数学建模方法之图与网络模型

合集下载

图与网络模型及方法 ppt课件

图与网络模型及方法  ppt课件

e1 e8
e4
பைடு நூலகம்v2
e9 e2 v3
{v6, e7 , v1, e8, v4}
不是链
{v5,e4,v4,e9,v2,e2,v3,e3,v4,e8,v1} 简单链
e3
v4
{v6,e5,v5,e7,v1 }
初等链
v1
e6
v6
e7
e1 e8
e5 v5 e4
v2
e9 e2 v3 e3
1
0
当G为无向图时,邻接矩阵为对称矩阵
最短轨道问题
给出了一个连接若干个城镇的铁路网络,在这个 网络的两个指定城镇间,找一条最短铁路线。
以各城镇为图G 的顶点,两城镇间的直通铁路为 图G 相应两顶点间的边,得图G 。对G 的每一边e, 赋以一个实数w(e)—直通铁路的长度,称为e的权, 得到赋权图G 。G 的子图的权是指子图的各边的 权和。
是 G1 中由V2 导出的导出子图。
九、图的矩阵表示 用矩阵表示图对研究图的性质及应用常常是比较方便的.
定义:网络(赋权图)G=(V,E),其边(vi,vj)有权ωij,构造矩阵
A=(aij)n×n,其中:
aij 0 ij ( v i ,其v j)它 E
称矩阵A为网络G的权矩阵。
例、写出下图的权矩阵
v2
e3 e4
v4
v3
e5
e4=(v3,v4)≠(v4,v3)
e5=(v4,v3)≠(v3,v4)
e1
e2
v1 e6
v2
e3 e4

v4 向

v3
e5
e4=(v3,v4)=(v4, v3) e5=(v3,v4)=(v4, v3)

2022年数学建模算法与应用-图与网络模型着色问题和旅行商问题

2022年数学建模算法与应用-图与网络模型着色问题和旅行商问题

{'赵','刘','孙'};{'张','王','孙'};{'李','刘','王'}};
n = length(s); w = zeros(n);
for i = 1:n-1
for j =i+1:n
if ~isempty(intersect(s{i},s{j}))
w(i,j)=1;
end
end
end
[ni,nj] = find(w); %边的顶点编号
航空基础学院数学第教8研页室
数学建模算法与应用
第4章 图与网络模型及方法
v1
v5
v6
v3
v2
v4
图 4.14 部门之间关系图
航空基础学院数学第教9研页室
数学建模算法与应用
第4章 图与网络模型及方法
构造图G (V , E),其中V {v1,v2 , ,v6 },这里 v1,v2 , ,v6分别表示部门 1,部门 2,…,部门 6; E 为边集,两个顶点之间有一条边当且仅当它们代表的 委员会成员中有共同的人,如图 4.14 所示,该图可以 用 4 种颜色着色,可以看出至少要用 4 种颜色,v1,v2 ,v3 构成一个三角形,必须用 3 种颜色,v6和这 3 个顶点 都相邻,必须再用一种颜色。
w = w + w'; %计算完整的邻接矩阵
deg = sum(w); K = max(deg) %顶点的最大度
prob = optimproblem;
数学建模算法与应用
第4章 图与网络模型及方法
已知图G (V , E),对图G 的所有顶点进行着色时, 要求相邻的两顶点的颜色不一样,问至少需要几种颜 色?这就是所谓的顶点着色问题。

matlab图与网络分析模型选讲

matlab图与网络分析模型选讲

V ( f ),
若:
f
(v,u)
f
(u,v
)
0,
uV
uV
V ( f ),
则称该网络称为守恒网络。
v vs v vs ,vt
v vt
守恒网络中的流 f 称为可行流。
若存在一个可行流f *,使得对所有可行流 f 都 有V(f *)≥ V(f )成立,则称f *为最大流。
最大流模型:
maxV ( f )
e1 v1
4) 若一对顶点之间有两条以上的边联结,则这些边 称为重边.
5)既没有环也没有重边的图,称为简单图.
6) 若图G的每一条边e 都赋以一个实数w(e),
称w(e)为边e的权,G连同边上的权称为赋权图 ,
记为:G(V,E,W), W={w(e)| e∈E}
7) 图G的中顶点的个数,
5
称为图G的阶;图中与某 个顶点相关联的边的数目,
@sum(node(j): f(j,9))=flow;
@for(arc:@bnd(0,f,c));
data: c= 0 2.5 0 5.6 6.1 0 0 0 0 0 0 7.1 0 0 3.6 0 0 0 0 0 0 0 0 0 0 3.4 0 0 0 0 0 4.9 0 7.4 0 0 0 2.4 0 0 0 7.2 5.7 0 0 0 0 3.8 0 0 0 0 5.3 4.5 0 0 0 0 0 3.8 0 0 6.7 0 0 0 0 0 0 0 0 7.4 0 0 0 0 0 0 0 0 0; enddata
s.t:
v jV
f
(vi
,
v
j
)
v jV
f
(v
j
,
vi

