数字视频基础

合集下载

数字视频基础知识

数字视频基础知识

数字视频基础知识数字视频是现代社会中广泛应用的一种媒体形式。

它以数字信号为基础,通过图像编码、传输和解码等技术,实现对视频图像的采集、处理和展示。

数字视频的应用领域涉及电视、电影、广告、网络视频等众多领域。

本文将介绍数字视频的基础知识,包括视频编码、视频格式、视频分辨率和帧率等方面。

一、视频编码数字视频的编码技术是将连续的视频图像序列转化为数字信号的过程。

常见的视频编码标准有MPEG-2、H.264、H.265等。

这些编码标准通过对图像进行压缩,实现了视频数据的高效传输和存储。

视频编码的核心原理是空间和时间的冗余性去除,即通过图像的相似性和相邻帧之间的相关性,减少视频数据的冗余程度。

二、视频格式视频格式是指数码视频文件的存储和传输格式。

常见的视频格式包括AVI、MOV、MP4、MKV等。

这些格式不仅包含视频数据,还可以携带音频数据、字幕等相关信息。

不同的视频格式适用于不同的应用场景,选择合适的视频格式可以提高视频的传输和播放效果。

三、视频分辨率视频分辨率是指视频图像的大小和清晰度程度,通常以像素为单位来表示。

常见的视频分辨率有1080p、720p、480p等。

数字视频的分辨率决定了图像的细节和清晰度,高分辨率的视频图像能够更真实地还原真实场景,但也需要更大的存储和传输带宽。

四、帧率帧率是指视频中每秒显示的图像帧数。

常见的帧率有24fps、30fps、60fps等。

帧率的选择直接影响到视频图像的流畅度和感官效果。

较低的帧率可能导致视频卡顿和画面不连贯,而较高的帧率则能够呈现出更加细腻和流畅的动态效果。

五、视频编解码器视频编解码器是视频编码和解码的工具软件或硬件。

常见的视频编解码器有X264、X265、FFmpeg等。

视频编解码器的作用是将视频数据进行压缩编码和解码还原,实现视频文件的传输和播放。

六、数字视频的应用数字视频在现代社会中有着广泛的应用。

电视、电影、广告等传统媒体领域,数字视频成为了主流媒体形式。

数字影视基础教材

数字影视基础教材

数字影视基础教材
《数字影视基础教材》是一本介绍数字影视制作基础知识的教材。

该教材主要针对数码影视制作领域的初学者,旨在提供对数字影视制作的全面了解和入门指导。

该教材的内容包括以下几个方面:
1. 数字影视概述:介绍数字影视制作的基本概念、历史演进和行业发展趋势。

2. 影视设备和工具:介绍数字影视制作所需的各种设备和工具,包括摄影机、剪辑软件、音频设备等。

3. 摄影技巧:介绍数字摄影的基本技术和拍摄原理,包括光线控制、构图规则、镜头选择等。

4. 影视剧本和故事结构:介绍影视剧本的写作规范和故事结构,以及如何将故事转化为影视作品。

5. 视频剪辑和特效:介绍视频剪辑的基本操作和技巧,以及如何使用特效软件进行影视后期制作。

6. 音频处理和配乐:介绍音频录制和处理的基本技巧,以及如何选择合适的配乐和音效。

7. 影视制作流程:介绍影视制作的整个过程,从策划到拍摄、后期制作和发布。

8. 数字影视市场和商业模式:介绍数字影视行业的市场现状和商业模式,以及未来的发展趋势。

《数字影视基础教材》通过理论与实践相结合的方式,帮助读者全面了解数字影视制作的基本知识和技巧,为进一步深入学习和实践打下基础。

该教材适用于数字影视制作专业的学生、影视制作爱好者和从事相关行业的从业者。

数字音视频技术讲义第二章 数字视频基础

数字音视频技术讲义第二章 数字视频基础

2.2 光和电磁波谱--• 人类感受到的可见光的彩色范围占电磁 波的一小部分。 • 电磁波可用波长、频率或能量来描述。
2.3 图像感知和获取
