2016年北京人大附中高二理科下学期人教B版数学期末考试试卷
北京人大附中15-16学年高二下期末--数学理(解析版)

5.根据统计数据,某产品的销售额y对广告费用x(单位:百万元)的线性回归方程为y=5.7x+18.6,则下列说法不正确的是( )
A.若下一销售季再投入5百万元广告费,则估计销售额约可达47.1百万元
B.已知统计数据中的平均销售额为41.4百万元,则平均广告费为4百万元
A. B. C.3D.
二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸的相应位置.)
9.若高二期末考试的数学成绩X~N(90,25),则这次考试数学的平均分为,标准差为.
10.甲、乙、丙、丁四人站一排照相,甲不与乙、丙相邻,不同的排法共有种.
11.某志愿团由10名同学构成,其中3名学生会干部,现从中随机选取4名同学去支教.则选取的学生会干部人数不少于2的概率为.
(Ⅰ)从这15天的数据中任取3天的数据,记X表示期中空气质量达到一级的天数,求X的分布列;
(Ⅱ)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按照360天计算)中大约有多少天的空气质量达到一级.
17.某企业有甲、乙两个研发小组,他们研发一件新产品成功的概率分别为 和 ,本年度计划研发的新产品件数分别为2件和1件.设甲、乙两组的每次研发均相互独立.
15.箱子中有五张分别写着数字0,1,2,3,4的卡片,现从中随机抽取2张组成一个两位数,这个两位数的个位数字与十位数字之和为X.
(1)可以组成多少个不同的两位数?
(2)求X能被3整除的概率;
(3)求X的分布列和数学期望.
16.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,我国PM2.5标准采用世卫组设定的最宽限值,即PM2.5日均值在25微克/立方米以下空气质量为一级,在35微克/立方米~75微克/立方米之间空气质量为二级,在75微克/立方米以上空气质量为超标.某市环保局从市区2012年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如图所示茎叶图(左侧十位为茎,右侧个位为叶).
人教版高二数学下册期末考试理科数学试卷(附答案)

( ) 即 a 2x −1 = 2x −1对一切实数 x 都成立.
∴ a = 1,∴ a = b = 1 .……5 分
f ( x) 是 R 上的减函数。……6 分
⑵ 不等式 f (t2 − 2t) + f (2t2 − k ) 0等价于 f (t2 − 2t) f (k − 2t2 ) .
又 f ( x) 是 R 上的减函数,∴ t2 − 2t k − 2t2 . ……8 分
内碳 14 含量的测量,估计该古墓群应该形成于公元前 850 年左右的西周时期,已
知碳 14 的“半衰期”为 5730 年(即含量大约经过 5730 年衰减为原来的一半),
由此可知,所测生物体内碳 14 的含量应最接近于( )
A.25﹪
B.50﹪
C.70﹪
D.75﹪
11. 对 大 于 1 的 自 然 数 m 的 三 次 幂 可 用 奇 数 进 行 以 下 形 式 的 “ 分 裂 ” :
地运往 C 地, 现在 AB 上的距点 B 为 x 的点 M 处修一公路至点 C.已知铁路运 费为每公里 2 元,公路运费为每公里 4 元. (1)将总运费 y 表示为 x 的函数. (2)如何选点 M 才使总运费最小?
-5-
-6-
11B-SX-0000001 20. (本小题满分 12 分)
已知数列an 的前 n 项和为 Sn ,且 a1 = 1, Sn = n2an (n N+ )
( ) ( ) ⑵ 若对任意的 t R ,不等式 f t2 − 2t + f 2t2 − k 0恒成立,求实数 k 的取
值范围.
18. (本小题满分 12 分)
为了增强环保意识,某社团从男生中随机抽取了 60 人,从女生中随机抽取了
2017-2018学年第二学期7月北京人大附中高二数学期末复习试题(理科)

人大附中 2017~2018 学年度第二学期期末高二年级数学(理)练习2018年7月6日说明:本练习共三道大题20 道小题,共 4 页,满分 150 分,考试时间120 分钟。
一、选择题(本大题共8 小题,每题 5 分,共 40 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请将正确答案填涂在答题纸的相应地点.)11. (e x 2 x)dx 等于()(A)1( B) e 1(C)e( D) e 12.已知(13x)n的睁开式中含有x2项的系数是54,则n()(A)3(B)4(C) 5(D)63.函数 y f ( x) 的导函数 y f ( x) 的图象如右图所示,则y f ( x) 的图象可能是()4.已知从 A 口袋中摸出一个球是红球的概率为1,从 B 口袋中摸出一个球是红球的概率为41 ,现从两个口袋中各摸出一个球,那么这两个球起码有一个不是红球的概率是()5(A)1(B)19(C)3(D)7 20205205.以下极坐标方程中,对应的曲线为右图的是()O x ( A) 6 5cos (B)6 5sin(C)6 5cos (D)6 5sin6.已知随机变量i知足 P( i 1)p i , P(i 0) 1 p i , i1,2 .若 0p1 p21,则()2(A) E( 1)E( 2), D( 1) D( 2)(B) E( 1)E( 2),D( 1) D( 2)(C) E( 1)E( 2), D( 1) D( 2)(D) E( 1)E( 2), D( 1) D( 2)7.会合 P{ x | x a0a1 2 a222a323 } ,此中a i{0,1}, i0,1, 2,3 .则会合 P 中元素的个数及全部元素之和分别是()( A) 16, 120( B) 8, 120(C) 16, 60(D)8, 608.设函数y x3x2 , x e,的图象上存在两点 P, Q ,使得△ POQ 是以O为直角极点的直角a ln x,x e三角形 (此中 O为坐标原点 ),且斜边的中点恰幸亏 y 轴上 ,则实数 a 的取值范围是()( A) (0,1](B)( ,1](C) [1, +)(D)Re1e1e1二、填空题 (本大题共 6 小题,每题 5 分,共 30 分.请把结果填在答题纸的相应地点.)9.已知复数z 12i ,此中i是虚数位,z的模是________.1 ix12cos( 参数 )被 x 截得的弦 ________.10.1 2siny11.有 5 名教要 3 个趣小出门学观察,要求每个趣小的教至多2人,不一样的方案有________种.(用数字作答)12.察以下一等式1+2=32+3+4+5=143+4+5+6+7+8=334+5+6+7+8+9+10+11=60⋯⋯照此律,第n 个等式的右端 ________.13.已知函数 f ( x)x2 2 x,x0,ax 恒建立, a 的取范是 ________.ln( x1),x若 | f (x)|0.14.定会合A n{1, 2, 3,, n } ,映照 f: A n A n,若 f足:①当 i , j A n , i j , f (i ) f ( j ) ;②任取 m A n,若m 2 ,有m{ f (1), f (2), ,f (m)} .称映照 fA A 是一个“ 映照”.比如:用表 1 表示的映照 f : A A 是一个n n33映照.表 1表 2i123i1234f (i )231 f (i )3( 1)已知表 2 表示的映照 f : A4A4是一个映照,把表 2 充完好(只要填出一个足条件的映照);( 2)若映照 f : A A是“ 映照”,且方程 f (i )i 的解恰有 6 个,的“ 映照”1010的个数是 ________.三、解答(本大共 6 小,共 80 分,解答写出文字明明程或演算步.)15.(本小 13 分)甲、乙两人行射比,各射 4 局,每局射10 次,射命中目得 1 分,未命中目得 0 分.两人 4 局的得分状况以下:甲6699乙79x y(Ⅰ)若从甲的 4 局比中,随机取 2 局,求 2 局的得分恰巧相等的概率;(Ⅱ)假如 x y7 ,从甲、乙两人的 4 局比中随机各取 1 局,2 局的得分和X ,求 X 的散布列和数学希望;(Ⅲ)在 4 局比中,若甲、乙两人的均匀得分同样,且乙的更定,写出x 的全部可能取.(不要求明)16.(本小13 分)已知数列 { a n } 中, a11,且a n 12an ( n N ) .2 a n(Ⅰ)求 a2 , a3 , a4的值;(Ⅱ)试猜想这个数列的通项公式,并用数学概括法证明.17.(本小题 13 分)已知函数 f ( x) ax3bx24x 的极小值为8 ,其导函数 y f ( x) 的图象经过点( 2, 0),以下图.y(Ⅰ)求 f ( x) 的分析式;(Ⅱ)若函数y f ( x) k 在区间 [ 3, 2] 上有两个不一样的零点,务实数 k 的取值范围.-2O x 18.(本小题13 分)某企业计划购置 2 台机器,该种机器使用三年后即被裁减.机器有一易损部件,在购进机器时,能够额外购置这类部件作为备件,每个200 元,在机器使用时期,假如备件不足再购置,则每个 500 元.现需决议在购置机器时应同时购置几个易损部件,为此收集并整理了100台这类机器在三年使用期内改换的易损部件数,得下边柱状图:频数402011 改换的易损部件数8910以这 100 台机器改换的易损部件数的频次取代 1 台机器改换的易损部件数发生的概率,记 X 表示2台机器三年内共需改换的易损部件数,n 表示购置 2 台机器的同时购置的易损部件数.(Ⅰ)求 X 的散布列;(Ⅱ)若要求 P( X n )0.5 ,确立 n 的最小值;(Ⅲ)以购置易损部件所需花费的希望值为决议依照,在n 19与 n 20 之中选其一,应选用哪个?19.(本小题14 分)已知函数 f ( x)e x a(x ln x) (a R ) .x(Ⅰ)当 a (Ⅱ)当 a (Ⅲ)若存在1 , 求 f ( x) 在 (1, f (1)) 的切 方程; 0 , 求f ( x) 的 区 ;x 1 (0,1), x 2 (0,1) ,使得 f (x 1 ) f ( x 2 ) , 求 a 的取 范 .20.(本小14 分)于 数m 的有 数列 { a n } ,令 b kmax{ a 1 , a 2 , , a k } (k 1, 2, , m) ,即 b ka 1 , a 2 ,⋯a k 中的最大 , 称数列 {b n }{ a n } 的上界数列 , 如 1, 3, 2, 5 的上界数列是 1, 3, 3, 5.(Ⅰ)若各 均 正整数的数列{ a n } 的上界数列2, 4, 4, 5, 写出全部的 { a n } ;(Ⅱ) { b n } 是 { a n } 的上界数列 , 足 a kb m k 1 C ( C 常数 , k1, 2, , m ), 求 : b ka k ;(Ⅲ)若各 正整数的数列{ a n } 的 数 m 5 , 其上界数列 {b n } 足 b 1 1, b 5 10 , 求 足条件的数列 { a n } 和 { b n } 的个数.。
2016人大附中高二(下)期末数学(理科)

