game theory

合集下载

博弈论介绍 Game Theory

博弈论介绍 Game Theory

2. 生活中的“囚徒困境”例子
例子1 商家价格战 例子1
出售同类产品的商家之间本来可以 通过共同将价格维持在高位而获利,但 实际上却是相互杀价,结果都赚不到钱。 当一些商家共谋将价格抬高,消费 者实际上不用着急,因为商家联合维持 高价的垄断行为一般不会持久,可以等 待垄断的自身崩溃,价格就会掉下来。
表2 智猪博弈 小猪 按 按 大猪 等待 5,1 9, -1 等待 4,4 0,0
这个博弈大猪没有劣战略。但是,小猪有 一个劣战略“按”,因为无论大猪作何选择, 小猪选择“等待”是比选择“按”更好一些 的战略。 所以,小猪会剔除“按”,而选择“等 待”;大猪知道小猪会选择“等待”,从而 自己选择“按”,所以,可以预料博弈的结 果是(按,等待)。这称为“ 重复剔除劣战略 的占优战略均衡 ”,其中小猪的战略“等待” 占优于战略“按”,而给定小猪剔除了劣战 略“按”后,大猪的战略“按”又占优于战 略“等待”
表4 有补贴时的博弈 空中客车 开发 开发 波音 不开发 -10,10 0, 120 不开发 100,0 0,0
这时只有一个纳什均衡,即波音公司 不开发和空中客车公司开发的均衡(不 开发,开发),这有利于空中客车。 在这里,欧共体对空中客车的补贴就 是使空中客车一定要开发(无论波音是 否开发)的威胁变得可置信的一种“承 诺行动”。
类似的例子还有: 渤海中的鱼愈来愈少了,工业化中的大气 及河流污染,森林植被的破坏等。解决公共 资源过度利用的出路是政府制订相应的规制 政策加强管理,如我国政府规定海洋捕鱼中, 每年有一段时间的“休渔期”,此时禁止捕 鱼,让小鱼苗安安静静地生长,大鱼好好地 产卵,并对鱼网的网眼大小作出规定,禁用 过小网眼的捕网打鱼,保护幼鱼的生存。又 如在三峡库区,为了保护库区水体环境,关 闭了前些年泛滥成灾的许多小造纸厂等。 问题:1、为什么在城市中心道路上禁止汽车鸣 喇叭?

Game theory

Game theory

靠左走还是靠右走?
B
靠左行
靠 左 行
靠右行
1, 1
-1, -1
A
靠 右 行
-1, -1
1, 1
南京农业大学经济管理学院 王艳
3、智猪博弈boxed pigs
有一头大猪和一头小猪住在同一个猪圈里,猪圈 的一侧放着猪食槽,另一侧安装着一个控制食物 供应的按钮。按一次按钮,有8个单位的食物进槽 ,但需承担2个单位的成本。 偌大猪小猪同时到达猪食槽,大猪吃到5个单位的 食物,小猪吃到3个单位的食物;若大猪先到,大 猪吃7个单位的食物,小猪只能吃到1个单位;若 小猪先到,小猪吃到4个单位食物,大猪也吃到4 个单位食物。
南京农业大学经济管理学院 王艳
斗鸡博弈
进 A 独木桥
B
退 4,-1 0,0

退
-2,-2 -1,4
纳什均衡:A进,B退;A退,B进
南京农业大学经济管理学院 王艳
斗鸡博弈
村子里有两户富户,有两种可能:一家修 ,另一家就不修;一家不修,另一家就得 修。 冷战期间美苏抢占地盘:一方抢占一块地 盘,另一方就占另一块。 夫妻吵架,一方厉害,另一方就出去躲躲 。
南京农业大学经济管理学院 王艳
Reinhard Selten
Sub-game perfect Nash equilibrium 德国波恩大学经济学 系
南京农业大学经济管理学院 王艳
博弈树(扩展型)
参与人 每个参与人选择行动的时点 每个参与人在每次行动时可供选择的行动 集合 每个参与人在每次行动时有关对手过去行 动选择的信息 支付函数
南京农业大学经济管理学院 王艳
博弈树
行动
进入
进入者
在位者

博弈论 Game theory (全)

博弈论 Game theory (全)

博弈论 Game Theory博弈论亦名“对策论”、“赛局理论”,属应用数学的一个分支, 目前在生物学,经济学,国际关系,计算机科学, 政治学,军事战略和其他很多学科都有广泛的应用。