• 各类图像都是由“照射”源和形成图像 的“场景”元素对光能的反射与吸收相 结合而产生的。 • 照射可由电磁能源产生:如雷达、红外 线、X射线。---, • 照射可由非传统光源产生:如超声波、 计算机产生的照射模式。 • 把照射量变为数字图像的三种主要传感 器装置。如下图2.12。---,
• 人眼的锥状细胞是彩色视觉的传感器, 实验结果已确定人眼中的6~7百万个锥状 细胞可分别对应于红(65%,700nm )、 绿 ( 33% , 546.1nm ) 、 蓝 ( 2% , 435.8nm )3个视觉。 • CIE标准只是实验数据的近似,没有单--。 • 图2.2.6显示了人眼对红、绿、蓝光吸收 的平均试验曲线。 • 当 λ < 400nm或 λ >760nm时,V(λ ) =0,说明了人眼已没有亮度感觉。
2.4.2 数字图像表示
• 取样和量化的结果是一个实际矩阵。 • 假如一幅图像f(x,y)被取样,则产生的数 字图像有p行q列。 • 坐标(x,y)的值是离散量,对离散坐标 量取整。 • 原点的坐标值是(x,y)=(0,0)其它依 次类推。
2.4.3 空间和灰度级分别率 • 取样值是决定一幅图形空间分辨率的主 要参数。 • 灰度级分辨率是指灰度级别中可分辨的 最小变化。 • 考虑到硬件方面的因素,灰度级数通常 是2的整数次幂,一般取8比特。 • 通常把大小为P*Q,灰度为L的数字图像 称为空间分辩率为P*Q像素、灰度级分 辩率为L的数字图像。
2.5 三基色原理
• 根据人眼的视觉特性,在彩色重现过程 中,并不要求恢复原景物辐射光的光谱 成分,重要的是应获得与原景物相同的 彩色感觉。 • 比若,某一单色光的彩色感觉,也可以 由不同光谱分布的色光的组合而成。

[图文]数字视频基础知识简介

[图文]数字视频基础知识简介

[图文]数字视频基础知识简介一、数字视频的采样格式及数字化标准模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV信号方式,而计算机工作在RGB空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。

因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。

模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV或YIQ分量,然后用三个模/数转换器对三个分量分别进行数字化,最后再转换成RGB空间。

(一)、数字视频的采样格式根据电视信号的特征,亮度信号的带宽是色度信号带宽的两倍。

因此其数字化时可采用幅色采样法,即对信号的色差分量的采样率低于对亮度分量的采样率。

用Y:U:V来表示YUV三分量的采样比例,则数字视频的采样格式分别有4:1:1、4:2:2和4:4:4三种。

电视图像既是空间的函数,也是时间的函数,而且又是隔行扫描式,所以其采样方式比扫描仪扫描图像的方式要复杂得多。

分量采样时采到的是隔行样本点,要把隔行样本组合成逐行样本,然后进行样本点的量化,YUV到RGB色彩空间的转换等等,最后才能得到数字视频数据。

(二)、数字视频标准为了在PAL、NTSC和 SECAM电视制式之间确定共同的数字化参数,国家无线电咨询委员会(CCIR)制定了广播级质量的数字电视编码标准,称为CCIR 601标准。

在该标准中,对采样频率、采样结构、色彩空间转换等都作了严格的规定,主要有:1、采样频率为f s=13.5MHz2、分辨率与帧率3、根据f s的采样率,在不同的采样格式下计算出数字视频的数据量:这种未压缩的数字视频数据量对于目前的计算机和网络来说无论是存储或传输都是不现实的,因此在多媒体中应用数字视频的关键问题是数字视频的压缩技术。