图与网络模型及方法 ppt课件

图与网络模型及方法  ppt课件

1
0
当G为无向图时,邻接矩阵为对称矩阵
最短轨道问题
给出了一个连接若干个城镇的铁路网络,在这个 网络的两个指定城镇间,找一条最短铁路线。
以各城镇为图G 的顶点,两城镇间的直通铁路为 图G 相应两顶点间的边,得图G 。对G 的每一边e, 赋以一个实数w(e)—直通铁路的长度,称为e的权, 得到赋权图G 。G 的子图的权是指子图的各边的 权和。
三.次(度)的性质
性质1:在图G=(V,E)中,所有点的次之和是边数m的两倍。 证明:由于每条边均与两个顶点关联,因此在计算顶点的次时
每条边都计算了两遍,所以顶点次数的总和等于边数的二倍。
性质2:在任何图G=(V,E)中,奇点的个数为偶数
证明:设V1,V2分别是图G中奇点和偶点的集合,则V1∪V2=V,
称矩阵A为图G的邻接矩阵。
例、写出下图的邻接矩阵
v2 •
v• 4
v1•
•v6
v3 •
• v5
v1 v2 v3 v4 v5 v6
v1 v2
0 0
1 0
1 1
0 0
0 0
0 0
A vvv 543 000
1 1 1
0 0 0
0 0 1
1 0 0
0 1 1
v6
0
0
0
0
问题就是求赋权图G 中指定的两个顶点u0 ,v0间的 具最小权的轨。这条轨叫做u0 ,v0间的最短路,它 的权叫做u0 ,v0间的距离,亦记作d(u0 ,v0)
最短轨道问题求法 ---Dijkstra算法
基本思想 是按距 u 0从近到远为顺序,依次求得u 0到G 的各顶点的最短路和距离,直至v 0 (或直 至G 的所有顶点),算法结束。为避免重 复并保留每一步的计算信息,采用了标号 算法。

图与网络模型及方法 ppt课件

图与网络模型及方法  ppt课件

三.次(度)的性质
性质1:在图G=(V,E)中,所有点的次之和是边数m的两倍。 证明:由于每条边均与两个顶点关联,因此在计算顶点的次时
每条边都计算了两遍,所以顶点次数的总和等于边数的二倍。
性质2:在任何图G=(V,E)中,奇点的个数为偶数
证明:设V1,V2分别是图G中奇点和偶点的集合,则V1∪V2=V,
e1 e8
e4
v2
e9 e2 v3
{v6, e7 , v1, e8, v4}
不是链
{v5,e4,v4,e9,v2,e2,v3,e3,v4,e8,v1} 简单链
e3
v4
{v6,e5,v5,e7,v1 }
初等链
v1
e6
v6
e7
e1 e8
e5 v5 e4
v2
e9 e2 v3 e3
问题就是求赋权图G 中指定的两个顶点u0 ,v0间的 具最小权的轨。这条轨叫做u0 ,v0间的最短路,它 的权叫做u0 ,v0间的距离,亦记作d(u0 ,v0)
最短轨道问题求法 ---Dijkstra算法
基本思想 是按距 u 0从近到远为顺序,依次求得u 0到G 的各顶点的最短路和距离,直至v 0 (或直 至G 的所有顶点),算法结束。为避免重 复并保留每一步的计算信息,采用了标号 算法。
v• 5
7 v1• 4
56 • v4
2
94
8
v2 • 3 v• 3
0 9 2 4 7 9 0 3 4 0 A 2 3 0 8 5 4 4 8 0 6 7 0 5 6 0
定义:对于图G=(V,E),|V|=n,构造一个矩阵A=(aij)n×n,其中:
aij 10 ( vi , vj其) 它E

