最新全国各地2011届高考数学试题汇编:空间向量在立体几何中的应用1

合集下载

空间向量在立体几何中的应用(重点知识+高考真题+模拟精选)

空间向量在立体几何中的应用(重点知识+高考真题+模拟精选)

空间向量在⽴体⼏何中的应⽤(重点知识+⾼考真题+模拟精选)空间向量在⽴体⼏何中的应⽤【重要知识】⼀、求平⾯法向量的⽅法与步骤:1、选向量:求平⾯的法向量时,要选取两个相交的向量,如AC AB ,2、设坐标:设平⾯法向量的坐标为),,(z y x n =3、解⽅程:联⽴⽅程组=?=?0AC n AB n ,并解⽅程组4、定结论:求出的法向量中三个坐标不是具体的数值,⽽是⽐例关系。

设定某个坐标为常数得到其他坐标⼆、利⽤向量求空间⾓: 1、求异⾯直线所成的⾓:设b a ,为异⾯直线,点C A ,为a 上任意两点,点D B ,为b 上任意两点,b a ,所成的⾓为θ,则BDAC BD AC ??=θcos【注】由于异⾯直线所成的⾓θ的范围是:?≤设直线l 的⽅向向量为a ,平⾯α的法向量为n ,直线l 与平⾯α所成的⾓为θ,a 与n所成的⾓为?,则na n a ??==?θcos sin【注】由于直线与平⾯所成的⾓θ的范围是:?≤≤?900θ,因此0sin ≥θ 3、求⼆⾯⾓:设21,n n 分别为平⾯βα,的法向量,⼆⾯⾓βα--l 为θ,则>=<21,n n θ或><-21,n n π,其中212121,cos n n n n n n ??>=<三、利⽤向量求空间距离: 1、求点到平⾯的距离设平⾯α的法向量为n ,,α?A α∈B ,则点A 到平⾯α的距离为nn AB ?2、求两条异⾯直线的距离设21,l l 是两条异⾯直线,n 是公垂线段AB 的⽅向向量,D C ,分别为21,l l 上的任意两点,则21l l 与的距离为nn CD AB ?=【重要题型】1、(2012⼴东,理)如图所⽰,在四棱锥ABCD P -中,底⾯ABCD 为矩形,ABCD PA 平⾯⊥,点E 在线段PC 上,BDE PC 平⾯⊥(1)证明:PAC BD 平⾯⊥(2)若2,1==AD PA ,求⼆⾯⾓A PC B --的正切值2、(2013⼴东,理)如图①,在等腰三⾓形ABC 中,?=∠90A ,6=BC ,E D ,分别是AB AC ,上的点,2==BE CD ,O 为BC 的中点。