(三)、视频序列的SMPTE表示单位通常用时间码来识别和记录视频数据流中的每一帧,从一段视频的起始帧到终止帧,其间的每一帧都有一个唯一的时间码地址。

视频制作基础

视频制作基础

2.分辨率
分辨率(Resolution)是一个表示平面图像精细程 度的概念,通常它是以横向和纵向点的数量来衡量的, 表示为水平点数 × 垂直点数的形式。分辨率越是高, 意味着可使用的点数越多,屏幕上显示的图像也就越精 细。分辨率有多种,在显示器上有表示显示精度的显示 分辨率,在打印机上有表示打印精度的打印分辨率,在 扫描仪上有表示扫描精度的扫描分辨率。
(3)时:分:秒:帧(Hours: MinutesSecondsFrames)。以Hours:Minutes:Seconds: Frames来描述剪辑持续时间的SMPTE(Society of Motion Picture and Television Engineers,电影与电 视工程师协会)时间代码标准。若时基设定为30 f/s,则 持续时间为00:08:51:15的剪辑表示它将播放8分51.5 秒。
2015
影视制作技术
1.了解数字视频制作的基础知识 2.理解线性编辑与非线性编辑的特点 3.掌握视频节目的制作流程和人员分工

一、数字视频基础知识
1 、帧和帧速率
视频是由一系列静态影像组成的,每一个单幅影像 画面称为一帧。因为人类眼睛具有视觉暂留现象,所以 一张张连续的图片会产生动态画面效果。
帧速率也是描述视频信号的一个重要概念,是指每 秒刷新图片的帧数,也可以理解为图形处理器每秒的刷 新次数。对于PAL制式电视系统,帧速率为25帧/秒,对 于NTSC制式电视系统,帧速率为29.97帧/秒(一段简化 为30帧/秒)。
3.电视制式
电视信号的标准也称为电视的制式。目前各国的电 视制式不尽相同,制式的区分主要在于其场频的不同、 分辨率的不同、信号带宽及载频的不同、色彩空间的转 换关系不同等。彩色电视机的制式一般有3种,即NTSC制 式、PAL制式和SECAM制式。NTSC是National Television System Committee的缩写,其标准主要应用于日本、美 国、加拿大和墨西哥等国;PAL则是Phase Alternating Line的缩写,其标准主要应用于中国、中东地区和欧洲 一带;SECAM是法文Sequentiel Couleur Avec Memoire 的缩写,使用SECAM制式的国家主要集中在法国和东欧一 带

第6章 数字视频基础

第6章 数字视频基础
第6章 数字视频基础
6.1 数字视频基础
6.1.1 模拟视频与数字视频 6.1.2 视频的数字化 6.2视频的处理设备 6.2.1 电影与电视 6.2.2 数字视频的获取方式 6.2.3数字视频获取设备及特性 6.3 数字视频的格式以及转换 6.3.1数字视频的格式 6.3.2不同视频格式间的转换 6.3.3视频格式转换应用实例 6.4 数字视频常用编辑软件
数字音视频技术
2017/4/6
15
4. 电视制式简介
• 上面提到的NTSC制、PAL制和SECAM制都是兼容 制制式。这里说的“兼容”有两层意思:一是 指黑白电视机能接收彩色电视广播,显示的是 黑白图像,另一层意思是彩色电视机能接收黑 白电视广播,显示的也是黑白图像,这叫逆兼 容性。为了既能实现兼容性而又要有彩色特性, 彩色电视系统应满足下列几方面的要求: • ①必须采用与黑白电视相同的一些基本参数, 如扫描方式、扫描行频、场频、帧频、同步信 号、图像载频、伴音载频等等。
数字音视频技术
2017/4/6
10
2.电视工作原理
• 电视图像的传送在发送端是基于光电转换器件, 在接收端是基于电光转换器件。实现这两种转 换的器件分别是摄像管和显像管。摄像管阴极 发射出来的电子束,在电子枪的电场及偏转线 圈的磁场力作用下,按从左到右、从上到下的 顺序依次轰击荧光屏。屏幕内表面上涂的荧光 粉在电子轰击下发光,其发光亮度正比于电子 束所携带的能量,若将摄像端送来的信号加到 显像管电子枪的阴极与栅极之间,就可以控制 电子束携带的能量,使荧光屏的发光强度受图 像信号的控制。若显像管的电—光转换是线形 的,那么,屏幕上重现的图像时,其各像素的 亮度基本正比于所摄图像相应各像素的亮度, 屏幕上就会重现原图像。
数字音视频技术