精选数学建模中的图与网络分析资料

精选数学建模中的图与网络分析资料

基本思想:寻找增广链,改善流量分布;再重复,直到不 存在任何增广链为止。
步骤:
① 给始点标号:(0,+∞) ② 从已标号点i出发,看与其相关联的未标号点j上的弧,
对μ+,若有0fij<cij,则可对j点标号,记(i,ε (j)), 其中 ε (j)=min{ε (i) ,cij - fij}
对μ-,若有0 < fji cij,也可对j点标号,记( i,ε (j)), 其中 ε (j)=min{ε (i) ,fji} (注:若有多个可标号点,可任选其中之一。)
),
dSD(0)+SdDE(A0) ,BdSE(C0)+ dDEE(0E), dTST(0)+ dTE(0) } =8 S 0 24 4 98 A 2 0 2 3 7 5 12 B 4 2 0 1 4 3 10
D(1)= C 4 3 1 0 5 4 11 D 9 74 5 0 15 E 8 53 4 1 0 6 T 12 10 11 5 7 0
⑻ 割集:一组弧的集合,割断这些弧,能使流中断。简称割。
2019/7/2
--26--
--第6章 图与网络分析--
(v2,2)
v1
9(4)
(v1,2) v3
(0,+∞)
vs
5(4)
6(1)
(v4,1) vt
(vs,2) v2
9(9)
v4 (v3,1)
2019/7/2
cij
fij
--27--
--第6章 图与网络分析--
其中
dij(3)=
min
r
{
dir(2)+
drj(2)
}
SABCDET

数学建模图论详解—图论与网络规划PPT课件

数学建模图论详解—图论与网络规划PPT课件

几何实现图例
在一个图的几何实现中,两条边的交点可能不是
图的顶点。例如图7-4 中,它共有4个顶点,6条
v1
v4
边;而e
e1
3
与e
4 的交点不是这个图的顶点。
v2
e2
e3
e4
e5
v3
e6
v4 v1
v4
e2
e3
e1
v2
e4
e5
v3
e6
v4
平面图
一个图称为平面图,如它有一个平面图形,使得边与边仅在
顶 形点 。相交。图7-5就是一e个4 平v1 面图,因为e1它可以有下v面2 的图
一个图称为简单图,如果
它既没有环也没有多重边。
下图5是简单图。
u 1
本书只限于讨论有限简单图,
即顶点集与边集都是有限集的图。
f1
f5 f2
只有一个顶点的图称为平凡图; 边集是空集的图称为空图。
u3
f3
f4
u2
f6
u4
同构
给定两个图 G (V (G), E(G), G ) 与 H (V (H ), E(H ), H )
称G和H是同构的,记为G H ,
如果存在两个一一对应 ( ,)
:V (G) V (H )
: E(G) E(H )
使的
G (e) uv H ((e)) (u) (v)
同构图例
图G与图H是同构的。
v1 e6
e1 v2
e3
e2
e5
v4
e4
v3
G
u 1
f1
f5 f2
u3
f3
f4
u2
f6
公式(1)是Dijkstra算法的基础。