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。

高中数学空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量学案含解析

高中数学空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量学案含解析

1.2.2 空间中的平面与空间向量导思1.什么是平面的法向量?它在解决线面位置关系中有何用途? 2.什么是三垂线定理及其逆定理?1.平面的法向量(1)定义:如果α是空间中的一个平面,n 是空间中的一个非零向量,且表示n 的有向线段所在的直线与平面α垂直,则称n 为平面α的一个法向量.此时也称n 与平面α垂直,记作n ⊥α. (2)性质:如果A ,B 是平面α上的任意不同两点,n 为平面α的一个法向量,则: 1 若直线l ⊥α,则l 的任意一个方向向量都是平面α的一个法向量 2 对任意实数λ≠0,λn 是平面α的一个法向量 3向量AB → 一定与n 垂直,即AB →·n =0平面α的法向量唯一吗?它们有什么共同特征? 提示:不唯一,都平行.2.空间线面的位置关系与空间向量若v 是直线l 的一个方向向量,n 1,n 2分别是平面α1,α2的一个法向量,则:1 n 1∥v ⇔l ⊥α12 n 1⊥v ⇔l ∥α1或l ⊂α13 n 1⊥n 2⇔α1⊥α24 n 1∥n 2⇔α1∥α2或α1,α2重合已知v 是直线l 的一个方向向量,n 是平面α的一个法向量,如果n ⊥v ,那么直线l 一定与平面α平行吗?提示:不一定,也可能l ⊂α. 3.三垂线定理及其逆定理 射影已知平面α和一点A ,过点A 作α的垂线l ,设l 与α相交于点A′,则A′就是点A在平面α内的射影,也称为投影.三垂线定理如果平面内的一条直线与平面的一条斜线在该平面内的射影垂直,则它也和这条斜线垂直.三垂线定理的逆定理如果平面内的一条直线和这个平面的一条斜线垂直,则它也和这条斜线在该平面内的射影垂直.1.辨析记忆(对的打“√”,错的打“×”).(1)已知直线l垂直于平面α,向量a平行直线l,则a是平面α的法向量.()(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.()(3)若a是平面α的一条斜线,直线b垂直于a在α内的射影,则a⊥b.()提示:(1)×.向量a必须为非零向量.(2)√.(3)×.因为b不一定在平面α内,所以a与b不一定垂直.2.若a=(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是() A.(0,1,2) B.(3,6,9)C.(-1,-2,3) D.(3,6,8)【解析】选B.向量(1,2,3)与向量(3,6,9)共线.3.(教材例题改编)已知PO⊥平面ABC,且O为△ABC的垂心,则AB与PC的关系是________.【解析】因为O为△ABC的垂心,所以CO⊥AB.又因为OC为PC在平面ABC内的射影,所以由三垂线定理知AB⊥PC.答案:垂直关键能力·合作学习类型一 平面的法向量(数学运算)1.若两个向量AB → =(1,2,3),AC →=(3,2,1),则平面ABC 的一个法向量 为( )A .(-1,2,-1)B .(1,2,1)C .(1,2,-1)D .(-1,2,1)2.已知点A(2,-1,2)在平面α内,n =(3,1,2)是平面α的一个法向量,则下列点P 中,在平面α内的是( ) A .P(1,-1,1)B .P ⎝⎛⎭⎫1,3,32C .P ⎝⎛⎭⎫1,-3,32D .P ⎝⎛⎭⎫-1,3,-343.正四棱锥如图所示,在向量PA → -PB → +PC → -PD → ,PA → +PC → ,PB → +PD → ,PA → +PB → +PC →+PD →中,不能作为底面ABCD 的法向量的是________.【解析】AB → =(1,2,3),AC →=(3,2,1), 设平面ABC 的一个法向量n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AB →=x +2y +3z =0n ·AC →=3x +2y +z =0 ,取x =-1,得平面ABC 的一个法向量为(-1,2,-1).2.选B.设P(x ,y ,z),则AP →=(x -2,y +1,z -2); 由题意知,AP → ⊥n ,则n ·AP →=0;所以3(x -2)+(y +1)+2(z -2)=0,化简得3x +y +2z =9. 验证得在A 中,3×1-1+2×1=4,不满足条件; 在B 中,3×1+3+2×32 =9,满足条件; 同理验证C 、D 不满足条件.3.连接AC ,BD ,交于点O ,连接OP ,则OP → 是底面ABCD 的一个法向量,PA → -PB → +PC → -PD →=BA → +DC → =0,不能作为底面ABCD 的法向量;PA → +PC → =-2OP →,能作为底面ABCD 的法向量;PB → +PD → =-2OP → ,能作为底面ABCD 的法向量;PA → +PB → +PC → +PD → =-4OP →,能作为底面ABCD 的法向量.答案:PA → -PB → +PC → -PD →求平面ABC 的一个法向量的方法1.平面垂线的方向向量法:证明一条直线为一个平面的垂线,则这条直线的一个方向向量即为所求.2.待定系数法:步骤如下:类型二 三垂线定理及其逆定理的应用(直观想象、逻辑推理)【典例】如图所示,三棱锥P-ABC 中,PA ⊥平面ABC ,若O ,Q 分别是△ABC 和△PBC 的垂心,求证:OQ ⊥平面PBC.【思路导引】利用三垂线定理及其逆定理证明【证明】如图,连接AO 并延长交BC 于点E ,连接PE.因为PA ⊥平面ABC ,AE ⊥BC(由于O 是△ABC 的垂心), 所以PE ⊥BC ,所以点Q 在PE 上.因为⎩⎪⎨⎪⎧AE ⊥BC ,PE ⊥BC ,AE ∩PE =E ⇒BC ⊥平面PAE ⇒BC ⊥OQ.①连接BO 并延长交AC 于点F ,则BF ⊥AC. 连接BQ 并延长交PC 于点M ,则BM ⊥PC. 连接MF.因为PA ⊥平面ABC ,BF ⊥AC , 所以BF ⊥PC(三垂线定理).因为⎩⎪⎨⎪⎧BM ⊥PC ,BF ⊥PC ,BM ∩BF =B ⇒PC ⊥平面BMF ⇒PC ⊥OQ.②由①②,知OQ ⊥平面PBC.利用三垂线定理及其逆定理证明线线垂直的基本环节在正方体ABCD-A 1B 1C 1D 1中,求证:A 1C ⊥平面BDC 1.【证明】连接AC,CD1,在正方体中,AA1⊥平面ABCD,所以AC是A1C在平面ABCD内的射影,又AC⊥BD,所以BD⊥A1C.同理D1C是A1C在平面CDD1C1内的射影.所以C1D⊥A1C.又C1D∩BD=D,所以A1C⊥平面BDC1.类型三利用空间向量证明线面、面面的位置关系(逻辑推理)证明平行问题角度1【典例】如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q 是CC1上的点.当点Q在什么位置时,BQ∥平面PAO?【思路导引】建立恰当的坐标系,设出点Q的坐标,由BQ∥平面PAO确定其位置即可.【解析】建立如图所示的空间直角坐标系Dxyz,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2). 再设Q(0,2,c),所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,c),BD 1=(-2,-2,2). 设平面PAO 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·OA →=0,n ·OP →=0, 所以⎩⎪⎨⎪⎧x -y =0,-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n =(1,1,2). 若BQ ∥平面PAO ,则n ⊥BQ ,所以n ·BQ → =0,即-2+2c =0,所以c =1, 故当Q 为CC 1的中点时,BQ ∥平面PAO.本例若把“Q 是CC 1上的点”改为“Q 是CC 1的中点”,其他条件不变,求证:平面D 1BQ ∥平面PAO.【证明】建立如图所示的空间直角坐标系,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2),Q(0,2,1), 所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,1),BD 1=(-2,-2,2). 设平面PAO 的法向量为n 1=(x ,y ,z), 则⎩⎪⎨⎪⎧n 1·OA →=0n 1·OP →=0 ,所以⎩⎪⎨⎪⎧x -y =0-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n 1=(1,1,2).