2016人大附中高二(下)期末数学(理科)一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸的相应位置.)1.(4分)二项式(a﹣1)8的展开式中,最大的二项式系数为()A.C B.﹣C C.C D.﹣C2.(4分)在检验吸烟与患肺炎是否有关的一次统计中,根据2×2列联表中数据计算得x2≈6.234,则下列说法正确的是()A.有99%的把握认为吸烟与患肺炎有关B.有99%的把握认为吸烟与患肺炎无关C.有95%的把握认为吸烟与患肺炎有关D.有95%的把握认为吸烟与患肺炎无关3.(4分)若离散型随机变量X的分布列函数为P(X=k)=,k=1,2,3,4,则P(X>1)=()A.B.C.D.4.(4分)用一个“+”号和一个“﹣”号将数字1,2,3连成算式,不同的运算结果共有()A.12种B.6种 C.4种 D.3种5.(4分)根据统计数据,某产品的销售额y对广告费用x(单位:百万元)的线性回归方程为y=5.7x+18.6,则下列说法不正确的是()A.若下一销售季再投入5百万元广告费,则估计销售额约可达47.1百万元B.已知统计数据中的平均销售额为41.4百万元,则平均广告费为4百万元C.广告费用x和销售额y之间的相关系数不能确定正负,但其绝对值趋于1D.5.7的含义是广告费用每增加1百万元,销售额大约增长 5.7百万元左右6.(4分)甲手中有扑克牌的大小王牌和四色A各一张,共6张牌,现让乙和丙各从中随机抽取一张,则在乙抽到大王牌的情况下,丙抽到小王牌的概率为()A.B.C.D.7.(4分)已知一批10000只白炽灯泡的光通量X~N(200,100),则这批灯泡中光通量X>220个数大约为()(参考数据:若X:N(μ,2),则X在区间(μ﹣σ,μ+σ),(μ﹣2σ,μ+2σ),(μ﹣3σ,μ+3σ)内的概率分别为68.3%,95.4%,99.7% )A.230 B.460 C.4770 D.95408.(4分)一箱电子产品有6件,其中2件次品,4件正品,现不放回地进行抽检,每次抽检一件,直到检验出所有次品为止,那么抽检次数X的数学期望为()A.B.C.3 D.二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸的相应位置.)9.(5分)若高二期末考试的数学成绩X~N(90,25),则这次考试数学的平均分为,标准差为.10.(5分)甲、乙、丙、丁四人站一排照相,甲不与乙、丙相邻,不同的排法共有种.11.(5分)某志愿团由10名同学构成,其中3名学生会干部,现从中随机选取4名同学去支教.则选取的学生会干部人数不少于2的概率为.12.(5分)若(1﹣mx)5=a0+a1x+a2x2+…+a5x5,且a5=﹣32,则a1+a2+a3+a4的值为.13.(5分)一个袋中装有8个乒乓球,其中6个黄色,2个白色,每次从袋中随机摸出1个乒乓球,若摸到白球则停止,一共有3次摸球机会.记X为停止摸球时的摸球次数.(1)若每次摸出乒乓球后不放回,则E(X)=;(2)若每次摸出乒乓球后放回,则D(X)=.14.(5分)甲、乙两支足球队比赛,甲获胜的概率为,平局的概率为,乙获胜的概率为,下一赛季这两支球队共有5场比赛,在下一赛季中:(1)甲获胜3场的概率为;(2)若胜一场积3分,平一场积1分,负一场积0分,则甲的积分的数学期望为.三、解答题(本大题共3小题,共38分,解答应写出文字说明、证明过程或演算步骤.)15.(14分)箱子中有五张分别写着数字0,1,2,3,4的卡片,现从中随机抽取2张组成一个两位数,这个两位数的个位数字与十位数字之和为X.(1)可以组成多少个不同的两位数?(2)求X能被3整除的概率;(3)求X的分布列和数学期望.16.(12分)PM2.5是指大气中直径小于或等于 2.5微米的颗粒物,我国PM2.5标准采用世卫组设定的最宽限值,即PM2.5日均值在25微克/立方米以下空气质量为一级,在35微克/立方米~75微克/立方米之间空气质量为二级,在75微克/立方米以上空气质量为超标.某市环保局从市区2012年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如图所示茎叶图(左侧十位为茎,右侧个位为叶).(Ⅰ)从这15天的数据中任取3天的数据,记X表示期中空气质量达到一级的天数,求X的分布列;(Ⅱ)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按照360天计算)中大约有多少天的空气质量达到一级.17.(12分)某企业有甲、乙两个研发小组,他们研发一件新产品成功的概率分别为和,本年度计划研发的新产品件数分别为2件和1件.设甲、乙两组的每次研发均相互独立.(1)求该企业本年度至少有一件新产品研发成功的概率;(2)已知研发一件新产品的成本为10百万元,成功研发一件新产品可获得50百万元的销售额,求该企业本年度在这3件新产品上获得的利润X的分布列和数学期望.II卷(共6道题,满分18分)一、选择题(本题共3小题,每小题6分,共18分.请把答案填在答题纸的相应位置.)18.(6分)如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AC=CE=3,AB=4,则AD 的长为()A.B.2 C.D.319.(6分)已知(1+x)(x+)n的展开式中没有常数项,则n的值可能是()A.9 B.10 C.11 D.1220.(6分)已知x i∈{﹣1,0,1},i=1,2,3,4,5,6,则满足x1+x2+x3+x4+x5+x6=2的数组(x1,x2,x3,x4,x6)的个数为()A.60 B.75 C.90 D.120二、填空题(本题共2小题,每小题9分,共18分.请把答案填在答题纸的相应位置.)21.(9分)(1)若函数f(x)=lnx﹣ax有极值,则函数f(x)的单调递增区间是;(2)若函数g(x)=xlnx﹣ax2﹣x有极值,则实数a的取值范围是.22.(9分)某数学兴趣小组举行了一次趣味口答竞赛,共有5名同学参加.竞赛分两个环节:抢答环节和抽答环节,其中抢答环节共有4道题,抽答环节仅有1道题.(1)假设抢答环节每人抢答成功的概率均相等,则甲同学成功抢答2次的概率是;(2)已知抢答环节有3名同学成功抢答,抽答环节从装有5名同学名签的纸盒中随机抽取:第一次采取有放回地抽取,若第一次抽到的是抢答成功的同学,则从第二次开始采取无放回地抽取,整个抽答环节抽到未抢答成功的同学即停止.那么抽取的次数X的数学期望E(X)=.三、解答题(本题共1小题,满分14分.解答应写出文字说明、证明过程或演算步骤)23.(14分)已知函数f(x)=.(1)求函数y=f(x)的单调区间;(2)若曲线y=f(x)与直线y=b(b∈R)有3个交点,求实数b的取值范围;(3)过点P(﹣1,0)可作几条直线与曲线y=f(x)相切?请说明理由.参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸的相应位置.)1.【解答】二项式(a﹣1)8的展开式中,最大的二项式系数为,故选:A.2.【解答】由x2≈6.234>3.841,∴有95%的把握认为吸烟与患肺炎有关,故答案选:C.3.【解答】离散型随机变量X的分布列函数为P(X=k)=,k=1,2,3,4,则P(X>1)=P(X=2)+P(X=3)+P(X=4)=+=.故选:D.4.【解答】∵1+2﹣3=0,1﹣2+3=2,1+3﹣2=2,1﹣3+2=0,2+1﹣3=0,2﹣1+3=4,2+3﹣1=4,2﹣3+1=0,3+1﹣2=2,3﹣1+2=0,3+2﹣1=4,3﹣2+1=2,∴不同的运算结果共有3种,故选:D.5.【解答】对于A,若下一销售季再投入5百万元广告费,则估计销售额约可达y=5.7×5+18.6=47.1百万元,正确;对于B,x=4,y=5.7×4+18.6=41.4,正确;对于C,广告费用x和销售额y之间的相关系数能确定正负,其绝对值趋于1,不正确;对于D,根据回归系数的定义,可知正确.故选:C.6.【解答】设乙抽到大王,丙抽到小王,则P(A)=,P(AB)==,∴在乙抽到大王牌的情况下,丙抽到小王牌的概率:P(B|A)===.故选:B.7.【解答】∵变量服从正态分布X~N(200,100),∴μ=200,σ=10,∴P(X>220)=×(1﹣0.954)=0.023,∴这批灯泡中光通量X>220个数大约为10000×0.023=230.故选:A.8.【解答】由题意知X的可能取值为2,3,4,5,6,P(X=2)==,P(X=3)==,P(X=4)==,P(X=5)==,P(X=6)==,∴抽检次数X的分布列为:X23456PEX=2×++4×+5×+6×=.故选:A.二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸的相应位置.)9.【解答】∵成绩X~N(90,25),∴这次考试数学的平均分为90,标准差为5,故答案为:90,5.10.【解答】由题意,甲在两头,则排列方法为2×A22=4种.故答案为:4.11.【解答】某志愿团由10名同学构成,其中3名学生会干部,现从中随机选取4名同学去支教,基本事件总数n=C=210,选取的学生会干部人数不少于2人包含的基本事件个数m=+=70,∴选取的学生会干部人数不少于2人的概率p===.故答案为:.12.【解答】在(1﹣mx)5=a0+a1x+a2x2+…+a5x5,中,令x=0,可得a0=1,∵令x=1,可得a0+a1+a2 +…+a5=(1﹣m)5.∵a5=?(﹣m)5=﹣32,∴m=2,则1+a1+a2+a3+a4﹣32=(1﹣m)5=﹣1,∴a1+a2+a3+a4 =﹣2+32=30,故答案为:30.13.【解答】(1)由题意知X的可能取值为1,2,3,P(X=1)=,P(X=2)==,P(X=3)=+=,∴X的分布列为:X123PEX=+2×+3×=.故答案为:.(2)由题意知X的可能取值为1,2,3,P(X=1)=,P(X=2)==,P(X=3)=+=,∴X的分布列为:X123PEX=+2×+3×=,D(X)=(1﹣)2×+(2﹣)2×+(3﹣)2×=.故答案为:.14.【解答】(1)甲获胜的概率为,所以5场比赛中甲获胜3场的概率为??=;(2)因为甲获胜的概率为,平局的概率为,甲输的概率为,且胜一场积3分,平一场积1分,负一场积0分,所以甲积分的数学期望为E=5××3+5××1+5××0=.故答案为:(1),(2).三、解答题(本大题共3小题,共38分,解答应写出文字说明、证明过程或演算步骤.)15.【解答】(1)箱子中有五张分别写着数字0,1,2,3,4的卡片,现从中随机抽取2张组成一个两位数,可以组成不同的两位数的个数n=4×4=16.(2)X能被3整的情况有:①0+3=3,此时构成的两位数是30,②1+2=3,此时构成的两位数是12,21,③2+4=6,此时构成的两位数是24,42,∴X能被3整除的概率p==.(3)由题意得X的可能取值为1,2,3,4,5,6,7,P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)=,P(X=5)==,P(X=6)=,P(X=7)=,∴X的分布列为:X1 2 34567 PEX=+3×+4×+5×+6×+7×=.16.【解答】(Ⅰ)依据条件,X服从超几何分布,其中N=15,M=5,n=3.X的可能值为0,1,2,3.其分布列为:P(x=k)=(k=0,1,2,3).(Ⅱ)依题意可知,一年中每天空气质量达到一级的概率为P==;一年中空气质量达到一级的天数为Y,则E(Y)=360×=120(天).所以一年中大约有120天的空气质量达到一级.17.【解答】(1)记E={甲组研发新产品成功},F={乙组研发新产品成功}.由题设知P(E)=,P()=,P(F)=,P()=,且事件E与F,E与,与F,与都相互独立.记H={至少有一种新产品研发成功},则=,∴P()=P()=P()P()P()=×=,故该企业本年度至少有一件新产品研发成功的概率为:P(H)=1﹣P()=1﹣=.(2)设企业可获利润为X (百万元),则X的可能取值为﹣30,30,90,150.∵P(X=﹣30)=P()=×,P(X=30)=P(E)+P()+P()=++=,P(X=90)=P()+P(E)+P(EE)=+=,P(X=150)=P(EEF)==,∴该企业本年度在这3件新产品上获得的利润X的分布列为:X﹣303090150P∴EX=﹣30×+30×+90×+150×=100(百万元).II卷(共6道题,满分18分)一、选择题(本题共3小题,每小题6分,共18分.请把答案填在答题纸的相应位置.)18.【解答】连接DE,∵ACED是圆的内接四边形,∴∠BDE=∠BCA,∵∠DBE=∠CBA,∴△BDE∽△BCA,∴.∵CD是∠ACB的平分线,∴AD=DE,∵AC=CE=3,AB=4,∴4DA=3BE,即BE=DA,设AD=DE=t,则BE=t,根据割线定理得BD?BA=BE?BC,∴(AB﹣AD)?BA=DA?(DA+CE),∴(4﹣t)×4=t(t+3),∴2t2+9t﹣18=0,解得t=,或t=﹣6(舍),即AD=.故选:A.19.【解答】∵(1+x)(x+)n的展开式中没有常数项,∴(x+)n的展开式中没有常数项与含的项,(x+)n的展开式中的通项公式:T r+1=x n﹣r=x n﹣3r,(r=0,1,2,…,n).经过验证:只有取n=10时,10﹣3r≠0,﹣1.因此n的值可能是10.故选:B.20.【解答】根据题意,∵x1+x2+x3+x4+x5+x6=2,x i∈{0,1,﹣1},i=1,2,3,4,5,6;∴x i中有2个1和4个0,或3个1、1个﹣1和2个0,或4个1和2个﹣1共有=90个,∴满足x1+x2+x3+x4+x5+x6=2的数组(x1,x2,x3,x4,x6)的个数为90个.故选:C.二、填空题(本题共2小题,每小题9分,共18分.请把答案填在答题纸的相应位置.)21.【解答】(1)f(x)=lnx﹣ax的定义域是(0,+∞),f′(x)=﹣a=,若函数f(x)=lnx﹣ax有极值,则a>0,令f′(x)>0,解得:0<x<,故答案为:(0,);(2)解:f(x)=xlnx﹣ax2﹣x的定义域是(0,+∞),f′(x)=lnx﹣ax,若函数f(x)有极值,则f′(x)=lnx﹣ax有解,即y=lnx和y=ax有交点,①a<0时,显然有解,②a>0时,设y=lnx和y=ax相切的切点是(x0,lnx0),∴切线方程是:y=x,故lnx0=?x0,解得:x0=e,∴y=lnx和y=ax相切时,a=,若y=lnx和y=ax有交点,只需a<,综上:a<,故答案为:(﹣∞,).22.【解答】(1)抢答环节所有可能的抢答情况共有54种,而甲成功抢答2次的情况有C=10种,∴甲同学成功抢答2次的概率为=.(2)X的所有可能取值为1,2,3,4,5,则P(X=1)=,P(X=2)==,P(X=3)==,P(X=4)==,P(X=5)==,∴抽取的次数X的数学期望E(X)=1×+2×+3×+4×+5×=2.2.故答案为:(1),(2)2.2.三、解答题(本题共1小题,满分14分.解答应写出文字说明、证明过程或演算步骤)23.【解答】(1)f′(x)=(x﹣x2)e﹣x,由f′(x)>0,可得0<x<1,f′(x)<0,可得x<0或x>1,∴函数的单调递增区间是(0,1),单调递减区间是(﹣∞,0),(1,+∞);(2)由(1),f(0)=1,f(1)=,∵曲线y=f(x)与直线y=b(b∈R)有3个交点,∴1<b<;(3)设切点为(m,n),则f′(m)=(m﹣m2)e﹣m,∴切线方程为y﹣n=(m﹣m2)e﹣m(x﹣m),代入(﹣1,0),整理可得m3+m2+1=0,设g(m)=m3+m2+1,g′(m)=3m2+2m,由g′(m)>0,可得m或m>0,g′(m)<0,可得﹣<m<0,∴函数g(m)的单调递减区间是(﹣,0),单调递增区间是(﹣∞,﹣),(0,+∞);∵g(﹣)>0,g(0)>0,∴g(m)=0有唯一解,∴过点P(﹣1,0)可作1条直线与曲线y=f(x)相切.。