在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。

主要研究公式化了的激励结构间的相互作用。

是研究具有斗争或竞争性质现象的数学理论和方法。

也是运筹学的一个重要学科。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。

其中一个有名有趣的应用例子是囚徒困境(Prisoner's dilemma)。

具有竞争或对抗性质的行为称为博弈行为。

在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。

为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。

比如日常生活中的下棋,打牌等。

博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。

生物学家使用博弈理论来理解和预测演化(论)的某些结果。

例如,约翰·史密斯(John Maynard Smith)和乔治·普莱斯(George R. Price)在1973年发表于《自然》杂志上的论文中提出的“evolutionarily stable strategy”的这个概念就是使用了博弈理论。

其余可参见演化博弈理论(evolutionary game theory)和行为生态学(behavioral ecology)。

博弈论也应用于数学的其他分支,如概率,统计和线性规划等。

历史博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。

博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

英语第一章阅读 game theory 原文及翻译

英语第一章阅读 game theory 原文及翻译
都具有相互依赖的共同特征。也就是说,每个参与者的结果取决于所有人的选择(策略)。在所 谓的零和游戏中,玩家的利益是完全冲突的博弈论是战略的科学。它试图从数学和逻辑上确定 “玩家”应采取的行动,以确保他们在各种“游戏”中获得最佳成果。所研究的游戏包括从国际象 棋到儿童饲养,从网球到收购。但是这些游戏,所以一个人的收益总是另一个人的损失。更典 型的是有相互收益(正数)或相互伤害(负数)的博弈,以及一些冲突。
The essence of a game is the interdependence of player strategies. There are two distinct types of strategic interdependence: sequential and simultaneous. In the former the players move in sequence, each aware of the others’ previous actions. In the latter the players act at the same time, each ignorant of the others’ actions.
Game theory was pioneered by Princeton mathematician john von Neumann. In the early years the emphasis was on games of pure conflict (zero-sum games). Other games were considered in a cooperative form. That is, the participants were supposed to choose and implement their actions jointly. Recent research has focused on games that are neither zero sum nor purely cooperative. In these games the players choose their actions separately, but their links to others involve elements of both competition and cooperation.