同理可求平面D 1BQ 的一个法向量为n 2=()1,1,2 , 因为n 1=n 2,所以n 1∥n 2, 所以平面D 1BQ ∥平面PAO.角度2证明垂直问题【典例】在如图所示的几何体中,平面CDEF 为正方形,平面ABCD 为等腰梯形,AB ∥CD ,AB =2BC ,∠ABC =60°,AC ⊥FB. (1)求证:AC ⊥平面FBC ;(2)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.【思路导引】(1)利用余弦定理和勾股定理的逆定理可得AC ⊥BC ,再利用已知AC ⊥FB 和线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,利用两个平面的法向量是否垂直即可. 【解析】(1)因为AB =2BC ,∠ABC =60°,在△ABC 中,由余弦定理可得AC 2=AB 2+BC 2-2AB ·BCcos 60°=3BC 2, 所以AC 2+BC 2=4BC 2=AB 2, 所以∠ACB =90°,所以AC ⊥BC. 又因为AC ⊥FB ,FB ∩BC =B , 所以AC ⊥平面FBC.(2)线段ED 上不存在点Q ,使平面EAC ⊥平面QBC. 证明如下:因为AC ⊥平面FBC , 所以AC ⊥FC.因为CD ⊥FC ,所以FC ⊥平面ABCD.所以CA ,CF ,CB 两两互相垂直,如图建立空间直角坐标系.在等腰梯形ABCD 中,可得CB =CD.设BC =1,所以C(0,0,0),A(3 ,0,0),B(0,1,0),D(32 ,-12 ,0),E ⎝ ⎛⎭⎪⎪⎫32,-12,1 .所以CE → =⎝⎛⎭⎪⎪⎫32,-12,1 ,CA →=(3 ,0,0),CB →=(0,1,0).设平面EAC 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·CE →=0n ·CA →=0 ,所以⎩⎨⎧32x -12y +z =03x =0,取z =1,得n =(0,2,1).假设线段ED 上存在点Q , 设Q ⎝⎛⎭⎪⎫32,-12,t (0≤t≤1),所以CQ →=⎝ ⎛⎭⎪⎫32,-12,t . 设平面QBC 的法向量为m =(a ,b ,c),则⎩⎪⎨⎪⎧m ·CB →=0m ·CQ →=0 ,所以⎩⎨⎧b =032a -12b +tc =0,取c =1,得m =⎝ ⎛⎭⎪⎫-2t 3,0,1 .要使平面EAC ⊥平面QBC ,只需m·n =0, 即-23t×0+0×2+1×1=0,此方程无解.所以线段ED上不存在点Q,使平面EAC⊥平面QBC. 利用空间向量证明平行、垂直问题的常用思路线面平行(1)求出直线l的方向向量是a,平面α的法向量是u,只需证明a⊥u,即a·u=0.(2)在平面内找一个向量与已知直线的方向向量是共线向量即可.面面平行(1)转化为相应的线线平行或线面平行.(2)求出平面α,β的法向量u,v,证明u∥v即可说明α∥β.线面垂直求出平面内两条相交直线的方向向量,证明直线的方向向量和它们都垂直.面面垂直(1)转化为线面垂直.(2)求解两个平面的法向量,证明两个法向量垂直.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1∥平面ADE;(2)平面ADE∥平面B1C1F.【解析】如图所示建立空间直角坐标系,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),所以FC1=(0,2,1),DA → =(2,0,0),AE → =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA → ,n 1⊥AE → ,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0n 1·AE →=2y 1+z 1=0 ⇒⎩⎪⎨⎪⎧x 1=0z 1=-2y 1 , 令z 1=2⇒y 1=-1,所以n 1=(0,-1,2),因为n 1·1FC =-2+2=0,所以n 1⊥1FC , 又因为FC 1⊄平面ADE ,即FC 1∥平面ADE.(2)因为11C B =(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥1FC ,n 2⊥11C B ,得21222112FC 2y z 0C B 2x 0⎧=+=⎪⎨==⎪⎩n n ⇒⎩⎪⎨⎪⎧x 2=0z 2=-2y 2. 令z 2=2⇒y 2=-1,所以n 2=(0,-1,2),所以n 1=n 2,所以平面ADE ∥平面B 1C 1 F.2.在正方体ABCD-A 1B 1C 1D 1中,E 是BC 的中点,在CC 1上求一点P ,使平面A 1B 1P ⊥平面C 1DE.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,如图所示,设正方体棱长为2,且P(0,2,a),则D(0,0,0),E(1,2,0),C 1(0,2,2),A 1(2,0,2),B 1(2,2,2),则DE → =(1,2,0),1DC =(0,2,2),设n 1=(x 1,y 1,z 1)且n 1⊥平面DEC 1,则⎩⎪⎨⎪⎧x 1+2y 1=0y 1+z 1=0 ,取n 1=(2,-1,1). 又1A P =(-2,2,a -2),11A B =(0,2,0),设n 2=(x 2,y 2,z 2)且n 2⊥平面A 1B 1P ,则⎩⎪⎨⎪⎧-2x 2+2y 2+(a -2)z 2=0y 2=0 ,取n 2=(a -2,0,2). 由平面A 1B 1P ⊥平面C 1DE ,得n 1·n 2=0,1的中点.【补偿训练】在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD 垂直于底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F.求证:(1)PA ∥平面EDB.(2)PB ⊥平面EFD.K【证明】建立如图所示的空间直角坐标系.D 是坐标原点,设DC =a.(1)连接AC 交BD 于G ,连接EG ,依题意得D(0,0,0),A(a ,0,0),P(0,0,a),E ⎝⎛⎭⎫0,a 2,a 2 . 因为底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0 ,所以EG → =⎝⎛⎭⎫a 2,0,-a 2 .又PA → =(a ,0,-a),所以PA → =2EG → ,这表明PA ∥EG.而EG ⊂平面EDB ,且PA ⊄平面EDB ,所以PA ∥平面EDB.(2)依题意得B(a ,a ,0),PB → =(a ,a ,-a),DE → =⎝⎛⎭⎫0,a 2,a 2 ,所以PB → ·DE → =0+a 22 -a 22 =0,所以PB → ⊥DE → ,即PB ⊥DE.又已知EF ⊥PB ,且EF∩DE =E ,所以PB ⊥平面EFD.课堂检测·素养达标1.设直线l 的方向向量为a ,平面α的法向量为n ,l ⊄α,则使l ∥α成立的是( )A .a =(1,-1,2),n =(-1,1,-2)B .a =(2,-1,3),n =(-1,1,1)C .a =(1,1,0),n =(2,-1,0)D .a =(1,-2,1),n =(1,1,2)【解析】l 的方向向量为a ,平面α的法向量为n ,l ⊄α,使l ∥α成立,所以a·n =0, 在A 中,a·n =-1-1-4=-6,故A 错误;在B 中,a·n =-2-1+3=0,故B 成立;在C 中,a·n =2-1=1,故C 错误;在D 中,a·n =1-2+2=1,故D 错误.2.(教材练习改编)若平面α与β的法向量分别是a =(2,4,-3),b =(-1,2,2),则平面α与β的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 【解析】选B.a·b =(2,4,-3)·(-1,2,2)=-2+8-6=0,所以a ⊥b ,所以平面α与平面β垂直.3.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)【解析】选A.设平面α内一点P(x ,y ,z),则:MP → =(x -1,y +1,z -2),因为n =(6,-3,6)是平面α的法向量,所以n ⊥MP → ,n ·MP → =6(x -1)-3(y +1)+6(z -2)=6x -3y +6z -21,所以由n ·MP → =0得6x -3y +6z -21=0,所以2x -y +2z =7,把各选项的坐标数据代入上式验证可知A 适合.4.正三棱锥P-ABC 中,BC 与PA 的位置关系是________.【解析】如图,在正三棱锥P-ABC 中,P 在底面ABC 内的射影O 为正三角形ABC 的中心,连接AO ,则AO 是PA 在底面ABC 内的射影,且BC ⊥AO ,所以BC ⊥PA.答案:BC ⊥PA。