2015-2016北京海淀人大附中高二(上)期末考试数学(理)(含解析)(1)

人大附中2015~2016学年度第一学期期末高二年级数学(理)练习&选修2-1模块考核试卷2016年1月14日命题人:吴中才 候立伟 审卷人:梁丽平说明:本试卷分I 卷和II 卷,I 卷17道题,共100分,作为模块成绩;II 卷4道题,共50分;I 卷、II 卷共21题,合计150分,作为期中成绩;考试时间120分钟;请在密封线内填写个人信息.I 卷(共17题,满分100分)一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在机读卡上.)1. 集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2. 若p :x ∀∈R ,20x >,则( ).A .p ⌝:x ∀∈R ,20x ≤B .p ⌝:x ∀∉R ,20x ≤C .p ⌝:x ∃∈R ,20x ≤D . p ⌝:x ∃∉R ,20x ≤ 3. 如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =,则BD 等于( ). A . a b c -+- B . a b c -+ C .1122a b c -+ D . 1122a b c -+- 4.给定原命题:“若220a b +=,则a ,b 全为0”,那么下列命题形式正确的是( ). A .逆命题:若a ,b 全为0,则220a b += B . 否命题:若220a b +≠,则a ,b 全不为0 C . 逆否命题:若a ,b 全不为0,则220a b +≠ D . 否定:若220a b +=,则a ,b 全不为05.已知双曲线22221(0x y a a b-=>,0)b >的离心率为2,则该双曲线的渐近线方程是( ).A . 30x ±=B . 20x y ±=C . 20x y ±=D . 30x y ±=6.已知点P 是双曲线22145x y -=上一点,若12PF PF ⊥,则12PF F △的面积为( ). A .54 B . 52C . 5D . 10 7.已知AB 是经过抛物线22y px =的焦点的弦,若点A 、B 的横坐标分别为1和14,则该抛物线的准线方程为( ).A . 1x =B . 1x =-C . 12x =D . 12x =- 8.在平面直角坐标系中,动点(),P x y 到两条坐标轴的距离之和等于它到点()1,1的距离,记点P 的轨迹为曲线W ,则下列命题中:①曲线W 关于原点对称;②曲线W 关于x 轴对称;③曲线W 关于y 轴对称;④曲线W 关于直线y x =对称; 所有真命题的个数是( ).A .1B .2C . 3D .4二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸中.)9.以y x =±为渐近线且经过点()2,0的双曲线方程为__________. 10.已知向量()2,1,2a =-,()4,2,b x =-,若a b ∥,则x =__________.11.设1F 、2F 是椭圆22143x y +=的两个焦点,P 是椭圆上一点,若121PF PF -=,则1PF =__________,2PF =__________.12.已知ABC △的顶点()1,0,0A ,()0,2,0B ,()0,0,1C ,CD 是AB 边上的高,则点D的坐标为__________.13.已知命题p : 方程210x mx ++=有两个不相等的负根;命题q :方程()244210x m x +-+=无实根.若()p q ∨为真,()p q ∧为假,则m 的取值范围为__________.14.已知点()0,2A ,点()0,2B -,直线MA 、MB 的斜率之积为4-,记点M 的轨迹为C .(I )曲线C 的方程为__________.(II )设P ,Q 为曲线C 上的两点,满足OP OQ ⊥(O 为原点),则OPQ △面积的最小值是_________.三、解答题(本大题共3小题,共38分,解答应写出文字说明、证明过程或 演算步骤.)15.(本题满分12分)已知向量()2,1,2a --=,()1,1,4b =-. (I )计算23a b -和|23|a b -. (II )求,a b <>. 16.(本题满分14分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,3AC =,14BC CC ==. (I )求证:11AB C B ⊥.(II )求直线1C B 与平面11ABB A 所成的角的正弦值. 17.(本题满分12分)已知抛物线C 的顶点在坐标原点O ,焦点为()1,0F ,经过点F 的直线l 与抛物线C 相交于A 、B 两点.(I )求抛物线C 的标准方程.(II )若AOB △的面积为4,求||AB .CA 11C 1II 卷(共6道题,满分50分)一、填空题(本题共2小题,每题10分,共20分.请把结果填在答题纸上.)18.已知点P 为抛物线22y x =上的一个动点,过点P 作圆A :()223=1x y -+的两条切线PM 、PN ,切点为M 、N .(I )当PA 最小时,点P 的坐标为__________. (II )四边形PMAN 的面积的最小值为___________.19.在四面体ABCD 中,若E 、F 、H 、I 、J 、K 分别是棱AB 、CD 、AD 、BC 、AC 、BD 的中点,则EF 、HI 、JK 相交于一点G ,则点G 为四面体ABCD的重心.设()0,0,2A ,()2,0,0B ,()0,3,0C ,()2,3,2D . (I )重心G 的坐标为__________.(II )若BCD △的重心为M ,则||||AG GM =___________.二、解答题(本大题共2小题,满分30分.请把解答过程写在答题纸上.)20.(本题满分14分)已知椭圆C 的中心在坐标原点O ,两焦点分别为()13,0F -、)23,0F ,过点()0,2P 的直线l 与椭圆C 相交于A 、B 两点,且12AF F △的周长为423+. (I )求椭圆C 的标准方程.(II )若原点O 关于直线l 的对称点在椭圆C 上,求直线l 的方程. 21.(本题满分16分)如图(1),在ABC △中,1AC BC ==,90ACB ∠=︒,D 是AB 边上一点,沿CD 将图形折叠成图(2),使得二面角B CD A --是直二面角.(I )若D 是AB 边的中点,求二面角C AB D --的大小. (II )若2AD BD =,求点B 到平面ACD 的距离.(III )是否存在一点D ,使得二面角C AB D --是直二面角?若存在,求BDAD 的值;若不存在,请说明理由.ADD(1)PN(2)人大附中2015-2016学年度第一学期期末高二年级数学(理)练习&必修2-1模块考核试卷参考答案 I 卷(共17题,满分100分)一、选择题(本大题共8小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案ACCADCDA二、填空题(本大题共6小题,每小题5分,共30分)9. 22144x y -= 10. 4-11.52,32 12. 42,,055⎛⎫ ⎪⎝⎭13. (][)1,23,+∞ 14.(I )()22104y x x +=≠ (II )45 三、解答题(本大题共3小题,共38分)15. 解:(I )()()2322,1,231,1,4a b -=⋅---⋅-()()()()223,213,2234=⨯-⨯--⨯--⨯-()1,5,8=-()22223158310a b -=+-+=(II )()()()2222222111242cos ,2||||332212114a b a b a b ⨯+-⨯+-⨯-⋅<>====⋅⨯+-+-++-, 又[],0,a b π<>∈,故,4a b π<>=.16. 解:(I )证明:如图所示,连接1B C ,交1BC 于点O .由题意可知:在直三棱柱111ABC A B C -中,1CC ⊥底面ABC ,而AC ,BC ⊂平面ABC ,故由线面垂直的性质定理可得:1CC AC ⊥,1CC BC ⊥, 又90ACB ∠=︒,即AC BC ⊥,1BCCC C =, BC ,1CC ⊂平面11C CBB ,故由线面垂直的判定定理可得:AC ⊥平面11C CBB , 而1BC ⊂平面11C CBB ,故由线面垂直的性质定理可得:1AC BC ⊥, 又在正方形11C CBB 中,11BC B C ⊥, 1ACB C C =,AC ,1B C ⊂平面1AB C ,于是有:1BC ⊥平面1AB C ,而1AB ⊂平面1AB C ,故可得:11AB C B ⊥ .(II )以CA 所在直线为x 轴,CB 所在直线为y 轴,1CC 所在直线为z 轴建立如图所示的空间直角坐标系,由题意易知:A 点坐标为()3,0,0 ,B 点坐标为()0,4,0, 1A 点坐标为()3,0,4,1C 点坐标为()0,0,4, 故有:()3,4,0AB =-,()10,0,4AA =,()10,4,4C B =- , 设平面11ABB A 的法向量()000,,n x y z = , 则有:0AB n ⋅=,10AA n ⋅= ,即00034040x y z -+=⎧⎨=⎩ ,取04x =,可得:03y =, 故平面11ABB A 的法向量()4,3,0n =, 设直线1C B 与平面11ABB A 所成角为θ,则11||3sin 210||||542n C B n C B θ⋅===⋅⨯17. 解:(I )依题意可设:抛物线C 的标准方程为()220y px p =>, 由其焦点为()1,0F 易得:12p=,解得:2p =, 故所求抛物线C 的标准方程为24y x =,(II )① 当直线l 斜率不存在即与x 轴垂直时,易知:4AB =,此时AOB △的面积为1114222AOB S OF AB ==⨯⨯=△, 不符合题意,故舍去.②当直线l 斜率存在时,可设其为k ()0k ≠,则此时直线l 的方程为()1y k x =-, 将其与抛物线C 的方程:24y x =联立化简整理可得: ()2222220k x k x k -++=()0k ≠,设A B 、两点坐标分别为()11,x y ,()22,x y ,由韦达定理可得:()21222212222421k x x k k k x x k ⎧+⎪+==+⎪⎨⎪⋅==⎪⎩, 法1:由弦长公式可得:122244224AB x x p k k=++=++=+, 由点到直线的距离公式可得:坐标原点O 到直线l 的距离为21k d k =+,故AOB △的面积为2221141422211AOB kS AB d k k k k k ⎛⎫⎛==+=+ ⎝++⎝△ 222212141k k kk k ++===+,()2224116AOBk Sk +==△ 解得:3k =. 