最新-数学建模中的图与网络分析-PPT课件

最新-数学建模中的图与网络分析-PPT课件

问题:一名邮递员从邮局出发,试选择一条最短的投 递路线?
v1
4
v4
4
1
4
v5
5
2
5
v2
2 v6
4
5 v8
4
v7
v3
7
2 4
v9 邮局
v10
2
v11
1
v12
4
v13
--20--
--第6章 图与网络分析---21--
--第6章 图与网络分析--
奇点:图中次为奇数的点称为奇点。 偶点:图中次为偶数的点称为偶点。
--18--
--第6章 图与网络分析--
例:有7个村镇要联合建立一所小学,已知各村镇小学
生的人数大致为S—30人, A—40人,B—20人,C—15人,
D—35人,E—25人, T—50人。问:学校应建在那一个地
点,可使学生总行程最少?
解:
SABCDET
人数
S 0 2 4 4 8 7 13
30
A 2 0 2 3 6 5 11
(7)圈:始点和终点重合的链。
(8)回路:始点和终点重合的路。
(9)连通图:若一个图中,任意两点之间至少存在一条 链,称这样的图为连通图。 (10)子图,部分图:设图G1={V1,E1}, G2={V2,E2}, 如果有V1V2,E1E2,则称G1是G2的一个子图;若 V1=V2,E1E2,则称G1是G2的一个部分图。 (11)次:某点的关联边的个数称为该点的次,以d(vi)表示。
--3--
二、图的模型
--第6章 图与网络分析--
例:有甲、乙、丙、丁、戊、己六名运动员报名参加A、 B、C、D、E、F六个项目的比赛。如表中所示,打“√”的 项目是各运动员报名参加比赛的项目。问:六个项目的比赛 顺序应如何安排,才能做到使每名运动员不连续地参加两项 比赛?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果图G的一个生成子图还是一个树,则称这个生成子图为生成树, 在图11-12中,(c)就是(a)的生成树。
最小生成树问题就是指在一个赋权的连通的无向图G中找出一个生成 树,并使得这个生成树的所有边的权数之和为最小。
(a)
图11-12
(b)
(c)
11
§3 最小生成树问题
一、求解最小生成树的破圈算法 算法的步骤: 1、在给定的赋权的连通图上任找一个圈。 2、在所找的圈中去掉一个权数最大的边(如果有两条或两条
1.给出点V1以标号(0,s) 2.找出已标号的点的集合I,没标号的点的集合J以及弧的集合
{(vi , v j ) | vi I , v j J}
3. 如果上述弧的集合是空集,则计算结束。如果vt已标号(lt,kt),则 vs 到vt的距离为lt,而从 vs到vt的最短路径,则可以从kt 反向追踪到起点 vs 而得到。如果vt 未标号,则可以断言不存在从 vs到vt的有向路。如果 上述的弧的集合不是空集,则转下一步。
e2
(v(v3) 李(v4)
周(v5)
图11-2
e5 吴(v6) 陈(v7)
3
如果我们把上面例子中的“相互认识”关系改为“认识”
的关系,那么只用两点之间的联线就很难刻画他们之间的关
系了,这是我们引入一个带箭头的联线,称为弧。图11-3就
是一个反映这七人“认识”关系的图。相互认识用两条反向
的弧表示。
a1 a2
(v2)钱
a7
a8
(赵v1)
a14 a15 a3
(v4) 李
a4
a9
(v3)孙
a5
a6
a12
a11
(v5) 周
a10
(v6)吴 a13
(v7)陈
图11-3
4
▪ 无向图:
由点和边构成的图,记作G=(V,E)。
• 有向图:
由点和弧构成的图,记作D=(V,A)。
• 连通图:
对无向图G,若任何两个不同的点之间,至少存在一条链,则G为 连通图。
17
v2
5
6
15
6 v4
V1
(甲地)
10
3 4
4
2
v5
v6
v3
解:这是一个求无向图的最短路的问题。可以把无向图的每一边
(vi,vj)都用方向相反的两条弧(vi,vj)和(vj,vi)代替,就化为有向 图,即可用Dijkstra算法来求解。也可直接在无向图中用Dijkstra算法 来求解。只要在算法中把从已标号的点到未标号的点的弧的集合改成 已标号的点到未标号的点的边的集合即可。
5
§2 最短路问题
• 最短路问题:对一个赋权的有向图D中的指定的两个点Vs和Vt找到一条 从 Vs 到 Vt 的路,使得这条路上所有弧的权数的总和最小,这条路被称 之为从Vs到Vt的最短路。这条路上所有弧的权数的总和被称为从Vs到Vt 的距离。
一、求解最短路的Dijkstra算法(双标号法)
步骤:
以上的边都是权数最大的边,则任意去掉其中一条)。 3、如果所余下的图已不包含圈,则计算结束,所余下的图即
为最小生成树,否则返回第1步。
12
§3 最小生成树问题
例4 用破圈算法求图(a)中的一个最小生成树
v2 1 v3
v2 1 v3
v1
3
34 7 v7 2
v4
v1