数字视频制作基础

数字视频制作基础

第2章数字视频制作基础2.1 数字视频制作流程经过多年的发展,电视这门综合性艺术逐步走进了数字化制作的时代。

电视制作的每一个环节都由硬件系统(如数字摄录编辑设备、虚拟演播室、高速网络和超大容量存储器等)和软件系统(如二维动画、三维动画、非线性编辑、合成和抠像软件等)来实现其相应的功能,先进的科学技术为电视制作提供了崭新的方法和手段。

从某种意义上说,电视正日益演变成为狭义的数字视频制作。

与此同时,随着数字视频技术的迅猛发展,越来越多的个人和机构也可以参与到数字视频的创作之中。

视频制作不再是传统电视机构那种高投入、重装备的具有垄断色彩的媒介权利,而是成为普通大众也可以介入的一个领域。

基于此,我们可以将数字视频制作划分为两种不同的类型:一种是基于电视节目的数字视频制作,这实际上是传统电视节目制作的数字化形式;另一种是基于多媒体的数字视频制作,这也是大多数个人或机构所采取的制作流程。

2.1.1 基于电视节目的数字视频制作电视节目制作包括了节目生产过程中的艺术创作和技术处理两个部分。

在制作的过程中,艺术创作和技术处理同属于一个完整的节目制作过程的两个方面,它们往往互相依存、不可分离,且相互渗透。

电视节目制作过程一般可分为前期制作与后期制作。

前者包括构思创作和现场录制;后者包括编辑和合成。

1.前期制作工作流程第一阶段:构思创作。

(1)节目构思,确立节目主题,搜集相关资料,草拟节目稿本。

(2)召开主创人员碰头会,编写分镜头稿本。

(3)确定拍摄计划。

计划是节目的基础,节目的构思越完善,对拍摄的条件和困难考虑得越周全,节目制作就越顺利。

具体地说,拍摄计划包括以下几个方面。

•根据节目性质对导演、演艺人员、主持人或记者等做出选择,合理配置创作人员。

•向制片、服装、美工、化妆人员说明并初步讨论舞美设计、化妆、服装等方面的要求。

•确认前期制作所需设备的档次及规模,配备摄像、录音、音响、灯光等技术人员。

•制片部门要确定选择的拍摄场地及后期保障。

第五章-数字视频基础

第五章-数字视频基础

电视扫描
扫描方式有隔行扫描和非隔行扫描 (逐行扫描)之分。 黑白电视和彩色电视都有隔行扫描,而计算机显示图 像时一般都采用逐行扫描。
在隔行扫描方式中,扫描的行数必须为奇数。 隔行扫描要求第一场结束于最后一行的中间,不管电子束 如何折回,它必须回到显示屏顶部的中央,这样就可以保 证相邻的第二场扫描恰好嵌在第一场各扫描线的中间。正 是这个原因,才要求总的行数必须是奇数
简称 subQCIF QCIF Quarter-VGA CIF VGA SVGA
全写
Video-Graphics-Array Super-Video-Graphics-Array
尺寸比例 4:3 11:9 4:3 11:9 4:3 4:3
XGA XGA-W QVGA SXGA SXGA+ UGA HDTV UXGA QXGA QSXGA QUXGA
数字化标准
有效显示分辨率
对PAL制和SECAM制的亮度信号,每一条扫 描行采样864个样本;对NTSC制的亮度信号, 每一条扫描行采样858个样本。对所有的制式, 每一扫描行的有效样本数均为720个。每一扫 描行的采样结构
数字化标准
有效显示分辨率
数字化标准
彩色电视数字化参数
采样格式 信号形式 采样频率
5.1彩色电视制式
NTSC彩色电视制式是1952年美国国家 电视标准委员会定义的彩色电视广播标准, 称为正交平衡调幅制。美国、加拿大等大 部分西半球国家,以及日本、韩国、菲律 宾等国和中国的台湾采用这种制式。
5.1彩色电视制式
德国在1962年制定了PAL彩色电视广播标 准,称为逐行倒相正交平衡调幅制。德国、 英国等一些西欧国家,以及中国、朝鲜等国 家采用这种制式。
复合电视信号 分量电视信号 S-video信号
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字视频基础数字视频的采样格式及数字化标准模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV信号方式,而计算机工作在RGB空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。