法2:()1212121242AOB AOF BOF k pS S S OF y y k x x x x =+=-=-=-△△△, 而()222121212224241616442411x x x x x x k k k k k ⎛⎫-=+-=+-⨯=+=+ ⎪⎝⎭ 故222421142AOBkk S k k k+=+==△, 解得:33k =±,213k =,又24412416AB k =+=+=, 因此,当AOB △的面积为4时,所求弦AB 的长为16.II 卷(共6道题,满分50分)一、填空题(本题共2小题,每题10分,共20分)18. (I )()2,2或()2,2- (II )2 19. (I )31,,12⎛⎫⎪⎝⎭(II )3 二、解答题(本大题共2小题,满分30分.)20. 解:(I )依题意可设椭圆C 的标准方程为()222210x y a b a b+=>>,由左右焦点坐标()13,0F -)23,0F 可知:3c =由12AF F △的周长为423+22423a c +=+ 于是得:2a =, 又()2220a b ca b =+>>,故可得:1b = ,所求椭圆C 的方程为2214x y +=.(II )由题意易知:直线l 的斜率存在,可设其为k , 故直线l 的方程为()20y kx k =+≠,设原点O 关于直线l 的对称点O '的坐标为()00,x y , 则线段OO '的中点D 的坐标为00(,)22x y , 由题意可知:点D 在直线l 上,故有00222y xk =+①, 点O 在椭圆C 上,故有220014x y +=②,线段OO '与直线l 垂直,故有0'01OO y k x k==-③, 由①③可得:02024141k x k y k ⎧=-⎪⎪+⎨⎪=⎪+⎩,将其代入②可得:5k =±故所求直线l 的方程为52y x =+或52y x =-+,21. 解:(I )法一:在图(1)中,1AC BC ==,90ACB ∠=︒,2AB =当D 为AB 边的中点时,122AD BD CD AB ====, 且有CD AB ⊥, 在图(2)中取AB 的中点M ,易知:在ABC △中,1CA CB ==,CM AB ⊥, 在ABD △中,22DA DB ==,DM AB ⊥, 故CMD ∠即为半平面CAB 与半平面DAB 所成角, 在图(2)中,CD AD ⊥,CD BD ⊥ ,又AD BD D =,AD ,BD ⊂平面ABD ,故由线面垂直的判定定理可得:CD ⊥平面ABD , 而DM ⊂平面ABD ,再由线面垂直的性质定理可得:CD DM ⊥, 因二面角B CD A --为直二面角,平面BCD 平面ACD CD =,且BD CD ⊥,BD ⊂平面BCD , 故BD ⊥平面ACD ,又AD ⊂平面ACD ,因此BD AD ⊥, 于是在Rt ABD △中,12122DM AB AD ===, 又在图(1)中,1222CD AB ==, 故在Rt CDM △中,223CM CD DM =+=132cos 32DM CMD CM ∠=== 可得3arccos 3CMD ∠=, 即所求二面角C AB D --的大小为3arccos3. 法二: 以DA 所在直线为x 轴,DC 所在直线为y 轴,DB 所在直线为z 轴建立如图所示的空间直角坐标系,由题意可知:A ,B ,C ,D 四点坐标分别为2(2A ,2(0,0,2B ,2(0,2C ,(0,0,0)D 于是有:22(AB =-,22(AC =- ,2(AD =-, 设平面ABC 的法向量()1111,,n x y z =,平面ABD 的法向量()2222,,n x y z =,则有11111122022220n AB x z n AC x y ⎧⋅=-+=⎪⎪⎨⎪⋅=-+=⎪⎩ ,即111x y z ==,2222222022202n AB x z n AD x ⎧⋅=-+=⎪⎪⎨⎪⋅=-=⎪⎩,即220x z ==,取11x =,21y =,可得平面ABC 的法向量为()11,1,1n =,平面ABD 的法向量()20,1,0n =, 设二面角C AB D --的大小为θ,由图(2)可知:θ为锐角,故12123cos =3n n n n θ⋅=,所以3arccos θ=, 因此,所求二面角C AB D --的大小为3. (II )在图(1)中,当2AD BD =时,有22233AD AB ==123BD AB ==, 过点D 作DG AC ∥交BC 于点G ,易知1133BG DG BC ===,2233CG BC == , 在Rt CDG △中, 2222125()()33CD CG DG =+=+=, 过点A 作AE CD ⊥于点E ,过点B 作BF CD ⊥于点F , 易得:22535AC BC AE CD ⨯=⋅=152BF AE ==, 于是:111333BCD ABC S S AC BC BF CD ==⨯=⨯=△△ , 222333ACD ABC S S AC BC AE CD ==⨯=⨯=△△, 在图(2)中,由二面角B CD A --为直二面角可知:AE ⊥平面BCD ,设点B 到平面ACD 的距离为d ,在三棱锥A BCD -中,有A BCD B ACD V V --=, 即:1133BCD ACD AE S d S ⨯=⨯△△ , 于是152BCD ACD AE S d AE S ⨯===△△, 故点B 到平面ACD 5(III )不存在一点D ,使得二面角C AB D --是直二面角. 证明:假设存在一点D ,使得二面角C AB D --是直二面角,B 点折起来之后到B '的位置如图,取M 为AB '中点,E 为AB 中点,连接CE ,CM ,EM . 因为AC CB =,AC CB '=,M 为AB '中点,所以CM AB '⊥,因为平面AB C '平面AB D AB ''=,又因为二面角C AB D --是直二面角, 所以CM ⊥平面AB D ', 因为EM ⊂平面AB D ',所以CM EM ⊥,所以CME △是直角三角形,90CME ∠=︒,所以CE CM >.在ABC △与AB C '△中,易知这两个等腰三角形中腰相等,底边AB AB '>,则BE B M '>, 又2222CE BC BE B C B M CM ''=--=, 与CE CM >矛盾,故假设不成立.所以不存在一点D ,使得二面角C AB D --是直二面角.D CAB'EMB人大附中2015-2016学年度第一学期期末高二年级数学(理)练习&必修2-1模块考核试卷选填解析一、选择题题号 1 2 3 4 5 6 7 8答案 A C C A D C D A1.【答案】A【解析】因为{1}A a =,,{1,2,3}B =,且A B ⊆,所以2a =或3a =,显然“3a =”是“2a =或3a =”的充分不必要条件,故选A . 2.【答案】C【解析】全称命题的否定是特称命题,并且否命题结论需要否定,所以原命题的否定为:x ∃∈R ,20x ≤, 故选C . 3.【答案】C【解析】1111()2222BD AD BA AC OA OB OC OA OA OB a b c =+=+-=-+-=-+,故选C . 4.【答案】A【解析】因为原命题为:若220a b +=,则a ,b 全为0, 所以逆命题:若a ,b 全为0,则220a b +=,故A 正确; 否命题:若220a b +≠,则a ,b 不全为0,故B 错误; 逆否命题:若a ,b 不全为0,则220a b +≠,故C 错误; 否定:若220a b +≠,则a ,b 不全为0,故D 错误;故选A . 5.【答案】D【解析】由已知可得双曲线的离心率为2222a b +=,解得3b a = 所以该双曲线的渐近线方程为3y x =30x y ±=,故选D . 6.【答案】C【解析】不妨设21||||PF PF >,1||PF x =,则2||4PF x =+, 由题意可知12||2456F F =+=,则222(4)6x x ++=, 解得142x =或142x =-(舍去),则2||142PF , 121211||||(142)(142)522PF F S PF PF =⋅⋅=⋅⋅=△,故选C .7.【答案】D【解析】不妨设2)A p ,则1(,)42pB ,易知焦点F 坐标为(,0)2p -, 由题意知A ,B ,F 221242pp -=--1p =, 则准线方程为122p x =-=-,故选D . 8.【答案】A【解析】因为动点(,)P x y 到两条坐标轴的距离之和等于它到点()1,1的距离, 所以22||||(1)(1)x y x y +=-+-,即||10xy x y ++-=, 当0xy ≥时,(1)(1)2x y ++=,当0xy <时,(1)(1)0x y --=,图像如右图所示,所以曲线W 关于直线y x =对称,不关于原点、x 轴、y 轴对称, 只有一个正确故选A .9.【答案】22144x y -=【解析】因为双曲线以y x =±为渐近线,所以该双曲线为等轴双曲线,不妨设方程为22(0)x y λλ-=≠.代入点(2,0)可得4λ=,所以该双曲线方程为224x y -=,化为标准式为22144x y-=.10.【答案】4- 【解析】由题意知242212x -===--,所以=4x -.11.【答案】52,32【解析】由P 是椭圆上一点,可知1224PF PF a +==,联立121PF PF -=, 解得15||2PF =,23||2PF =. .12.【答案】42(,,0)55【解析】(1,2,0)AB =-,不防设(,2,0)AD AB λλλ==-,则(1,2,0)D λλ-, 则(1,2,1)CD λλ=--,由题意可知CD AB ⊥,所以140CD AB λλ⋅=-+=, 解得15λ=,所以点D 坐标为42(,,0)55. 13.【答案】 (][)1,23,+∞【解析】由题意可知p ,q 一真一假, 若p 为真,由题意有2400m m ⎧->⎨-<⎩,解得2m >,若q 为真,由题意有2[4(2)]4410m ∆=--⨯⨯<,解得13m <<, 当p 真q 假时,可得3m ≥,当p 假q 真时,可得12m <≤, 综上知m 的取值范围为 (][)1,23,+∞ .14.【答案】()22104y x x +=≠ ;45【解析】(1)设(,)M x y ,由题意有224(0)y y x x x -+⋅=-≠,整理得()22104y x x +=≠, (2)不妨设(cos ,2sin )P αα,(cos ,2sin )Q ββ,由题意可知cos cos 4sin sin 0αβαβ+=, 因为0x ≠,所以可得1tan tan 4αβ=-,所以221tan tan 16αβ=,并且221tan tan 2|tan tan |2αβαβ+≥=,当且仅当1tan tan 2αβ=-=或1tan tan 2αβ=-=-时“=”成立. 222211||||cos +4sin cos +4sin 22OPQ S OQ OP ααββ=⋅=△222222221cos cos +16sin sin +4sin cos +4sin cos 2αβαβαββα2222222222221cos cos +16sin sin +4sin cos +4sin cos 2(sin +cos )(sin cos )αβαβαββαααββ=+22222222222222221cos cos +16sin sin +4sin cos +4sin cos 2cos cos +sin sin +sin cos +sin cos αβαβαββααβαβαββα分子分母同时除以22cos cos αβ可得原式2222222222221116tan tan 4tan 4tan 124tan 4tan 1721tan tan tan tan 2tan tan 16αβαβαβαβαβαβ++++++++++2213613618444121716(tan tan )225517162αβ=--⨯=+++⨯, 当且仅当1tan tan 2αβ=-=或1tan tan 2αβ=-=-时“=”成立, 此时面积最小为45.18.【答案】 (2,2)或(2,2)-,2【解析】(1)设(,)Pxy ,则22222||(3)(3)249(2)5PA x y x x x x x =-+=-+-+-+,显然当2x =时||PA 最小,此时2y =±,所以点P 坐标为(2,2)±. (2)因为PM 、PN 与圆相切,所以PM AM ⊥、PN AN ⊥, 2222||||||491(2)4PM PN PA r x x x ==--+--+,2211()12(2)4(2)422PAM PAN PMAN S S S r PM PN x x =+=+=⋅⋅-+-+四边形△△当2x =时,面积最小为2.19.【答案】3 (1,,1)2;3【解析】(1)设点G坐标为(,,)x y z,由重心的特征可知,则1(0202)14x=+++=,13(0033)42y=+++=,1(2002)14z=+++=,所以点3 (1,,1)2G;(2)同理点M的坐标为20203300242 (,,)(,2,) 33333++++++=,则3(1,,1)2AG=-,111(,,)322GM=-,有坐标易知3AG GM=,所以||3 ||AGGM=.。