game theory 教材

game theory 教材

Game Theory 教材一、介绍Game Theory是一种研究决策问题的数学理论,它关注的是理性行为体在面临复杂互动环境时的选择和行动。

Game Theory可以广泛应用于经济学、政治学、社会学等领域,帮助人们理解和解释现实世界的各种互动现象。

本教材旨在介绍Game Theory的基本概念、方法和应用,为读者提供一种理解和分析现实世界中复杂问题的工具。

二、内容第一章:Game Theory概述本章将介绍Game Theory的基本概念、发展历程和应用领域。

我们将探讨理性行为体的假设、互动决策的基本模式以及Game Theory 的主要研究问题。

第二章:策略博弈本章将介绍策略博弈的基本概念和方法,包括策略博弈的定义、纳什均衡、零和博弈和囚徒困境等。

我们将通过实例和分析来理解和应用这些概念和方法。

第三章:非策略博弈本章将介绍非策略博弈的基本概念和方法,包括非策略博弈的定义、优势策略和劣势策略、不完全信息博弈和拍卖理论等。

我们将通过实例和分析来理解和应用这些概念和方法。

第四章:演化博弈本章将介绍演化博弈的基本概念和方法,包括演化博弈的定义、演化稳定性和动态演化博弈等。

我们将通过实例和分析来理解和应用这些概念和方法。

第五章:应用案例本章将介绍Game Theory在经济学、政治学和社会学等领域的应用案例,包括市场交易、政治选举和社会规范等。

我们将通过案例分析和讨论来深入理解和应用Game Theory的概念和方法。

三、结论本教材旨在介绍Game Theory的基本概念、方法和应用,帮助读者理解和分析现实世界中各种复杂的互动现象。

通过阅读和实践,读者可以更好地理解和掌握Game Theory,并应用于解决现实问题中。

博弈论-game-theory-两人轮流进行游戏

博弈论-game-theory-两人轮流进行游戏
g(a(k+1))=0 !
当k∞时 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… g(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… 这有啥用
游戏的联合
定义:对于n个给定的公平组合博弈G1, G2, …, Gn,定义他 们集的合联 ;合对为于G一=个G1局+G面2+x…i属+G于n.X对i,于设游F戏i(xGi)i表Байду номын сангаас示设xXi的i为后它继的局局面面集 合对。于G那的么一G个的局局面面x集=合{x1X,x=2,X…1*,xXn2}*,…它*X的n(后其继中局*为面笛集卡合儿积);
gn(x1,x2,…,xn) = g(x1)⊕g(x2)⊕…⊕g(xn)
= x1⊕x2⊕…⊕xn
经典Nim游戏
图的游戏
3
0
2 0
1
3 ⊕0 ⊕0=3
0 0
1 0
1
Anti-Nim
有n堆石子,每堆ai个,两个人轮流游戏,每次游戏者 取走某一石碓中至少1枚,至多k枚的石子。谁取走最 后一颗石子算谁输。
一方算输 无论游戏如何进行,总可以在有限步之内结束。(the
Ending Condition)
N局面,P局面
N局面——先手必胜局面
winning for the Next player
P局面——后手必胜局面
winning for the Previous player
定义:
每一个最终局面都是P局面 对于一个局面,若至少有一种操作使它变成一个P局面,
还扩展
游戏4:游戏有n堆石子,第i堆有ai枚,两人轮流进行 游戏,每次游戏者可以从任意一堆取走任意多枚石子, 也可以将任意的一堆石子任意的分成两堆。谁取走最 后一颗石子为胜。

博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支 ...

博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支 ...

博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。

博弈论主要研究公式化了的激励结构间的相互作用。

是研究具有斗争或竞争性质现象的数学理论和方法。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

生物学家使用博弈理论来理解和预测进化论的某些结果。

博弈论已经成为经济学的标准分析工具之一。

在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

自从博弈论被引入经济学以来,现在经济的许多领域都发生了巨大变化。

博弈论在强调经济活动的利益主体行为所产生的相互作用和相互影响的同时,也在突出反映社会制度的本质。

人们或组织需要更多的信息在预期其他参与方行动决策的情况下做出自己的行动选择期求更大的利益。

而我们所谓的制度就是均衡行动选择的本质特征,被参与方普遍认可并与他们的行动息息相关。

下面以最近的南海争端作为案例用博弈论的知识对争端各方所认同的制度进行研究。

由于南海问题牵涉利益参与方较多,争端较为复杂,我们只考虑中国和南海诸国双边的政治博弈。

首先看南海争端的地理位置。

南沙群岛陆地面积虽然只有二平方公里,但是整个海域面积达八十二万三千平方公里,而且地理位置非常重要。

南沙群岛地处越南金兰湾和菲律宾苏比克湾两大海军基地之间,战略位置突出,扼西太平洋至印度洋海上交通要冲,通往非洲和欧洲的咽喉要道。

再次,南海的资源也成为各国关注的焦点。

南海地处中、菲、越、日、马各国交界地带,渔业矿产资源丰富,各国利益争端复杂,这也成为南海争端形成的必要条件。

二十世纪六十年代开始,越、菲、马等国以军事手段占领南沙群岛部分岛礁,在南沙群岛附近海域进行大规模的资源开发活动并提出主权要求。

众所周知,作为一个行为主体忽略和偏离制度对其而言是无利可图甚至产生消极效应。

从60年代至今,中方与南海边界小国以及美日印诸国产生了重复参与博弈的战略互动的稳定状态。

上世纪80年代末90年代初,这些国家开始分别在所占据的岛礁上修建飞机跑道,建海港、灯塔和旅游观光点,并纷纷与外国石油公司合作,开采南沙地区的油气资源。

博弈论game theory

博弈论game theory

1.2.4石头、剪刀、布
A
石头 剪刀

石头 0,0 1,-1 -1,1
B
剪刀 -1,1 0,0 1,- 1

1,-1 -1,1 0,0
§1.3按局中人的数量对博弈分类
1.3.1单人博弈 退化为一般的最优化问题 (1)单人迷宫
入口
A左B左
0

A左B右
M
A
B

A右B左
0

出口(奖金M)
A右B右
0
单人迷宫
田忌 上中下 上下中 中上下 中下上 下上中 下中上 上中下 3,-3 1,-1 1,-1 1,-1 -1,1 1,-1 上下中 1,-1 3,-3 1,-1 1,-1 1,-1 -1,1 齐 中上下 1,-1 -1,1 3,-3 1,-1 1,-1 1,-1 威 王 中下上 -1,1 1,-1 1,-1 3,-3 1,-1 1,-1 下上中 1,-1 1,-1 1,-1 -1,1 3,-3 1,-1 下中上 1,-1 1,-1 -1,1 1,-1 1,-1 3,-3
局中人的得益(payoffs)——支付 博弈结果的量化 局中人在博弈中得到的效用 策略组合的函数
博弈的次序(orders) 局中人决策是否同时
1.1.3博弈的表示方法 (1)正规型(策略型)——Payoff Matrix
A坦 B
白不 坦 白