空间向量在立体几何中的应用(1)

空间向量在立体几何中的应用(1)

立体几何中的向量方法(一)【高考会这样考】1.通过线线、线面、面面关系考查空间向量的坐标运算. 2.能用向量方法证明直线和平面位置关系的一些定理. 3.利用空间向量求空间距离. 【复习指导】本讲复习中要掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离.基础梳理1.空间向量的坐标表示及运算 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3); ②λa =(λa 1,λa 2,λa 3); ③a ·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.2.立体几何中的向量方法(1)直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB→平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.(2)用向量证明空间中的平行关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. (3)用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. (4)点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.一种思想向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面向量定理和空间向量基本定理的进一步深化和规范,是对向量大小和方向的量化: (1)以原点为起点的向量,其终点坐标即向量坐标; (2)向量坐标等于向量的终点坐标减去其起点坐标.得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,计算空间成角和距离等问题. 三种方法主要利用直线的方向向量和平面的法向量解决下列问题:(1)平行⎩⎨⎧直线与直线平行直线与平面平行平面与平面平行(2)垂直⎩⎨⎧直线与直线垂直直线与平面垂直平面与平面垂直(3)点到平面的距离求点到平面距离是向量数量积运算(求投影)的具体应用,也是求异面直线之间距离,直线与平面距离和平面与平面距离的基础.双基自测1.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是( ).A .平行B .相交C .垂直D .不确定 解析 ∵v 2=-2v 1,∴v 1∥v 2. 答案 A2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4) 解析 ∵n =(6,-3,6)是平面α的法向量,∴n ⊥MP →,在选项A 中,MP →=(1,4,1),∴n ·MP →=0. 答案 A3.已知点A ,B ,C ∈平面α,点P ∉α,则AP →·AB →=0,且AP →·AC →=0是AP →·BC→=0的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析 由⎩⎪⎨⎪⎧AP →·AB →=0AP →·AC →=0,得AP →·(AB →-AC →)=0,即AP →·CB →=0,亦即AP →·BC →=0,反之,若AP →·BC →=0,则AP →·(AC →-AB →)=0⇒AP →·AB →=AP →·AC →,未必等于0.答案 A4.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ).A .a ∥c ,b ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对 解析 ∵c =(-4,-6,2)=2(-2,-3,1)=2a ,∴a ∥c ,又a·b =-2×2+(-3)×0+1×4=0,∴a ⊥b . 答案 C5.已知AB→=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是________. 解析 设平面ABC 的法向量n =(x ,y ,z ). 则⎩⎪⎨⎪⎧AB →·n =0,AC →·n =0,即⎩⎨⎧2x +2y +z =0,4x +5y +3z =0.令z =1,得⎩⎪⎨⎪⎧x =12,y =-1,∴n =⎝ ⎛⎭⎪⎫12,-1,1,∴平面ABC 的单位法向量为±n |n|=±⎝ ⎛⎭⎪⎫13,-23,23. 答案 ±⎝ ⎛⎭⎪⎫13,-23,23考向一 利用空间向量证明平行问题【例1】如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .[审题视点] 直接用线面平行定理不易证明,考虑用向量方法证明.证明 法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN→=⎝ ⎛⎭⎪⎫12,0,12, 设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1→=0,且n ·DB →=0,得⎩⎨⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1.∴n =(1,-1,-1). 又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n ,又MN ⊄平面A 1BD ,∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C → =12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为了数量的计算问题.【训练1】如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB→=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB→=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2. ∴PB→=2FE →+2FG →,又∵FE→与FG →不共线,∴PB →、FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .考向二 利用空间向量证明垂直问题【例2】如图所示,在棱长为1的正方体OABC -O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤1,以O 为原点建立空间直角坐标系O -xyz .(1)求证A 1F ⊥C 1E ;(2)若A 1,E ,F ,C 1四点共面求证:A 1F →=12A 1C 1→+A 1E →.[审题视点] 本题已建好空间直角坐标系,故可用向量法求解,要注意找准点的坐标. 证明 (1)由已知条件A 1(1,0,1),F (1-x,1,0),C 1(0,1,1),E (1,x,0), A 1F →=(-x,1,-1),C 1E →=(1,x -1,-1), 则A 1F →·C 1E →=-x +(x -1)+1=0, ∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .(2)A 1F →=(-x,1,-1),A 1C 1→=(-1,1,0),A 1E →=(0,x ,-1), 设A 1F →=λA 1C 1→+μA 1E →,⎩⎨⎧-x =-λ,1=λ+μx ,-1=-μ,解得λ=12,μ=1. ∴A 1F →=12A 1C 1→+A 1E →.证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与平面垂直,平面与平面垂直可转化为直线与直线垂直证明.【训练2】 如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ;(2)PD ⊥平面ABE .证明 AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1). (1)∵∠ABC =60°,△ABC 为正三角形. ∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12.设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝⎛⎭⎪⎫0,233,0, ∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD→=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一 ∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1. 又AE →·PD →=34×233+12×(-1)=0, ∴PD →⊥AE →,即PD ⊥AE .AB →=(1,0,0),∴PD →·AB →=0,∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB . 法二 AB→=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12, 设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝⎛⎭⎪⎫0,233,-1,显然PD→=33n . ∵PD→∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE .考向三 利用向量求空间距离【例3】在三棱锥SABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示,求点B 到平面CMN 的距离. [审题视点] 考虑用向量法求距离,距离公式不要记错. 解 取AC 的中点O ,连接OS 、OB . ∵SA =SC ,AB =BC ,∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,∴SO ⊥BO .如图所示,建立空间直角坐标系O -xyz ,则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2).∴CM→=(3,3,0),MN →=(-1,0,2),MB →=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =3x +3y =0,MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1).∴点B 到平面CMN 的距离d =|n ·MB→||n |=423.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |, 所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.【训练3】如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥ 平面BCD ,AB =2 3. (1)求点A 到平面MBC 的距离; (2)求平面ACM 与平面BCD 所成二面角的正弦值.解 取CD 中点O ,连OB ,OM ,则OB ⊥CD ,OM ⊥CD . 又平面MCD ⊥平面BCD ,则MO ⊥平面BCD .取O 为原点,直线OC 、BO 、OM 为x 轴、y 轴、z 轴,建立空间直角坐标系如图.OB =OM =3,则各点坐标分别为C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23).(1)设n =(x ,y ,z )是平面MBC 的法向量,则BC →=(1,3,0),BM →=(0,3,3),由n ⊥BC→得x +3y =0;由n ⊥BM →得3y +3z =0. 取n =(3,-1,1),BA→=(0,0,23),则d =|BA →·n ||n |=235=2155.(2)CM→=(-1,0,3),CA →=(-1,-3,23). 设平面ACM 的法向量为n 1=(x ,y ,z ),由n 1⊥CM →,n 1⊥CA →得⎩⎨⎧-x +3z =0,-x -3y +23z =0,解得x =3z ,y =z ,取n 1=(3,1,1). 又平面BCD 的法向量为n 2=(0,0,1).所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=15. 设所求二面角为θ,则sin θ=255.规范解答15——立体几何中的探索性问题【问题研究】高考中立体几何部分在对有关的点、线、面位置关系考查的同时,往往也会考查一些探索性问题,主要是对一些点的位置、线段的长度,空间角的范围和体积的范围的探究,对条件和结论不完备的开放性问题的探究,这类题目往往难度都比较大,设问的方式一般是“是否存在?存在给出证明,不存在说明理由.”【解决方案】解决存在与否类的探索性问题一般有两个思路:一是直接去找存在的点、线、面或是一些其他的量;二是首先假设其存在,然后通过推理论证或是计算,如果得出了一个合理的结果,就说明其存在;如果得出了一个矛盾的结果,就说明其不存在.【示例】(本小题满分14分) (2011·福建)如图,四棱锥P ABCD中,P A⊥底面ABCD.四边形ABCD中,AB⊥AD,AB+AD=4,CD=2,∠CDA=45°.(1)求证:平面P AB⊥平面P AD;(2)设AB=AP.(ⅰ)若直线PB与平面PCD所成的角为30°,求线段AB的长;(ⅱ)在线段AD上是否存在一个点G,使得点G到点P、B、C、D的距离都相等?说明理由.(1)可先根据线线垂直,证明线面垂直,即可证得面面垂直.(2)由于题中PB与平面PCD所成的角不好作出,因此用向量法求解.至于第2小问,可先假设点G存在,然后推理得出矛盾或列出方程无解,从而否定假设.[解答示范](1)因为P A⊥平面ABCD,AB⊂平面ABCD,所以P A⊥AB.又AB⊥AD,P A∩AD=A,所以AB⊥平面P AD.又AB⊂平面P AB,所以平面P AB⊥平面P AD.(4分)(2)以A为坐标原点,建立空间直角坐标系Axyz(如图).在平面ABCD内,作CE∥AB交AD于点E,则CE⊥AD.在Rt△CDE中,DE=CD·cos 45°=1,CE=CD·sin 45°=1.设AB=AP=t,则B(t,0,0),P(0,0,t).由AB+AD=4得,AD=4-t,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),C D →=(-1,1,0),P D →=(0,4-t ,-t ).(6分) (ⅰ)设平面PCD 的法向量为n =(x ,y ,z ), 由n ⊥C D →,n ⊥P D →,得⎩⎨⎧-x +y =0,(4-t )y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ).又P B →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|P B →|, 即|2t 2-4t |t 2+t 2+(4-t )2·2t 2=12,解得t =45或t =4(舍去),因为AD =4-t >0,所以AB =45.(9分)(ⅱ)法一 假设在线段AD 上存在一个点G ,使得点G 到P ,B ,C ,D 的距离都相等, 设G (0,m,0)(其中0≤m ≤4-t ),则G C →=(1,3-t -m,0),G D →=(0,4-t -m,0),G P →=(0,-m ,t ). 由|G C →|=|G D →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m ;(1)由|G D →|=|G P →|得(4-t -m )2=m 2+t 2.(2)由(1)、(2)消去t ,化简得m 2-3m +4=0.(3)(12分)由于方程(3)没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等.(14分)法二 (1)同法一.(2)(ⅰ)以A 为坐标原点,建立空间直角坐标系Axyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD . 在Rt △CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t ,则B (t,0,0),P (0,0,t ), 由AB +AD =4得AD =4-t .所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0),C D →=(-1,1,0),P D →=(0,4-t ,-t ).设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥C D →,n ⊥P D →,得⎩⎨⎧-x +y =0,(4-t )y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又P B →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|P B →|, 即|2t 2-4t |t 2+t 2+(4-t )2·2t2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),所以 AB =45.法二 假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,从而∠CGD =90°,即CG ⊥AD ,所以GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ,(11分)在Rt △ABG 中,GB =AB 2+AG 2=λ2+(3-λ)2=2⎝ ⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.(14分)[解答示范] ∵函数y =c x 在R 上单调递减,∴0<c <1.(2分)即p :0<c <1.∵c >0且c ≠1,∴非p :c >1.(3分)又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数, ∴c ≤12.即q :0<c ≤12.∵c >0且c ≠1,∴非q :c >12且c ≠1.(6分)又∵“p ∨q ”为真,“p ∧q ”为假,∴p 真q 假或p 假q 真.(7分)①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 12<c <1;(9分)②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.(11分) 综上所述,实数c的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 12<c <1.(12分)探索性问题只要根据设问把问题确定下来就变为了普通问题,解题的关键是如何把要探索的问题确定下来,如本题第(2)问,法一是先设出G 点,由条件列出方程无解知G 点不存在.法二是由已知先确定G 点,然后推理得出矛盾,故G 点不存在.。