北京海淀区北京大学附属中学2016-2017学年高二下学期期末考试数学(理)试题

人大附中2016-2017学年度第二学期期末高二年级数学(理科)练习一、选择题(共8道小题,每道小题5分,共40分,请将正确答案填涂在答题纸上.)1.设i 是虚数单位,则311i=-( ). A.11i 22- B. 11i 22+C. 1i -D. 1i +2.在极坐标系中,点π1,4⎛⎫ ⎪⎝⎭与点3π1,4⎛⎫⎪⎝⎭的距离为( ). A. 1B.C.D. 3.已知直线y=x+1与曲线y ln()x a =+相切,则α的值为 A. 1 B. 2C. -1D. -24.圆1,{1x y θθ=-+=+(θ为参数)被直线0y =截得的劣弧长为( )A.2B. πC.D. 4π5.直线πsin 44ρθ⎛⎫+= ⎪⎝⎭与圆π4sin 4ρθ⎛⎫=+ ⎪⎝⎭的位置关系是( ). A. 相交但不过圆心B. 相交且过圆心C. 相切D. 相离6.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A 0.378B. 0.3C. 0.58D. 0.9587.若函数21()ln 2f x x x =-在其定义域一个子区间(1,1)k k -+上不是单调函数,则实数k 的取值范围是( ). A. (1,2)B. [1,2)C. [0,2)D. (0,2)8.几个孩子在一棵枯树上玩耍,他们均不慎失足下落.已知.(1)甲在下落的过程中依次撞击到树枝A ,B ,C ; (2)乙在下落的过程中依次撞击到树枝D ,E ,F ; (3)丙在下落的过程中依次撞击到树枝G ,A ,C ; (4)丁在下落的过程中依次撞击到树枝B ,D ,H ; (5)戊在下落的过程中依次撞击到树枝I ,C ,E . 倒霉和李华在下落过程中撞到了从A 到I 的所有树枝,根据以上信息,在李华下落的过程中,和这9根树枝不同的撞击次序有( )种. A. 23B. 24C. 32D. 33二、填空题(共6道小题,每道小题5分,共30分.将正确答案填写在答题卡要求的空格中.) 9.若5()x a -的展开式中2x 项的系数是10,则实数a 的值是__________.10.在复平面上,一个正方形的三个项点对应的复数分别是0、12i +、2i -+,则该正方形的第四个顶点对应的复数是__________.11.设随机变量~(2,)B p ξ,~(4,)B p η,若5(1)9p ξ≥=,则(2)p η≥的值为__________. 12.设1a >,1b >,若ln 2ln 3a a b b -=-,则a ,b 大小关系为__________.13.抛物线2:4C x y =与经过其焦点F直线l 相交于A ,B 两点,若5AF =,则||AB = __________,抛物线C 与直线l 围成的封闭图形的面积为__________. 14.对于有n 个数的序列01:A a ,2a ,,(*)n a n ∈N ,实施变换T 得新序列112:A a a +,23a a +,,1n n a a -+,记作10()A T A =;对1A 继续实施变换T 得新序列210()(())A T A T T A ==,记作220()A T A =;,110()n n A T A --=.最后得到的序列1n A -只有一个数,记作0()S A . (1)若序列0A 为1,2,3,4,则序列2A 为__________. (2)若序列0A 为1,2,,n ,则序列0()S A =__________.三、解答题的的的15.已知函数2()f x ax bx c =++,[0,6]x ∈的图象经过(0,0)和(6,0)两点,如图所示,且函数()f x 的值域为[0,9].过该函数图象上的动点(,())P t f t 作x 轴的垂线,垂足为A ,连接OP .(I )求函数()f x 的解析式; (Ⅱ)记的面积为S ,求S 的最大值.16.某保险公司开设的某险种的基本保费为1万元,今年参加该保险的人来年继续购买该险种的投保人称为续保人,续保人的下一年度的保费与其与本年度的出险次数的关联如下:设今年初次参保该险种的某人准备来年继续参保该险种,且该参保人一年内出险次数的概率分布列如下:(1)求此续保人来年的保费高于基本保费的概率.(2)若现如此续保人来年的保费高于基本保费,求其保费比基本保费高出60%的概率. (3)求该续保人来年的平均保费与基本保费的比值.。
北京市2016-2017学年高二下学期期末数学试卷(理科) Word版含解析

A北京市 2016-2017 学年高二下学期期末试卷(理科数学)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每个小题给出的四个选项中,只有一个符合题目 要求的.1.在复平面内,复数 z=对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.在(x+2)4 的展开式中,x 2 的系数为( ) A .24 B .12 C .6 D .43.已知函数 f (x )=ln2x ,则 f′(x )=( )A .B .C .D .4.将一枚均匀硬币随机投掷 4 次,恰好出现 2 次正面向上的概率为( )A .B .C .D .5.函数 f (x )=﹣ x 2+lnx 的极值点是()A .x=﹣1B .x=﹣C .x=1D .x=6.5 名大学生被分配到 4 个地区支教,每个地区至少分配 1 人,其中甲乙两名同学因专业相同,不能分配 在同一地区,则不同的分配方法的种数为( ) A .120 B .144 C .216 D .2407.设 a ,b ,c 是正整数,且 a ∈[70,80),b ∈[80,90),c ∈[90,100],当数据 a ,b ,c 的方差最小时, a+b+c 的值为( ) A .252 或 253 B .253 或 254 C .254 或 255 D .267 或 2688.已知函数 f (x )=e x +ax ﹣2,其中 a ∈R ,若对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣ 1 2 1 2 2 1x •f(x )<a (x ﹣x )成立,则 a 的取值范围是( ) 1 2 1 2 A .[1,+∞) B .[2,+∞) C .(﹣∞,1]D .(﹣∞,2]二、填空题:本大题共 6 个小题,每小题 5 分.、共 30 分.9.函数 f (x )=cosx ,则 f′()= .10.定积分dx 的值为 .11.设(2x+1)3=a x 3+a x 2+a x+a ,则 a +a +a +a = .3 2 1 0 0 1 2 312.由数字 1,2 组成的三位数的个数是 (用数字作答).13.在平面几何里,有勾股定理“设△ABC 的两边 AB ,AC 互相垂直,则 AB 2+AC 2=BC 2”,拓展到空间,类比 平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥 ﹣BCD 的三个侧面 ABC 、ACD 、ADB 两两互相垂直,则 .”14.研究函数f(x)=的性质,完成下面两个问题:①将f(2)、f(3)、f(5)按从小到大排列为;②函数g(x)=(x>0)的最大值为.三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.15.在数列{a}中,a=1,a=n•a,n=2,3,4,….n1n n﹣1(Ⅰ)计算a,a,a,a的值;2345(Ⅱ)根据计算结果,猜想{a}的通项公式,并用数学归纳法加以证明.n16.已知函数f(x)=x3+3x2﹣9x;(1)求f(x)的单调区间;(2)若函数f(x)在区间[﹣4,c]上的最小值为﹣5,求c的取值范围.17.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如表,假设三个科目的考试甲是否成绩合格相互独立.科目A科目B科目C甲(Ⅰ)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X.求X的分布列和数学期望.18.口袋中装有2个白球和n(n≥2,n∈N*)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.(Ⅰ)用含n的代数式表示1次摸球中奖的概率;(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;(Ⅲ)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.19.已知函数f(x)=x2e x﹣b,其中b∈R.(Ⅰ)证明:对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤;1212(Ⅱ)讨论函数f(x)的零点个数(结论不需要证明).20.设L为曲线C:y=e x在点(0,1)处的切线.(Ⅰ)证明:除切点(0,1)之外,曲线C在直线L的上方;(Ⅱ)设h(x)=e x﹣ax+ln(x+1),其中a∈R,若h(x)≥1对x∈[0,+∞)恒成立,求a的取值范围.北京市2016-2017学年高二下学期期末试卷(理科数学)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,求出在复平面内,复数z对应的点的坐标,则答案可求.【解答】解:z==则在复平面内,复数z对应的点的坐标为:(,,),位于第一象限.故选:A.2.在(x+2)4的展开式中,x2的系数为()A.24B.12C.6D.4【考点】二项式系数的性质.【分析】直接根据二项式的展开式的通项公式即可求出.【解答】解:(x+2)4的展开式的通项公式为T=C r•24﹣r•x r,r+14令r=2,故展开式中x2的系数为C2•22=24,4故选:A.3.已知函数f(x)=ln2x,则f′(x)=()A.B.C.D.【考点】导数的运算.【分析】根据复合函数的导数公式进行求解即可.【解答】解:∵f(x)=ln2x,∴f′(x)===,故选:D4.将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】将一枚均匀硬币随机投掷4次,利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出恰好出现2次正面向上的概率.【解答】解:将一枚均匀硬币随机投掷4次,恰好出现2次正面向上的概率为:p==.故选:B.5.函数f(x)=﹣x2+lnx的极值点是()A.x=﹣1B.x=﹣C.x=1D.x=【考点】利用导数研究函数的极值.【分析】求出原函数的导函数,确定出函数的单调区间,由此求得函数的极值点.【解答】解:由f(x)=﹣x2+lnx,得f′(x)=(x>0),当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.∴函数f(x)在(0,1)上为增函数,在(1,+∞)上为减函数.∴函数f(x)=﹣x2+lnx的极值点为x=1.故选:C.6.5名大学生被分配到4个地区支教,每个地区至少分配1人,其中甲乙两名同学因专业相同,不能分配在同一地区,则不同的分配方法的种数为()A.120B.144C.216D.240【考点】排列、组合及简单计数问题.【分析】先求出没有限制要求的5名大学生被分配到4个地区支教,每个地区至少分配1人的种数,再排除甲乙两名同学分配在同一地区的种数,问题得以解决.【解答】解:5个人分成满足题意的4组只有1,1,1,2,即只有一个单位有2人,其余都是1人,故有C2A4=240种,54其中甲乙两名同学分配在同一地区的方法为C1A3=24种,43故甲乙两名同学因专业相同,不能分配在同一地区,则不同的分配方法的种数为240﹣24=216种,故选:C.7.设a,b,c是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据a,b,c的方差最小时,a+b+c的值为()A.252或253B.253或254C.254或255D.267或268【考点】极差、方差与标准差.【分析】设=,则数据a,b,c的方差s2=≥[(a﹣b)2+(b﹣c)2+(a﹣c)2],设a=b+m,c=b+n,则s2≥[m2+n2+(m+n)2],应该使得b=85,而当m+n=0,﹣1,1时,s2有可能取得最小值.