因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。

模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV或YIQ分量,然后用三个模/数转换器对三个分量分别进行数字化,最后再转换成RGB 空间。

一、数字视频的采样格式根据电视信号的特征,亮度信号的带宽是色度信号带宽的两倍。

因此其数字化时可采用幅色采样法,即对信号的色差分量的采样率低于对亮度分量的采样率。

用Y:U:V来表示YUV三分量的采样比例,则数字视频的采样格式分别有4:1:1、4:2:2和4:4:4三种。

电视图像既是空间的函数,也是时间的函数,而且又是隔行扫描式,所以其采样方式比扫描仪扫描图像的方式要复杂得多。

分量采样时采到的是隔行样本点,要把隔行样本组合成逐行样本,然后进行样本点的量化,YUV到RGB色彩空间的转换等等,最后才能得到数字视频数据。

二、数字视频标准为了在PAL、NTSC和 SECAM电视制式之间确定共同的数字化参数,国家无线电咨询委员会(CCIR)制定了广播级质量的数字电视编码标准,称为CCIR 601标准。

在该标准中,对采样频率、采样结构、色彩空间转换等都作了严格的规定,主要有:=13.5MHz1、采样频率为fs2、分辨率与帧率的采样率,在不同的采样格式下计算出数字视频的数据量:3、根据fs这种未压缩的数字视频数据量对于目前的计算机和网络来说无论是存储或传输都是不现实的,因此在多媒体中应用数字视频的关键问题是数字视频的压缩技术。

三、视频序列的SMPTE表示单位通常用时间码来识别和记录视频数据流中的每一帧,从一段视频的起始帧到终止帧,其间的每一帧都有一个唯一的时间码地址。

根据动画和电视工程师协会SMPTE(Society ofMotion Picture and Television Engineers)使用的时间码标准,其格式是:小时:分钟:秒:帧,或 hours:minutes:seconds:frames。

一段长度为00:02:31:15的视频片段的播放时间为2分钟31秒15帧,如果以每秒30帧的速率播放,则播放时间为2分钟31.5秒。

根据电影、录像和电视工业中使用的帧率的不同,各有其对应的SMPTE标准。

由于技术的原因NTSC制式实际使用的帧率是29.97fps而不是30fps,因此在时间码与实际播放时间之间有0.1%的误差。

为了解决这个误差问题,设计出丢帧(drop-frame)格式,也即在播放时每分钟要丢2帧(实际上是有两帧不显示而不是从文件中删除),这样可以保证时间码与实际播放时间的一致。

与丢帧格式对应的是不丢帧(nondrop-frame)格式,它忽略时间码与实际播放帧之间的误差。

视频压缩编码的基本概念视频压缩的目标是在尽可能保证视觉效果的前提下减少视频数据率。

视频压缩比一般指压缩后的数据量与压缩前的数据量之比。

由于视频是连续的静态图像,因此其压缩编码算法与静态图像的压缩编码算法有某些共同之处,但是运动的视频还有其自身的特性,因此在压缩时还应考虑其运动特性才能达到高压缩的目标。