3
34 7 v7 2
v4
10
35 4
8
v6 (a) v5
35
8
4
v6 (b) v5
v2 1 v3
v1
3
34 7 v7 2
v4
35 4
v6 (c) v5
v2 1 v3
v1
3
34 7 v7 2
v4
3
4 v6 (d) v5
v2 1 v3
v1
3
34 7 v7 2
v4
3
v6 (e) v5
图11-13
v2 1 v3
3
7
v1 3
v7 2
v4
3
v6 (f) v5
e4 (v4) 李
e5 (v6)吴
(v7)陈
图11-1
2
当然图论不仅仅是要描述对象之间关系,还要研究特定关 系之间的内在规律,一般情况下图中点的相对位置如何、点与 点之间联线的长短曲直,对于反映对象之间的关系并不是重要 的,如对赵等七人的相互认识关系我们也可以用图11-2来表示, 可见图论中的图与几何图、工程图是不一样的。
4. 对上述弧的集合中的每一条弧,计算 sij=li+cij 。在所有的 sij中,找到其 值为最小的弧。不妨设此弧为(Vc,Vd),则给此弧的终点以双标号 (scd, c),返回步骤2。
6
§2 最短路问题
例1 求下图中v1到v6的最短路 v2
7
3
v6
v1
5 2 v4 5
21
31
5 v3
v5
解:采用Dijkstra算法,可解得最短路径为v1 v3 v4 v6
8
§2 最短路问题
例2最终解得: 最短路径v1 v3 v5 v6 v7,每点的标号见下图
15 (0,s)
V1 (甲地) 10
(13,3) v2 3 V3
(10,1)
17
5 6
V4
(18,5) 4
2
4
V5
(14,3)
(22,6) V7 (乙地) 6 V(166,5)
9
§3 最小生成树问题
• 树是图论中的重要概念,所谓树就是一个无圈的连通图。
• 回路:
若路的第一个点和最后一个点相同,则该路为回路。
• 赋权图:
为赋权对图一,个w无ij称向为图边G的(v每i,vj一)上条的边权(v。i,vj),相应地有一个数wij,则称图G
• 网络:
在赋权的有向图D中指定一点,称为发点,指定另一点称为收点, 其它点称为中间点,并把D中的每一条弧的赋权数称为弧的容量,D就 称为网络。
v1
v2
v3
v6
v5
v4
v7
v8
v9
(a)
v1
v2
v3
v4
v5
v6
(b)
v8 v7
图11-11
v1
v2
v8
v3
v4
v9
v5
v7
v6
(c)
图11-11中,(a)就是一个树,而(b)因为图中有圈所以就不 是树, (c)因为不连通所以也不是树。
10
§3 最小生成树问题
给了一个无向图G=(V,E),我们保留G的所有点,而删掉部分G的边或 者说保留一部分G的边,所获得的图G,称之为G的生成子图。在图11-12中, (b)和(c)都是(a)的生成子图。
各点的标号图如下: (3,1)
v2
7
(8,4) v6
(V01,s)
3 5
2
(3,3) 5 v4
21
31
5
(2,1)
v5
v3
7
§2 最短路问题
例2 电信公司准备在甲、乙两地沿路架设一条光缆线,问如何架 设使其光缆线路最短?下图给出了甲乙两地间的交通图。权数表示两 地间公路的长度(单位:公里)。
V7 (乙地)
13
例4 用破圈算法求图(a)中的一个最小生成树
v2 1 v3
v2 1 v3
v1
3
34 7 v7 2
v4
v1
3
34 7 v7 2
v4
10
35 4
8
v6 (a) v5
35
8
4
v6 (b) v5
v2 1 v3
v1
3
34 7 v7 2
v4
35 4
v6 (c) v5
v2 1 v3
v1
3
34 7 v7 2
v4
3
4 v6 (d) v5
v2 1 v3
v1
3
34 7 v7 2
v4
3
v6 (e) v5
图11-13
v2 1 v3
3
7
v1 3
v7 2
v4
3
v6 (f) v5
14
§3 最小生成树问题
例5、某大学准备对其所属的7个学院办公室计算机联网,这个网络的 可能联通的途径如下图,图中v1,…,v7 表示7个学院办公室,请设计一 个网络能联通7个学院办公室,并使总的线路长度为最短。
图11-14
v2 1 v3
34
7
v1 3
v7 2
v4
10 3
5
8
v6 4
v5
解:此问题实际上是求图11-14的最小生成树,这在例4中已经求得, 也即按照图11-13的(f)设计,可使此网络的总的线路长度为最短,为19 百米。
“管理运筹学软件”有专门的子程序可以解决最小生成树问题。
15
图与网络模型 §1 图与网络的基本概念 §2 最短路问题 §3 最小生成树问题
1
§1 图与网络的基本概念
图论中图是由点和边构成,可以反映一些对象之间的关系。
例如:在一个人群中,对相互认识这个关系我们可以用图 来表示,图11-1就是一个表示这种关系的图。
(赵v1)
e2
(v3)孙
e1
e3
(v2)钱
(v5) 周
相关文档
最新文档