【解答】解:设=,1 s s 1 s s则数据 a ,b ,c 的方差s 2=[(a ﹣b )2+(b ﹣c )2+(a ﹣c )2], 设 a=b+m ,c=b+n ,则 s 2≥[m 2+n 2+(m+n )2],= ≥取 b=85,当 m+n=0,﹣1, 时, 2 有可能取得最小值,m=﹣16,n=15 时, 2 取得最小值取 b=84,当 m+n=0,﹣1, 时, 2 有可能取得最小值,m=﹣15,n=16 时, 2 取得最小值== ..∴a+b+c=79+85+90=254,或 a+b+c=79+84+90=253. 故选:B .8.已知函数 f (x )=e x +ax ﹣2,其中 a ∈R ,若对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣ 1 2 1 2 2 1x •f(x )<a (x ﹣x )成立,则 a 的取值范围是( ) 1 2 1 2 A .[1,+∞) B .[2,+∞) C .(﹣∞,1] D .(﹣∞,2]【考点】利用导数研究函数的单调性.【分析】将不等式变形为:< 恒成立,构造函数 h (x )= ,转会为当 x <x12时,h (x )<h (x )恒成立,为了求 a 的范围,所以需要构造函数,可通过求导数,根据单调性来求它的1 2范围.【解答】解:∵对于任意的 x ,x ∈[1,+∞),且 x <x ,都有 x •f(x )﹣x •f(x )<a (x ﹣x )成立,1212211212∴不等式等价为< 成立,令 h (x )=,则不等式等价为当 x <x 时,h (x )<h (x )恒成立,1212即函数 h (x )在(0,+∞)上为增函数;h (x )=,则 h′(x )=≥0 在(0,+∞)上恒成立;∴xe x ﹣e x +2﹣a ≥0;即 a ﹣2≤xe x ﹣e x 恒成立, 令 g (x )=xe x ﹣e x ,∴g′(x )=xe x >0; ∴g (x )在(0,+∞)上为增函数; ∴g (x )>g (0)=﹣1; ∴2﹣a ≥1; ∴a ≤1.∴a 的取值范围是(﹣∞,1].A故选:C二、填空题:本大题共 6 个小题,每小题 5 分.、共 30 分.9.函数 f (x )=cosx ,则 f′()= ﹣ .【考点】导数的运算.【分析】求函数的导数,根据函数的导数公式代入直接进行计算即可. 【解答】解:∵f (x )=cosx ,∴f′(x )=﹣sinx ,f′()=﹣sin =﹣ ,故答案为:﹣10.定积分dx 的值为 .【考点】定积分.【分析】根据定积分的性质,然后运用微积分基本定理计算定积分即可.【解答】解:dx=2 x 2dx=2× x 3 = .故答案为: .11.设(2x+1)3=a x 3+a x 2+a x+a ,则 a +a +a +a = 27 . 321123【考点】二项式系数的性质.【分析】令 x=1 可得 a +a +a +a 的值.123【解答】解:令 x=1,a +a +a +a =33=27,0 1 2 3故答案为:2712.由数字 1,2 组成的三位数的个数是 8 (用数字作答). 【考点】排列、组合及简单计数问题. 【分析】直接根据分步计数原理可得.【解答】解:每一位置都有 2 种排法,故有 23=8 种, 故答案为:813.在平面几何里,有勾股定理“设△ABC 的两边 AB ,AC 互相垂直,则 AB 2+AC 2=BC 2”,拓展到空间,类比 平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥﹣BCD 的三个侧面 ABC 、ACD 、ADB 两两互相垂直,则 △S A BC2 △+S ACD △+S ADB 22=S△BCD2 .”【考点】类比推理.【分析】从平面图形到空间图形的类比【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:△S ABC 故答案为:2+S22=S2.△S ABC△ACD△+S ADB△BCD 2+S△ACD△+SADB22=S△BCD2.14.研究函数f(x)=的性质,完成下面两个问题:①将f(2)、f(3)、f(5)按从小到大排列为f(5)<f(2)<f(3);;②函数g(x)=(x>0)的最大值为e.【考点】利用导数研究函数的单调性.【分析】①利用导数判断在(0,e)递增,(e,+∞)递减得出f(3)>f(5),运用作差判断f(2)﹣f (5),f(2)﹣f(3)即可得出大小.②构造函数ln(g(x))=lnx(x>0),令h(x)=lnx(x>0),运用导数求解极大值,得出h(x)的极大值为h(e)=lne=,结合对数求解即可.【解答】解:①∵函数f(x)=,∴f′(x)=,f′(x)==0,x=e,f′(x)=,>0,x∈(0,e)f′(x)=<0,x∈(e,+∞)∴在(0,e)递增,(e,+∞)递减∴f(3)>f(5),∵f(2)﹣f(5)===>0∴f(2)>f(5)∵f(2)﹣f(3)==<0∴f(3)>f(2)故答案:f(5)<f(2)<f(3);②∵函数g(x)=(x>0),∴ln(g(x))=lnx(x>0)(令 h (x )= lnx (x >0),h′(x )=h′(x )=h′(x )=(1﹣lnx )=0,x=e(1﹣lnx )<0,x >e(1﹣lnx )>0,0<x <e∴h (x )= lnx (x >0),在(0,e )递增,在(e ,+∞)递减,h (x )的极大值为 h (e )= lne= ,∴函数 g (x )=(x >0)的最大值为 e ,故答案为:e三、解答题:本大题共 6 小题,共 80 分,解答应写出文字说明、证明过程或演算步骤. 15.在数列{a }中,a =1,a =n•a ,n=2,3,4,….n1nn ﹣1(Ⅰ)计算 a ,a ,a ,a 的值;2 3 4 5(Ⅱ)根据计算结果,猜想{a }的通项公式,并用数学归纳法加以证明.n【考点】数学归纳法;归纳推理. 【分析】(Ⅰ)利用已知条件通过 n=2,3,4,5 直接计算 a ,a ,a ,a 的值,2345(Ⅱ)根据(Ⅰ)的计算结果,猜想的通{a }项公式,用数学归纳法的证明步骤直接证明即可.n【解答】解:(Ⅰ)a =1,a =n•a ,1 n n ﹣1可得 n=2 时,a =2;n=3 时,a =6;2 3a =24,a =120 4 5(Ⅱ)猜想 a =n!.n证明:①当 n=1 时,由已知,a =1!=1,猜想成立.1②假设当 n=k (k ∈N *)时猜想成立,即 a =k!.k则 n=k+1 时,a =(k+1)a =(k+1)k!=(k+1)!.k+1 k所以 当 n=k+1 时,猜想也成立.根据 ①和 ②,可知猜想对于任何 n ∈N *都成立16.已知函数 f (x )=x 3+3x 2﹣9x ; (1)求 f (x )的单调区间;(2)若函数 f (x )在区间[﹣4,c]上的最小值为﹣5,求 c 的取值范围. 【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; 2)通过讨论 c 的范 围,求出函数的最小值,从而求出 c 的具体范围. 【解答】解:(1)函数 f (x )的定义域是 R , f′(x )=3x 2+6x ﹣9,令 f′(x )>0,解得:x >1 或 x <﹣3,令f′(x)<0,解得:﹣3<x<1,∴f(x)在(﹣∞,﹣3)递增,在(﹣3,1)递减,在(1,+∞)递增;(2)由f(﹣4)=20结合(1)得:c≥1时,函数f(x)在[﹣4,c]上的最小值是f(1)=﹣5,﹣4<c<1时,函数f(x)在区间[﹣4,c]上的最小值大于﹣5,故c的范围是[1,+∞).17.甲参加A,B,C三个科目的学业水平考试,其考试成绩合格的概率如表,假设三个科目的考试甲是否成绩合格相互独立.科目A科目B科目C甲(Ⅰ)求甲至少有一个科目考试成绩合格的概率;(Ⅱ)设甲参加考试成绩合格的科目数量为X.求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)记“甲至少有一个科目考试成绩合格”为事件M,利用对立事件概率计算公式能求出甲至少有一个科目考试成绩合格的概率.(Ⅱ)由题意得X的可能取值为0,1,2,3,分别求出相应的概率,由此能出X的分布列和EX.【解答】解:(Ⅰ)记“甲至少有一个科目考试成绩合格”为事件M,则P()=(1﹣)(1﹣)(1﹣)=,∴甲至少有一个科目考试成绩合格的概率:P(M)=1﹣P()=1﹣.(Ⅱ)由题意得X的可能取值为0,1,2,3,P(X=0)=(1﹣)(1﹣)(1﹣)=,P(X=1)=++(1﹣)×,P(X=3)=,,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)=∴X的分布列为:123X0PEX==.18.口袋中装有2个白球和n(n≥2,n∈N*)个红球,每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.(Ⅰ)用含n的代数式表示1次摸球中奖的概率;(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;(Ⅲ)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.【考点】古典概型及其概率计算公式.【分析】(Ⅰ)设“1次摸球中奖”为事件A,利用互斥事件概率加法公式能求出用含n的代数式表示1次摸球中奖的概率.(Ⅱ)由(Ⅰ)得若n=3,则1次摸球中奖的概率为p=,由此能求出3次摸球中,恰有1次中奖的概率.(Ⅲ)设“1次摸球中奖”的概率为p,则3次摸球中,恰有1次中奖的概率为f(p)=3p3﹣6p2+3p,(0<p <1),由此利用导数性质能求出当f(p)取得最大值时,n的值.【解答】解:(Ⅰ)设“1次摸球中奖”为事件A,则P(A)==.(Ⅱ)由(Ⅰ)得若n=3,则1次摸球中奖的概率为p=,∴3次摸球中,恰有1次中奖的概率为P(1)=3(Ⅲ)设“1次摸球中奖”的概率为p,则3次摸球中,恰有1次中奖的概率为:f(p)==3p3﹣6p2+3p,(0<p<1),∵f′(p)=9p2﹣12p+3=3(p﹣1)(3p﹣1),∴当p∈(0,)时,f(p)取得最大值,令=,解得n=2或n=1(舍),∴当f(p)取得最大值时,n的值为2.19.已知函数f(x)=x2e x﹣b,其中b∈R.=3×=.(Ⅰ)证明:对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤1212(Ⅱ)讨论函数f(x)的零点个数(结论不需要证明).【考点】利用导数研究函数的单调性.【分析】(Ⅰ)利用导数转化为求解最大值,最小值的差证明.;(Ⅱ)根据最大值为;f(﹣2)=分类当b<0时,当b=0时,当b=﹣b,f(x)的最小值为:﹣b,时,当0<b<时,当b>时,判断即可.【解答】解:(Ⅰ)f(x)的定义域R,且f′(x)=x(x+2)e x,令f′(x)=0则x=0,或x=﹣2,12f′(x)=x(x+2)e x,x(﹣∞,﹣2)﹣2 f′(x)+0(﹣2,0)﹣f(x)增函数极大值减函数﹣b,∴f(x)在区间(﹣∞,0]上的最大值为;f(﹣2)=∵x∈(﹣∞,0],∴f(x)=x2e x﹣b≥﹣b,∴f(x)的最小值为:﹣b,∴对于任意x,x∈(﹣∞,0],都有f(x)﹣f(x)≤f(x)﹣f(x)≤;1212最大值(Ⅱ)f′(x)=x(x+2)e x,函数f(x)=x2e x﹣b,当b<0时,函数f(x)=x2e x﹣b>0恒成立,函数f(x)的零点个数为:0当b=0时,函数f(x)=x2e x,函数f(x)的零点个数为:1当b=时,函数f(x)的零点个数为;2,当0<b<时,函数f(x)的零点个数为:3,当b>时,函数f(x)的零点个数为:1,20.设L为曲线C:y=e x在点(0,1)处的切线.(Ⅰ)证明:除切点(0,1)之外,曲线C在直线L的上方;(Ⅱ)设h(x)=e x﹣ax+ln(x+1),其中a∈R,若h(x)≥1对x∈[0,+∞)恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f′(0),从而求出切线方程即可;(Ⅱ)求出h(x)的导数,通过讨论a的范围,单调函数的单调区间,从而求出a的具体范围即可.【解答】解:(Ⅰ)设f(x)=e x,则f′(x)=e x,∴f′(0)=1,L的方程是y=x+1,令g(x)=f(x)﹣(x+1),则除切点之外,曲线C在直线L的上方等价于g(x)>0,(x∈R,x≠0),g(x)满足g(0)=0,且g′(x)=f′(x)﹣1=e x﹣1,当x<0时,g′(x)<0,故g(x)递减,当x>0时,g′(x)>0,故g(x)递增,∴g(x)>g(0)=0,∴除切点(0,1)之外,曲线C在直线L的上方;﹣a,(Ⅱ)h(x)的定义域是{x|x>﹣1},且h′(x)=e x+①a≤2时,由(Ⅰ)得:e x≥x+1,∴h′(x)=e x+﹣a≥x+1+﹣a≥2﹣a≥0,∴h(x)在[0,+∞)递增,∴h(x)≥h(0)=1恒成立,符合题意;②a>2时,由x∈[0,+∞),且h′(x)的导数h″(x)=≥0,∴h′(x)在区间[0,+∞)递增,∵h′(0)=2﹣a<0,h′(lna)=>0,于是存在x∈(0,+∞),使得h′(x)=0,00∴h(x)在区间(0,x)上递减,在区间(x,+∞)递增,00∴h(x)<h(0)=1,此时,h(x)≥1不会恒成立,不合题意,综上,a的范围是(﹣∞,2].。