在视频压缩中常需用到以下的一些基本概念:一、有损和无损压缩:在视频压缩中有损(Lossy )和无损(Lossless)的概念与静态图像中基本类似。

无损压缩也即压缩前和解压缩后的数据完全一致。

多数的无损压缩都采用RLE 行程编码算法。

有损压缩意味着解压缩后的数据与压缩前的数据不一致。

在压缩的过程中要丢失一些人眼和人耳所不敏感的图像或音频信息,而且丢失的信息不可恢复。

几乎所有高压缩的算法都采用有损压缩,这样才能达到低数据率的目标。

丢失的数据率与压缩比有关,压缩比越小,丢失的数据越多,解压缩后的效果一般越差。

此外,某些有损压缩算法采用多次重复压缩的方式,这样还会引起额外的数据丢失。

二、帧内和帧间压缩:帧内(Intraframe)压缩也称为空间压缩(Spatial compression)。

当压缩一帧图像时,仅考虑本帧的数据而不考虑相邻帧之间的冗余信息,这实际上与静态图像压缩类似。

帧内一般采用有损压缩算法,由于帧内压缩时各个帧之间没有相互关系,所以压缩后的视频数据仍可以以帧为单位进行编辑。

帧内压缩一般达不到很高的压缩。

采用帧间(Interframe)压缩是基于许多视频或动画的连续前后两帧具有很大的相关性,或者说前后两帧信息变化很小的特点。

也即连续的视频其相邻帧之间具有冗余信息,根据这一特性,压缩相邻帧之间的冗余量就可以进一步提高压缩量,减小压缩比。

帧间压缩也称为时间压缩(Temporal compression),它通过比较时间轴上不同帧之间的数据进行压缩。

帧间压缩一般是无损的。

帧差值(Frame differencing)算法是一种典型的时间压缩法,它通过比较本帧与相邻帧之间的差异,仅记录本帧与其相邻帧的差值,这样可以大大减少数据量。

三、对称和不对称编码:对称性(symmetric)是压缩编码的一个关键特征。

对称意味着压缩和解压缩占用相同的计算处理能力和时间,对称算法适合于实时压缩和传送视频,如视频会议应用就以采用对称的压缩编码算法为好。

而在电子出版和其它多媒体应用中,一般是把视频预先压缩处理好,尔后再播放,因此可以采用不对称(asymmetric)编码。

不对称或非对称意味着压缩时需要花费大量的处理能力和时间,而解压缩时则能较好地实时回放,也即以不同的速度进行压缩和解压缩。

一般地说,压缩一段视频的时间比回放(解压缩)该视频的时间要多得多。

例如,压缩一段三分钟的视频片断可能需要10多分钟的时间,而该片断实时回放时间只有三分钟。

目前有多种视频压缩编码方法,但其中最有代表性的是MPEG数字视频格式和AVI数字视频格式。

MPEG数字视频MPEG(Moving Picture Experts Group)是1988年成立的一个专家组。

这个专家组在1991年制定了一个MPEG-1国际标准,其标准名称为"动态图像和伴音的编码--用于速率小于每秒约1.5兆比特的数字存储媒体(Coding of moving picture and associated audio --for digital storage media at up to about 1.5Mbit / s)"。

这里的数字存储媒体指一般的数字存储设备如CD-ROM、硬盘和可擦写光盘等。

MPEG的最大压缩可达约1:200,其目标是要把目前的广播视频信号压缩到能够记录在CD光盘上并能够用单速的光盘驱动器来播放,并具有VHS的显示质量和高保真立体伴音效果。