白 -8,-8
0,-10
不 坦 白 -10,0
-1,-1
例子 三人决斗,开枪射杀对手,以保存自己。命中率和
每一轮的开枪次序如下。
命中率
次序
A
30%
1
B
70%
2
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a.
If both firms make their decisions at the same time and follow maximin (low-risk) strategies, what will the outcome be? With a maximin strategy, a firm determines the worst outcome for each option, then chooses the option that maximizes the payoff among the worst outcomes. If Firm A chooses H, the worst payoff would occur if Firm B chooses H: A’s payoff would be 30. If Firm A chooses L, the worst payoff would occur if Firm B chooses L: A’s payoff would be 20. With a maximin strategy, A therefore chooses H. If Firm B chooses L, the worst payoff would occur if Firm A chooses L: the payoff would be 20. If Firm B chooses H, the worst payoff, 30, would occur if Firm A chooses L. With a maximin strategy, B therefore chooses H. So under maximin, both A and B produce a high-quality system.
a.
Find the Nash equilibria for this game, assuming that both networks make their decisions at the same time. A Nash equilibrium exists when neither party has an incentive to alter its strategy, taking the other’s strategy as given. By inspecting each of the four combinations, we find that (First, Second) is the only Nash equilibrium, yielding a payoff of (23, 20). There is no incentive for either party to change from this outcome.
4. Two firms are in the chocolate market. Each can choose to go for the high end of the market (high quality) or the low end (low quality). Resulting profits are given by the following payoff matrix: Firm 2 Low Low Firm 1 High -20, -30 100, 800 High 900, 600 50, 50
186
Chapter 13: Game Theory and Competitive Equilibrium Firm 1 chooses Low, neither will have an incentive to change (900 > 50 for Firm 1 and 600 > -30 for Firm 2). Both outcomes are Nash equilibria. b. If the manager of each firm is conservative and each follows a maximin strategy, what will be the outcome? If Firm 1 chooses Low, its worst payoff, -20, would occur if Firm 2 chooses Low. If Firm 1 chooses High, its worst payoff, 50, would occur if Firm 2 chooses High. Therefore, with a conservative maximin strategy, Firm 1 chooses High. Similarly, if Firm 2 chooses Low, its worst payoff, -30, would occur if Firm 1 chooses Low. If Firm 2 chooses High, its worst payoff, 50, would occur if Firm 1 chooses High. Therefore, with a maximin strategy, Firm 2 chooses High. Thus, both firms choose High, yielding a payoff of 50 for both. c. What is the cooperative outcome? The cooperative outcome would maximize joint payoffs. This would occur if Firm 1 goes for the low end of the market and Firm 2 goes for the high end of the market. The joint payoff is 1,500 (Firm 1 gets 900 and Firm 2 gets 600). d. Which firm benefits most from the cooperative outcome? How much would that firm need to offer the other to persuade it to collude? Firm 1 benefits most from cooperation. The difference between its best payoff under cooperation and the next best payoff is 900 - 100 = 800. To persuade Firm 2 to choose Firm 1’s best option, Firm 1 must offer at least the difference between Firm 2’s payoff under cooperation, 600, and its best payoff, 800, i.e., 200. However, Firm 2 realizes that Firm 1 benefits much more from cooperation and should try to extract as much as it can from Firm 1 (up to 800). 5. Two major networks are competing for viewer ratings in the 8:00-9:00 P.M. and 9:00-10:00 P.M. slots on a given weeknight. Each has two shows to fill this time period and is juggling its lineup. Each can choose to put its “bigger” show first or to place it second in the 9:0010:00 P.M. slot. The combination of decisions leads to the following “ratings points” results: Network 2 First First Network 1 Second 18, 18 4, 23 Second 23, 20 16, 16
b.
If each network is risk averse and uses a maximin strategy, what will be the resulting equilibrium? This conservative strategy of minimizing the maximum loss focuses on limiting the extent of the worst possible outcome, to the exclusion of possible good outcomes. If Network 1 plays First, the worst payoff is 18. If Network 1 plays Second, the worst payoff is 4. Under maximin, Network 1 plays First. (Here, playing First is a dominant strategy.) If Network 2 plays First, the worst payoff is 18. If Network 2 plays Second, the worst payoff is 16. Under maximin, Network 2 plays First. The maximin equilibrium is (First, First) with a payoff of (18,18).
a.
What outcomes, if any, are Nash equilibria? If Firm 2 chooses Low and Firm 1 chooses High, neither will have an incentive to change (100 > -20 for Firm 1 and 800 > 50 for Firm 2). If Firm 2 chooses High and
相关文档
最新文档