空间向量在立体几何中的应用

空间向量在立体几何中的应用

1
1
BA (1,1,2),CB (0,1,2), BA CB 3,
1
1
1
1
BA 6, CB 5..
z C1
B1
1
1
BA CB 1
A1
M
cos BA CB 1 1 30.
1 1 BA CB 10
1
1
N
(3) 依题意得C (0,0,2), M(1 , 1 ,2),
练习:
B' C'
在三棱柱ABC A' B 'C '中,
A'
底面是正三角形,AA' 底面ABC,
A'C AB ',求证:BC ' AB '
0 A'C AB ' (c a) (b a)
C
B
2
cbcaaba
A
2
a

c
b

1
2
BC' AB' (c a b) (b a)
设底面边长为2,高为h, 坐标法
如图建立空间直角坐标系.
C
B
A
A( 3,0,0), B(0,1,0),C(0,1,0).
A'( 3,0, h), B'(0,1, h),C'(0,1, h).
AB ' ( 3,1, h), A'C ( 3, 1, h), BC ' (0, 2, h)
3
3
C
几何法呢?
2 DC 1 DE
3
3
所以MN、DC、DE共面

2011高考数学立体几何大题汇总

2011高考数学立体几何大题汇总

2011高考数学立体几何大题汇总D因此可取n=(3,1,3)设平面PBC 的法向量为m ,则 00m PB m BC ⋅=⋅=可取m=(0,-1,3-)27cos ,727m n ==-故二面角A-PB-C 的余弦值为277-2如图,四棱锥S ABCD -中, AB CD ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成角的大小.解法一: (I )取AB 中点E ,连结DE ,则四边形BCDE为矩形,DE=CB=2, 连结SE ,则, 3.SE AB SE ⊥= 又SD=1,故222ED SE SD =+,所以DSE ∠为直角。

…………3分 由,,AB DE AB SE DE SE E ⊥⊥=,得AB ⊥平面SDE ,所以AB SD ⊥。

SD 与两条相交直线AB 、SE 都垂直。

所以SD ⊥平面SAB 。

…………6分(II )由AB ⊥平面SDE 知, 平面ABCD ⊥平面SED 。

作,SF DE ⊥垂足为F ,则SF ⊥平面ABCD ,3SD SE SF DE⨯== 作FG BC ⊥,垂足为G ,则FG=DC=1。

连结SG ,则SG BC ⊥, 又,BC FG SG FG G ⊥=,故BC ⊥平面SFG ,平面SBC ⊥平面SFG 。

…………9分作FH SG ⊥,H 为垂足,则FH ⊥平面SBC 。

37SF FG FH SG ⨯==,即F 到平面SBC 的距离为217 由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 的距离d 也有217 设AB 与平面SBC 所成的角为α,则2121sin arcsin 77d EBαα=== …………12分解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C —xyz 。

设D (1,0,0),则A (2,2,0)、B (0,2,0)。

2011年高考数学一轮精品复习课件:第7章《立体几何》——空间向量在立体几何中的应用(1)

2011年高考数学一轮精品复习课件:第7章《立体几何》——空间向量在立体几何中的应用(1)
学案8
空间向量在立体几何 中的应用
1.平面的法向量
直线l⊥α,取直线l的 做平面α的法向量.
方向向量a,则 向量a 叫
2.直线l的方向向量是u=(a1,b1,c1),平面α的法向 量v=(a2,b2,c2),则l∥α

u· v=0

a1a2+b1b2+c1c2=0 .
返回目录
3.设直线l的方向向量是u=(a1,b1,c1),平面α的法 向量v=(a2,b2,c2),则 l⊥α ⇔u∥v ⇔ (a1,b1,c1)=k(a2,b2,c2) ⇔ a1=ka2,b1=kb2,c1=kc2 . 若平面α的法向量u=(a1,b1,c1),平面β的法向量 v=(a2,b2,c2),则 a1a2+b1b2+c1c2=0 u· v=0 ⇔u⊥v ⇔ α⊥β ⇔ .
由已知<DH,DA>=60°,
由DA· DH=|DA||DH|cos<DH,DA>,
2m 2 + 1 可得2m=
解得m=
.
2 2 2 ,所以DH= ( , ,1). 2 2 2
返回目录
2 2 ×0 + × 0 + 1× 1 2 2 2 (1)因为cos<DH,CC′>= = 2 1× 2 所以<DH,CC′>=45°,即DP与CC′所成的角为45°.
4.空间的角
(1)若异面直线l1和l2的方向向量分别为u1和u2,l1
与l2所成的角为α,则cosα=
|cos<u1,u2>| . 返回目录
(2)已知直线l的方向向量为v,平面α的法向量为u,l与α的 |cos<v,u>|. 夹角为α,则sinα=

空间向量在立体几何中的应用答案word精品文档5页

空间向量在立体几何中的应用答案word精品文档5页

17. 解析 (1)因为a ∥b ,所以x -2=4y =1-1, 解得x =2,y =-4,这时a =(2,4,1),b =(-2,-4,-1).又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2).(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1),设(a +c )与(b +c )夹角为θ,因此cos θ=5-12+338·38=-219. 18. 证明 AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1).(1)∵∠ABC =60°,∴△ABC 为正三角形.∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD→=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0, ∴CD →=⎝ ⎛⎭⎪⎫-12,36,0. 又AE →=⎝ ⎛⎭⎪⎫14,34,12, ∴AE →·CD →=-12×14+36×34=0, ∴AE→⊥CD →,即AE ⊥CD . (2)证法一 ∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1. 又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE .AB →=(1,0,0),∴PD →·AB→=0, ∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB .证法二 ∵AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12, ∵设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧ x =014x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n . ∵PD→∥n ,∴PD →⊥平面ABE , 即PD ⊥平面ABE .19.如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D -xyz . 则DA →=(1,0,0),CC ′→=(0,0,1).连接BD ,B ′D ′.在平面BB ′D ′D 中,延长DP 交B ′D ′于H .设DH→=(m ,m,1)(m >0), 由已知〈DH →,DA →〉=60°,由DA →·DH →=|DA →||DH →|cos 〈DH →,DA →〉,可得2m =2m 2+1.解得m =22,所以DH →=⎝ ⎛⎭⎪⎫22,22,1 (1)因为cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22, 所以〈DH →,CC ′→〉=45°,DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC→=(0,1,0). 因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°,可得DP 与平面AA ′D ′D 所成的角为30°.20. 解析 (1)证明 连接AB 1,与BA 1交于点O ,连接OD .∵C 1D ∥AA 1,A 1C 1=C 1P ,∴AD =PD .又∵AO =B 1O ,∴OD ∥PB 1.又OD ⊂平面BDA 1,PB 1⊄平面BDA 1,∴PB 1∥平面BDA 1.(2)如图,过A 作AE ⊥DA 1于点E ,连接BE .∵BA ⊥CA ,BA ⊥AA 1,且AA 1∩AC =A ,∴BA ⊥平面AA 1C 1C .∴BE ⊥DA 1.∴∠BEA 为二面角A -A 1D -B 的平面角.在Rt △A 1C 1D 中,A 1D =⎝ ⎛⎭⎪⎫122+12=52, 又S △AA 1D =12×1×1=12×52·AE ,∴AE =255.在Rt △BAE 中,BE =12+⎝ ⎛⎭⎪⎫2552=355, ∴cos ∠BEA =AE BE =23.故二面角A -A 1D -B 的平面角的余弦值为23.21. 解析 (1)证明 ∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB .又DB ∩DC =D ,∴AD ⊥平面BDC .∵AD ⊂平面ABD ,∴平面ADB ⊥平面BDC .(2)由∠BDC =90°及(1),知DA ,DB ,DC 两两垂直.不妨设|DB→|=1,以D 为坐标原点,分别以DB→,DC →,DA →所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,易得D (0,0,0),B (1,0,0),C (0,3,0),A (0,0,3),E ⎝ ⎛⎭⎪⎫12,32,0, ∴AE →=⎝ ⎛⎭⎪⎫12,32,-3,DB →=(1,0,0), ∴AE→与DB →夹角的余弦值为cos 〈AE →,DB →〉 =AE →·DB →|AE →|·|DB →|=121×224=2222. 22. 解析 (1)证明 因为四边形ABCD 是菱形,所以AC ⊥BD .又因为P A ⊥平面ABCD ,所以P A ⊥BD .所以BD ⊥平面P AC .(2)设AC ∩BD =O ,因为∠BAD =60°,P A =AB =2,所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).所以PB→=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. (3)由(2)知BC→=(-1,3,0). 设P (0,-3,t )(t >0),则BP→=(-1,-3,t ). 设平面PBC 的法向量m =(x ,y ,z ),则BC →·m =0,BP →·m =0. 所以⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0.令y =3,则x =3,z =6t .所以m =⎝ ⎛⎭⎪⎫3,3,6t . 同理,平面PDC 的法向量n =⎝ ⎛⎭⎪⎫-3,3,6t . 因为平面PBC ⊥平面PDC ,所以m ·n =0,即-6+36t 2=0, 解得t = 6.所以P A = 6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D1A1DAB1C1CB空间向量在立体几何中的应用题组一一、填空题1.(北京五中2011届高三上学期期中考试试题理)一个正方体形状的无盖铁桶1111D C B A ABCD -的容积是V ,里面装有体积为V 32的水,放在水平的地面上(如图所示). 现以顶点A 为支撑点,将铁 桶倾斜,当铁桶中的水刚好要从顶点1A 处流出时, 棱1AA 与地面所成角的余弦值为答案1122 2. (福建省厦门双十中学2011届高三12月月考题理)平面内有两定点A ,B ,且|AB|=4,动点P 满足4||=+PB PA ,则点P 的轨迹是 .答案:以AB 为直径的圆; 二、简答题3.(福建省厦门双十中学2011届高三12月月考题理)(本小题满分12分)如图,已知四棱柱ABCD —A 1B 1C 1D 1中,A 1D ⊥底面ABCD ,底面ABCD 是边长为1的正方形,侧棱AA 1=2。