MPEG采用的编码算法简称为MPEG 算法,用该算法压缩的数据称为MPEG数据,由该数据产生的文件称MPEG文件,它以MPG为文件后缀。

MPEG数字视频格式MPEG采用有损和不对称的压缩编码算法。

MPEG标准详细地说明了视频图像的压缩和解压缩方法,以及播放MPEG数据所需的图像与声音的同步。

MPEG标准包括三个部分:MPEG 视频(Video)、MPEG音频(Audio)和MPEG系统(System)。

一、MPEG视频:MPEG视频是标准的核心。

MPEG-1是为了适应在数字存储媒体如CD-ROM 上有效地存取视频图像而制定的标准。

CD-ROM驱动器的数据传输率不会低于150KB/s=1.2Mb/s(单倍速),而容量不会低于650MB,MPEG-1算法就是针对这个速率开发的。

MPEG -1的的视窗尺寸为CCIR 601定义分辨率的二分之一,可达到30fps或25fps的帧率,它采用多种压缩算法,压缩后的数据率为1.2-3MB/s。

因此可以实时播放存储在光盘上的数字视频图像。

二、MPEG音频:MPEG-1标准支持高压缩的音频数据流,其采样率为44、22和11KHz,16位量化。

还原后声音质量接近于原来的声音质量,如CD-DA的音质。

CA-DA音质的音频数据率为每分钟约10兆字节(10MB/min),等价于每秒约1.4兆位(1.4Mb/s),这是单速CD-ROM的整个带宽!采用MPEG-1音频压缩算法可以把单声道位速率降到0.192Mb/s,甚至更低,而声音的质量又无明显的下降。

MPEG-1支持两个声道,可设置成单声道(mono)、双声道(dual)、立体声(stereo)等。

目前在网络上广泛使用的MP3音频文件,就是利用 MPEG-3的音频技术, 实现了1:10 甚至 1:12 的压缩率,而且失真很小。

三、MPEG系统:这部分是有关同步和多路复合技术,用来把数字电视图像和伴音复合成单一的、位速率为1.5Mb/s的数据位流。

MPEG的数据位流分成内外两层,外层为系统层,内层为压缩层。

系统层提供在一个系统中使用MPEG数据位流所必须的功能,包括定时、复合和分离视频图像和伴音,以及在播放期间图像和伴音的同步。

压缩层包含压缩的视频和伴音数据位流。

在多种视频压缩算法中,MPEG是可提供低数据率和高质量的最好算法。

MPEG-1已经为广大用户所采用,如VCD或小影碟的发行等。

其播放质量可以达到家用录像机的水平。

采用不同的编码参数,得到的MPEG-1数据的质量也是不同的。

同时,MPEG专家组在1993年又制定了MPEG-2标准,DVD 就是采用的这种标准。

MPEG-1数据的回放由于MPEG采用非对称的压缩算法,在PC机上用软件来进行MPEG压缩编码是很费机时的,即使编码几个视频片断也要花费好几小时。

因此,一般用专门的MPEG编码卡,用硬件实现MPEG压缩编码。

要回放压缩的MPEG数据,首先要对其进行解码,然后把解压缩后的大量数字视频数据送往显示缓存进行屏幕显示。

因此,影响回放效果的因素主要有两点:一是解码的速率,二是显示的速率。

解码的速度比编码的速度快得多,因此在不同的MPC硬件基础上可以采用软件解码和硬件解码两种方式。

一、MPEG-1软件解码:软件解码即采用软件算法的方式读取MPEG压缩数据,对其进行解压缩并把解压缩后的大量数字视频数据送往显示缓存进行屏幕显示。

所以MPEG解压缩软件也称为MPEG播放软件。

采用软件解码的优点是它无需额外硬件的支持,在MPC机上就可以播放MPEG数字视频,使用方便;其缺点是解码的速度和解码后的视频质量完全取决于MPC的处理能力。

如果MPC的处理速度和显示速度不够快,采用软件解码播放MPEG数据时可能出现帧率不够、图像和伴音不同步或者图像的"马赛克"现象(图像呈块状)。

相关文档
最新文档