=-,则1ln()2a -=-,∴21e a --=,即2a e =-.∵21e e-<-,∴2a e =-为所求.22.解:(1)∵ ()ln 1f x x px =-+,∴()f x 的定义域为(0,)+∞/11()px f x p x x-=-=,当0p ≤时,/()0f x >,()f x 在(0,)+∞ 上无极值点. 当0p >时,令''1()0,(0,),()f x x f x p=∴=∈+∞、()f x 随x 的变化情况如下表:从上表可以看出:当p >0时,f(x)有唯一极大值点1x p=. (2)证明:由(Ⅰ)可知,当p>0时,f(x)在1x p =处取得极大值11()ln f p p=,此极大值也是最大值,当p=1时,f(x)≤11()ln f p p==0,即l n 1x x ≤-,当且仅当x=0时取等. 易得:(2)2a x x ee --≥ 又0>x 时,1ln -<x x假设不等式恒成立,则有21x x e --<即1xx e +<令 ()1x g x e x =--'()1x g x e =-当0x >时,()g x 时增函数,()(0)0g x g ∴>=1x e x ∴>+故当1a ≥时,对(2,)x ∀∈+∞,不等式(2)ln a x e x ->恒成立.。