人大附中高二下数学期末考试含答案

人大附中第二学期期末考试高二年级数学选修2-3模块考核试卷说明:本试卷分A 、B 卷,共23道小题,满分150分,考试时间120分钟;请在密封线内填写个人信息.A 卷(满分100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填在括号中.)1. 有三本不同的书,一个人去借,至少借一本的方法有( )A .3种B .6种C .7种D .9种2. 已知()20,XN σ且()20P X -<≤0.4=,则()2P x >为( )A .0.1B .0.2C .0.3D .0.43. 某班有30名男生,20名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为( )A .221302046C C CB .555503020C C C -- C .514415*********C C C C C -- D .322330203020C C C C +4. 一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产一件次品,要赔20元,已知这台机器生产出甲等、乙等和次品的概率分别为0.6、0.3和0.1,则这台机器每生产一件产品平均预期可获利( ) A .36元 B .37元 C .38元 D .39元5. 从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放进第1号内,那么不同的放法共有( )A .24108C A 种B .1599C A 种 C .1589C A 种D .1588C A 种6. 在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为( )A .120-B .120C .15-D .157. 在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[)0.4,1B .(]0,0.4C .(]0,0.6D .[)0.6,18. 设有一个回归直线方程为ˆ2ybx =+,变量x 增加一个单位时,变量y 平均减少2.5个单位,则当1x =时,直线必过定点( )A .()2.5,2-B .()1,0.5-C .()2.5,4.25D .()1,4.59. 设()880181x a a x a x +=+++,则018,,,a a a 中奇数的个数为( )A .2B .3C .4D .510. 设集合{}1,2A =,{}1,2,3B =,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点(),P a b ,记“点(),P a b 落在直线x y n +=上”为事件n C (25n ≤≤,n ∈N ),若事件n C 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在横线上.)11. 在市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个甲厂生产的合格灯泡的概率是 .12. 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站法的位置,则不同的站法总数是 .(用数字作答).13. 若321nx x ⎛⎫+ ⎪⎝⎭的展开式中只有第6项的系数最大,则常数项为 .14. 某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各自射击是否击中目标相互之间没有影响,有下列结论,其中正确结论的序号是 (写出所有正确结论的序号).①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是30.90.1⨯; ③他至少击中目标1次的概率是410.1-.三、解答题(本大题共3小题,共34分.解答应写出文字说明证明过程或演算步骤).15. (本题满分10分)暑假期间有6名男生和4名女生到某社区参加社会实践活动,现在要选出5名同学参加清理社区小广告的活动:(I)选出5人中,恰好有3名女生的选法数有多少种?(II)选出5人中,女生至多有二人被选中的选法有多少种?16. (本题满分12分)设15个同类型的零件中有2个次品,每次任取1个,共取3次,并且每次取出后不再放回.若以X表示取出次品的个数.(I)求X的分布列;(II)求X的数学期望()D X.E X和方程()17. (本题满分12分)某单位为绿化环境,移栽了甲、乙两种大树各2株,设甲、乙两种大树移栽的成活率分别为23和12,且各株大树是否成活互不影响,求移栽的4株大树中:(I)两种大树各成活1株的概率;(II)成活的株数 的分布列与期望.B 卷(满分50分)一、填空题(每小题6分)1. 在ABC △中,点D 、E 分别在边AB 、AC 上且DE BC ∥,49ADE ABC S S =△△, 则AEEC= ,ADE CDE S S =△△ .2. 已知函数()y f x =(x ∈R )在任一点()()00,x f x 处的切线斜率为()()20021k x x =-+,则该函数的单调递减区间为 .3. 如图,OA 和OB 是O 的半径,并且OA OB ⊥,P 是线段OA 上任意一点,BP 的延长线交O 的切线交OA 的延长线于R ,则RP 、RQ 的大小关系是 .RQP BAO4. 下面给出的类比推理命题中,结论正确的序号是①“若33a b ⋅=⋅,则a b =”类比推出“若00a b ⋅=⋅,则a b =”;②“若()a b c ac bc +=+”类比推出“a b a bc c c+=+(0c ≠)”; ③“,a b ∈R ,若0a b -=,则a b =”类比推出“,a b ∈C ,0a b -=,则a b =”(C 为复数集);④“,a b ∈R ,若0a b ->,则a b >”类比推出“,a b ∈C ,若0a b ->,则a b >”(C 为复数集);⑤“圆的周长πc d =”类比推出“球的表面积2πs d =”;⑥“三角形的三条内角平分线交于一点”类比推出“四面体的六个二面角的平分面交于一条直线”.二、解答题(每题13分,共26分)5. (本题13分)如图所示,将一矩形花坛ABCD 扩建成一个更大的巨型花坛AMPN ,要求M 在AB 的延长线上,N 在AD 的延长线上,且对角线MN 过C 点.已知3AB =,2AD =(单位:米). (I )设AN x =米,要使花坛AMPN 的面积大于32平方米,求x 的取值范围; (II )若[)3,4x ∈(单位:米),则当AMAN 的长度分别是多少时,花坛AMPN 的面积最大?并求出最大面积?PNMD CB A6. (本题13分)已知函数()321213f x ax x x =+++(0a ≤).(I )求函数()f x 在()()0,0f 处的切线方程;(II )若函数()f x 在()2,1--上单调递减,且在()0,1上单调增,求实数a 的取值范围; (III )当1a =-时,若(]0,0x t ∀∈,函数()f x 的切线中总存在一条切线与函数()f x 在0x 处的切线垂直,求t 的最小值.A 卷一、CADBCCABAD二、11.0.605 12.336 13.210 14.①③ 三、15.(I )60;(II )246.16.(I )(II )5;175. 17.(I )29; (II )3. B 卷一、1.2;2 2.(),2-∞ 3.RP RQ = 4.②③⑤ 二、5.(I )()82,8,3⎛⎫+∞ ⎪⎝⎭;(II )3AN =米,9AM =米时,最大面积为27米26.(I )()0,1;(II )[]4,0-;(III )解不等式()0f t '≥即得,min 1t =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年北京人大附中高二理科下学期人教B版数学期末考试试卷一、选择题(共8小题;共40分)1. 二项式a−18的展开式中,最大的二项式系数为 A. C84B. −C84C. C95D. −C952. 在检验吸烟与患肺炎是否有关的一次统计中,根据2×2列联表中数据计算得x2≈6.234,则下列说法正确的是 A. 有99%的把握认为吸烟与患肺炎有关B. 有99%的把握认为吸烟与患肺炎无关C. 有95%的把握认为吸烟与患肺炎有关D. 有95%的把握认为吸烟与患肺炎无关3. 若离散型随机变量X的分布列函数为P X=k=k10,k=1,2,3,4,则P X>1= A. 110B. 310C. 710D. 9104. 用一个“+”号和一个“−”号将数字1,2,3连成算式,不同的运算结果共有 A. 12种B. 6种C. 4种D. 3种5. 根据统计数据,某产品的销售额y对广告费用x(单位:百万元)的线性回归方程为y=5.7x+18.6,则下列说法不正确的是 A. 若下一销售季再投入5百万元广告费,则估计销售额约可达47.1百万元B. 已知统计数据中的平均销售额为41.4百万元,则平均广告费为4百万元C. 广告费用x和销售额y之间的相关系数不能确定正负,但其绝对值趋于1D. 5.7的含义是广告费用每增加1百万元,销售额大约增长5.7百万元左右6. 甲手中有扑克牌的大小王牌和四色A各一张,共6张牌,现让乙和丙各从中随机抽取一张,则在乙抽到大王牌的情况下,丙抽到小王牌的概率为 A. 16B. 15C. 115D. 1307. 已知一批10000只白炽灯泡的光通量X∼N200,100,则这批灯泡中光通量X>220个数大约为 (参考数据:若X:Nμ,σ2,则X在区间μ−σ,μ+σ,μ−2σ,μ+2σ,μ−3σ,μ+3σ内的概率分别为68.3%,95.4%,99.7%)A. 230B. 460C. 4770D. 95408. 一箱电子产品有6件,其中2件次品,4件正品,现不放回地进行抽检,每次抽检一件,直到检验出所有次品为止,那么抽检次数X的数学期望为 A. 143B. 133C. 3D. 83二、填空题(共6小题;共30分)9. 若高二期末考试的数学成绩X∼N90,25,则这次考试数学的平均分为,标准差为.10. 甲、乙、丙、丁四人站一排照相,甲不与乙、丙相邻,不同的排法共有种.11. 某志愿团由10名同学构成,其中3名学生会干部,现从中随机选取4名同学去支教.则选取的学生会干部人数不少于2的概率为.12. 若1−mx5=a0+a1x+a2x2+⋯+a5x5,且a5=−32,则a1+a2+a3+a4的值为.13. 一个袋中装有8个乒乓球,其中6个黄色,2个白色,每次从袋中随机摸出1个乒乓球,若摸到白球则停止,一共有3次摸球机会.记X为停止摸球时的摸球次数.(1)若每次摸出乒乓球后不放回,则E X=;(2)若每次摸出乒乓球后放回,则D X=.14. 甲、乙两支足球队比赛,甲获胜的概率为12,平局的概率为14,乙获胜的概率为14,下一赛季这两支球队共有5场比赛,在下一赛季中:(1)甲获胜3场的概率为;(2)若胜一场积3分,平一场积1分,负一场积0分,则甲的积分的数学期望为.三、解答题(共3小题;共39分)15. 箱子中有五张分别写着数字0,1,2,3,4的卡片,现从中随机抽取2张组成一个两位数,这个两位数的个位数字与十位数字之和为X.(1)可以组成多少个不同的两位数?(2)求X能被3整除的概率;(3)求X的分布列和数学期望.16. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,我国PM 2.5标准采用世卫组设定的最宽限值,即PM 2.5日均值在25微克/立方米以下空气质量为一级,在35微克/立方米∼75微克/立方米之间空气质量为二级,在75微克/立方米以上空气质量为超标.某市环保局从市区2012年全年每天的PM 2.5监测数据中随机抽取15天的数据作为样本,监测值如图所示茎叶图(左侧十位为茎,右侧个位为叶).(1)从这15天的数据中任取3天的数据,记X表示期中空气质量达到一级的天数,求X的分布列;(2)以这15天的PM 2.5日均值来估计一年的空气质量情况,则一年(按照360天计算)中大约有多少天的空气质量达到一级.17. 某企业有甲、乙两个研发小组,他们研发一件新产品成功的概率分别为34和23,本年度计划研发的新产品件数分别为2件和1件.