(I )求证:C 1D//平面ABB 1A 1;(II )求直线BD 1与平面A 1C 1D 所成角的正弦值; (Ⅲ)求二面角D —A 1C 1—A 的余弦值。

答案 (I )证明:四棱柱ABCD —A 1B 1C 1D 1中,BB 1//CC 1,又⊄1CC 面ABB 1A 1,所以CC 1//平面ABB 1A 1,…………2分ABCD 是正方形,所以CD//AB ,又CD ⊄面ABB 1A 1,AB ⊂面ABB 1A 1,所以CD//平面ABB 1A 1,…………3分 所以平面CDD 1C 1//平面ABB 1A 1, 所以C 1D//平面ABB 1A 1 …………4分 (II )解:ABCD 是正方形,AD ⊥CD因为A 1D ⊥平面ABCD , 所以A 1D ⊥AD ,A 1D ⊥CD ,如图,以D 为原点建立空间直角坐标系D —xyz , …………5分在1ADA ∆中,由已知可得,31=D A所以)3,1,1(),0,0,1(),3,0,0(),0,0,0(11-C A A D ,),0,1,1(),3,0,1(),3,1,0(11B D B -),3,1,2(1--=BD …………6分因为A 1D ⊥平面ABCD , 所以A 1D ⊥平面A 1B 1C 1D 1 A 1D ⊥B 1D 1。

又B 1D 1⊥A 1C 1,所以B 1D 1⊥平面A 1C 1D ,…………7分 所以平面A 1C 1D 的一个法向量为n=(1,1,0) …………8分设1BD 与n 所成的角为β, 则,43823||||cos 11-=-==BD n BD β所以直线BD 1与平面A 1C 1D 所成角的正弦值为.43…………9分(III )解:平面A 1C 1A 的法向量为),,(c b a m =则,0,0111=⋅=⋅A A m C A m 所以03,0=-=+-c a b a 令,3=c 可得)3,3,3(=m …………11分则.7422126||||,cos ==⋅>=<n m n m n m所以二面角A C A D --11的余弦值为.742…………12分4.(北京五中2011届高三上学期期中考试试题理)如图①,正三角形ABC 边长2,CD 为AB 边上的高,E 、F 分别为AC 、BC 中点,现将ABC ∆沿CD 翻折成直二面角B DC A --,如图②(1)判断翻折后直线AB 与面DEF 的位置关系,并说明理由 (2)求二面角D AC B --的余弦值 (3)求点C 到面DEF 的距离图 ① 图 ②答案 解:(1)平行(证明略)(2)取AE 中点M,角BMD 即所求,余弦值为721(3)CDF E DEF C V V --=,可得点C 到面DEF 的距离为721 5.(福建省惠安荷山中学2011届高三第三次月考理科试卷) (本题满分13分)如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =CC 1=2,AC ⊥BC ,D 为AB 的中点.(1)求异面直线1AC 与1B B 所成的角的余弦值;(2)求证:11//AC B CD 面;(3)求证:11A B B CD ⊥面答案 5. 解:(1)在直三棱柱111ABC A B C -中 11//BB CC1AC C ∴∠是11AC BB 与所成的角(或其补角)………………………2分 在1Rt ACC V 中,12AC CC == 12cos AC C ∴∠=…………………………………………4分 (2)连结1BC 交1B C 于O ,连结OD 。

……………………………5分 则O 为1BC 的中点 又D 为AB 的中点1//OD AC ∴ ……………………………………………7分 111,OD B CD AC B CD ⊂⊄Q 面面11//AC B CD ∴面 ………………………………9分 (3)在直三棱柱111ABC A B C -中 1,A A ABC CD ABC ⊥⊂面面1A A CD ∴⊥…………………………10分 ,Ac BC D AB =Q 是中点 CD AB ∴⊥11CD ABB A ∴⊥面…………………………11分 1CD A B ∴⊥…………………………12分 同理:11B C A B ⊥11A B B CD ∴⊥面…………………………13分6.(宁夏银川一中2011届高三第五次月考试题全解全析理)(本小题满分12分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=︒90,AD=3,EF=2.(1)求证:AE//平面DCF ;(2)当AB 的长为何值时,二面角A-EF-C 的大小为︒60.【分析】(1)只要过点E 作BC 的平行线即可;(2)由于点B 是点A 在平面BEFC 内的射影,只要过点B 作EF 的垂线即可很容易地作出二面角A EF C --的平面角,剩下的就是具体的计算问题。

或者建立空间直角坐标系,使用法向量的方法求解。

【解析】 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG , 可得四边形BCGE 为矩形,又ABCD 为矩形,所以AD EG∥,从而四边形ADGE 为平行四边形,故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF , 所以AE ∥平面DCF .………6分 (Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH . 由平面ABCD ⊥平面BEFC ,AB BC ⊥,得AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角.在Rt EFG △中,因为EG AD ==2EF =,所以60CFE ∠=o,1FG =.又因为CE EF ⊥,所以4CF =,从而3BE CG ==,于是sin BH BE BEH =∠=g ,因为tan AB BH AHB =∠g所以当AB 为92时, 二面角A EF C --的大小为60o………12分方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -.设AB a BE b CF c ===,,,则(000)C ,,,)A a ,,0)B ,,0)E b ,,(00)F c ,,. (Ⅰ)证明:(0)AE b a =-u u ,,,0)CB =r ,,(00)BE b =u u u r ,,,所以0CB CE =u u u r u u u r g,0CB BE =u u u r u u u r g ,从而CB AE ⊥,CB BE ⊥, 所以CB ⊥平面ABE .因为CB ⊥平面DCF ,所以平面ABE ∥平面故AE ∥平面DCF .………6分(Ⅱ)解:因为(0)EF c b =-u u u r ,,0)CE b =u u u r ,,所以0EF CE =u u u r u u u rg ,||2EF =u u u r ,从而3()02b c b -+-=⎧=,,解得34b c ==,.所以0)E ,,(040)F ,,.设(1)n y z =,,与平面AEF 垂直,则0n AE =u u u r g ,0n EF =u u u r g ,解得(1n =.又因为BA ⊥平面BEFC ,(00)BA a =u u u r ,,,所以||1|cos |2||||BA n n BA BA n <>===u u u ru u u r g u u u r g ,, DA B EFCHG得到92a=.所以当AB为92时,二面角A EF C--的大小为60o.………12分【考点】空间点、线、面位置关系,空间向量与立体几何。

【点评】由于理科有空间向量的知识,在解决立体几何试题时就有两套根据可以使用,这为考生选择解题方案提供了方便,但使用空间向量的方法解决立体几何问题也有其相对的缺陷,那就是空间向量的运算问题,空间向量有三个分坐标,在进行运算时极易出现错误,而且空间向量方法证明平行和垂直问题的优势并不明显,所以在复习立体几何时,不要纯粹以空间向量为解题的工具,要注意综合几何法的应用。

7.(北京龙门育才学校2011届高三上学期第三次月考)(本题满分14分)如图,在四棱锥S ABCD-中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.答案7. (本题满分14分)如图,在四棱锥S ABCD-中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;(Ⅱ)求证:平面BDE⊥平面SAC;(Ⅲ)(理科做)当二面角E BD C--的大小为45︒时,试判断点E在SC上的位置,并说明理由.解法一:证明:(Ⅰ)连接OE,由条件可得SA∥OE.因为SAË平面BDE ,OE Ì平面BDE ,所以SA ∥平面BDE .(Ⅱ)由已知可得,SB SD =,O 是BD 中点,所以BD SO ^. 又因为四边形ABCD 是正方形,所以BD ^因为ACSO O =I ,所以BDSAC ⊥面.又因 为BD BDE ⊂面,所以平面BDE ⊥平 面SAC .(Ⅲ)解:连接OE ,由(Ⅱ)知BD SAC ⊥面.而OE SAC⊂面, 所以BD OE⊥.又BDAC ⊥.所以EOC ∠是二面角E BD C --的平面角, 即45EOC ∠=︒.设四棱锥S ABCD -的底面边长为2,在SAC ∆中,2SA SC ==, AC = 所以SO =.又因为12OC AC ==SO OC ⊥, 所以SOC ∆是等腰直角三角形.由45EOC ∠=︒可知,点E 是SC 的中点. 解法二:(Ⅰ)同解法一(Ⅱ)证明:由(Ⅰ)知SO ABCD ⊥面,AC ⊥建立如图所示的空间直角坐标系. 设四棱锥S ABCD -的底面边长为2,则(0, 0, 0)O ,(0, 0,S ,) 0, 0A,(0,B () 0, 0C ,()0, 0D -.所以() 0, 0AC =-u u u r ,()0, 0BD =-u u u r设CE a =(02a <<),由已知可求得45ECO ∠=︒.所以(, 0, )22E a ,(, )22BE a a =-u u u r . 设平面BDE 法向量为(, , )x y z =n ,则0,0BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0, 22(2)20.22y a x y az =⎧⎪⎨-+-+=⎪⎩ 令1z =,得(, 0, 1)2aa=-n . 易知()0, 22, 0BD =-u u u r是平面SAC 的法向量.因为(, 0, 1)(0, 22, 0)02a BD a ⋅=⋅-=-u u u r n ,所以BD ⊥u u u rn ,所以平面BDE ⊥平面SAC .(Ⅲ)解:设CE a =(02a <<),由(Ⅱ)可知, 平面BDE 法向量为(, 0, 1)2aa=-n . 因为SO ABCD ⊥底面,所以(0, 0, 2)OS =u u u r是平面SAC 的一个法向量. 由已知二面角E BD C --的大小为45︒.所以2cos , cos 45OS 〈〉=︒=u u u rn , 所以2222()122a a=+⋅-,解得1a =. 所以点E 是SC 的中点.8.(北京四中2011届高三上学期开学测试理科试题)(本小题满分13分)已知:如图,长方体中,、分别是棱,上的点,,.(1) 求异面直线与所成角的余弦值; (2) 证明平面; (3) 求二面角的正弦值.答案解:法一:如图所示,以点A为坐标原点,建立空间直角坐标系,设,依题意得,,,(1)易得,,于是所以异面直线与所成角的余弦值为(2)已知,,于是·=0,·=0.因此,,,又所以平面(3)设平面的法向量,则,即不妨令X=1,可得。

相关文档
最新文档