设甲、乙两组的每次研发均相互独立.(1)求该企业本年度至少有一件新产品研发成功的概率;(2)已知研发一件新产品的成本为10百万元,成功研发一件新产品可获得50百万元的销售额,求该企业本年度在这3件新产品上获得的利润X的分布列和数学期望.四、选择题(共3小题;共15分)18. 如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AC=CE=3,AB=4,则AD的长为 A. 32B. 2 C. 52D. 319. 已知1+x x+1x n的展开式中没有常数项,则n的值可能是 A. 9B. 10C. 11D. 1220. 已知x i∈−1,0,1,i=1,2,3,4,5,6,则满足x1+x2+x3+x4+x5+x6=2的数组x1,x2,x3,x4,x6的个数为 A. 60B. 75C. 90D. 120五、填空题(共2小题;共10分)21. (1)若函数f x=ln x−ax有极值,则函数f x的单调递增区间是;(2)若函数g x=x ln x−12ax2−x有极值,则实数a的取值范围是.22. 某数学兴趣小组举行了一次趣味口答竞赛,共有5名同学参加.竞赛分两个环节:抢答环节和抽答环节,其中抢答环节共有4道题,抽答环节仅有1道题.(1)假设抢答环节每人抢答成功的概率均相等,则甲同学成功抢答2次的概率是;(2)已知抢答环节有3名同学成功抢答,抽答环节从装有5名同学名签的纸盒中随机抽取:第一次采取有放回地抽取,若第一次抽到的是抢答成功的同学,则从第二次开始采取无放回地抽取,整个抽答环节抽到未抢答成功的同学即停止.那么抽取的次数X的数学期望E X=.六、解答题(共1小题;共13分)23. 已知函数f x=x2+x+1e x.(1)求函数y=f x的单调区间;(2)若曲线y=f x与直线y=b b∈R有3个交点,求实数b的取值范围;(3)过点P−1,0可作几条直线与曲线y=f x相切?请说明理由.答案第一部分 1. A 【解析】二项式 a −1 8 的展开式中,最大的二项式系数为 C 84.2. C 【解析】由 x 2≈6.234>3.841,所以有 95% 的把握认为吸烟与患肺炎有关.3. D【解析】离散型随机变量 X 的分布列函数为 P X =k =k10,k =1,2,3,4,则 P X >1 =P X =2 +P X =3 +P X =4 =210+310+410=910. 4. D【解析】因为 1+2−3=0,1−2+3=2,1+3−2=2,1−3+2=0,2+1−3=0,2−1+3=4,2+3−1=4,2−3+1=0,3+1−2=2,3−1+2=0,3+2−1=4,3−2+1=2,所以不同的运算结果共有 3 种. 5. C【解析】对于A ,若下一销售季再投入 5 百万元广告费,则估计销售额约可达 y =5.7×5+18.6=47.1 百万元,正确;对于B ,x =4,y =5.7×4+18.6=41.4,正确;对于C ,广告费用 x 和销售额 y 之间的相关系数能确定正负,其绝对值趋于 1,不正确; 对于D ,根据回归系数的定义,可知正确. 6. B【解析】设乙抽到大王,丙抽到小王,则 P A =16,P AB =16×15=130,所以在乙抽到大王牌的情况下,丙抽到小王牌的概率:P B ∣A =P ABP A=1301=15.7. A【解析】因为变量服从正态分布 X ∼N 200,100 ,所以 μ=200,σ=10,所以 P X >220 =12× 1−0.954 =0.023,所以这批灯泡中光通量 X >220 个数大约为 10000×0.023=230.8. A 【解析】由题意知 X 的可能取值为 2,3,4,5,6,P X =2 =26×15=115,P X =3 =C 21⋅26⋅45⋅14=215, P X =4 =C 31⋅26⋅45⋅34⋅13=15,P X =5 =C 41⋅26⋅45⋅34⋅23⋅12=415, P X =6 =C 51⋅26⋅45⋅34⋅23⋅12⋅11=13,所以抽检次数 X 的分布列为:X23456P 12141EX =2×115+3×215+4×15+5×415+6×13=143. 第二部分 9. 90,5【解析】因为成绩 X ∼N 90,25 ,所以这次考试数学的平均分为 90,标准差为 5. 10. 4【解析】由题意,甲在两头,则排列方法为 2×A 22=4 种. 11. 13【解析】某志愿团由 10 名同学构成,其中 3 名学生会干部,现从中随机选取 4 名同学去支教,基本事件总数 n =C 104=210,选取的学生会干部人数不少于 2 人包含的基本事件个数 m =C 72C 32+C 71C 33=70,所以选取的学生会干部人数不少于 2 人的概率 p =m n=70210=13.12. 274【解析】在 1−mx 5=a 0+a 1x +a 2x 2+⋯+a 5x 5 中,令 x =0,可得 a 0=1, 因为令 x =1,可得 a 0+a 1+a 2+⋯+a 5= 1−m 5.因为 a 5=C 55⋅m 5=−32,所以 m =−2,则 1+a 1+a 2+a 3+a 4−32= 1−m 5=35=243, 所以 a 1+a 2+a 3+a 4=243+31=274. 13. 167,183256【解析】(1)由题意知 X 的可能取值为 1,2,3, P X =1 =28=14, P X =2 =68×27=314,P X =3 =68×57×26+68×57×46=1528, 所以 X 的分布列为:X 123P1315EX =1×14+2×314+3×1528=167.(2)由题意知 X 的可能取值为 1,2,3, P X =1 =28=14, P X =2 =68×28=316,P X =3 =68×68×28+68×68×68=916,所以 X 的分布列为:X 123P139EX =1×1+2×3+3×9=37,D X = 1−3716 2×14+ 2−3716 2×316+ 3−3716 2×916=183. 14. 516,354【解析】(1)甲获胜的概率为 12,所以 5 场比赛中甲获胜 3 场的概率为 C 53⋅ 12 3⋅ 1−12 2=516;(2)因为甲获胜的概率为 12,平局的概率为 14,甲输的概率为 14,且胜一场积 3 分,平一场积 1 分,负一场积 0 分,所以甲积分的数学期望为 E =5×12×3+5×14×1+5×14×0=354.第三部分15. (1) 箱子中有五张分别写着数字 0,1,2,3,4 的卡片,现从中随机抽取 2 张组成一个两位数,可以组成不同的两位数的个数 n =4×4=16. (2) X 能被 3 整的情况有: ①0+3=3,此时构成的两位数是 30, ②1+2=3,此时构成的两位数是 12,21, ③2+4=6,此时构成的两位数是 24,42, 所以 X 能被 3 整除的概率 p =1+2+216=516.(3) 由题意得 X 的可能取值为 1,2,3,4,5,6,7, P X =1 =116, P X =2 =116, P X =3 =1+216=316,P X =4 =1+216=316, P X =5 =2+216=416,P X =6 =216, P X =7 =216,所以 X 的分布列为:X1234567P1133422EX =1×116+2×116+3×316+4×316+5×416+6×216+7×216=358.16. (1) 依据条件,X 服从超几何分布,其中 N =15,M =5,n =3. X 的可能值为 0,1,2,3. 其分布列为:P x =k =C 5k ⋅C 103−kC 153 k =0,1,2,3 .X 0123P2445202(2) 依题意可知,一年中每天空气质量达到一级的概率为 P =515=13;一年中空气质量达到一级的天数为 Y ,则 E Y =360×13=120(天). 所以一年中大约有 120 天的空气质量达到一级.17. (1) 记 E = 甲组研发新产品成功 ,F = 乙组研发新产品成功 .由题设知 P E =34,P E =14,P F =23,P F =13,且事件 E 与 F ,E 与 F ,E 与 F ,E 与 F 都相互独立. 记 H = 至少有一种新产品研发成功 ,则 = 所以 ===14×14×13=148,故该企业本年度至少有一件新产品研发成功的概率为: P H =1−P H =1−148=4748.(2) 设企业可获利润为 X (百万元),则 X 的可能取值为 −30,20,70,120. 因为 P X =−30 =P EEF =14×14×13=148,P X =20 =P EEF +P EEF +P EEF=3×1×1+1×3×1+1×1×2=1. P X =70 =P EEF +P EEF +P EEF=14×34×23+34×14×23+34×34×13=716. P X =120 =P EEF =34×34×23=38,所以该企业本年度在这 3 件新产品上获得的利润 X 的分布列为:X −302070120P1481671638 所以 EX =−30×148+20×16+70×716+120×38=100(百万元). 第四部分18. A 【解析】连接 DE ,因为 ACED 是圆的内接四边形, 所以 ∠BDE =∠BCA , 因为 ∠DBE =∠CBA , 所以 △BDE ∽△BCA , 所以BE BA=DE CA.因为 CD 是 ∠ACB 的平分线, 所以 AD =DE ,因为 AC =CE =3,AB =4, 所以 4DA =3BE ,即 BE =43DA , 设 AD =DE =t ,则 BE =43t ,根据割线定理得BD⋅BA=BE⋅BC,所以AB−AD⋅BA=43DA⋅43DA+CE ,所以4−t×4=43t43t+3,所以2t2+9t−18=0,解得t=32,或t=−6(舍),即AD=32.19. B 【解析】因为1+x x+1x2n的展开式中没有常数项,所以 x+1x n的展开式中没有常数项与含1x的项,x+1x2n的展开式中的通项公式:T r+1=C n r x n−r1x2r=C n r x n−3r r=0,1,2,⋯,n.经过验证:只有取n=10时,10−3r≠0,−1.因此n的值可能是10.20. C【解析】根据题意,因为x1+x2+x3+x4+x5+x6=2,x i∈0,1,−1,i=1,2,3,4,5,6;所以x i中有2个1和4个0,或3个1,1个−1和2个0,或4个1和2个−1,共有C62+C63C32+C64=90个,所以满足x1+x2+x3+x4+x5+x6=2的数组x1,x2,x3,x4,x6的个数为90个.第五部分21. 0,1a , −∞,1e【解析】(1)f x=ln x−ax的定义域是0,+∞,fʹx=1x −a=1−axx,若函数f x=ln x−ax有极值,则a>0,令fʹx>0,解得:0<x<1a;(2)f x=x ln x−12ax2−x的定义域是0,+∞,fʹx=ln x−ax,若函数f x有极值,则fʹx=ln x−ax有解,即y=ln x和y=ax有交点,①a≤0时,显然有解,②a>0时,设y=ln x和y=ax相切的切点是x0,ln x0,所以切线方程是:y=1x0x,故ln x0=1x0⋅x0,解得:x0=e,所以y=ln x和y=ax相切时,a=1e,若y=ln x和y=ax有交点,只需a<1e,综上:a<1e.22. 2125,2.2【解析】(1)抢答环节所有可能的抢答情况共有54种,而甲成功抢答2次的情况有C52=10种,所以甲同学成功抢答2次的概率为1054=2125.(2)X的所有可能取值为1,2,3,4,5,则P X=1=25,P X=2=35×25=625,P X=3=35×35×24=950,P X=4=35×35×24×23=325,P X=5=35×35×24×13×22=350,所以抽取的次数X的数学期望E X=1×25+2×625+3×950+4×325+5×350=2.2.第六部分23. (1)fʹx=x−x2e−x,由fʹx>0,可得0<x<1,fʹx<0,可得x<0或x>1,所以函数的单调递增区间是0,1,单调递减区间是−∞,0,1,+∞.(2)由(1),f0=1,f1=3e,因为曲线y=f x与直线y=b b∈R有3个交点,所以1<b<3e.(3)设切点为m,n,则fʹm=m−m2e−m,所以切线方程为y−n=m−m2e−m x−m,代入−1,0,整理可得m3+m2+1=0,设g m=m3+m2+1,gʹm=3m2+2m,由gʹm>0,可得m<−23或m>0,gʹm<0,可得−23<m<0,所以函数g m的单调递减区间是 −23,0,单调递增区间是 −∞,−23,0,+∞;因为g −23>0,g0>0,所以g m=0有唯一解,所以过点P−1,0可作1条直线与曲线y=f x相切.。