含字母系数方程与绝对值方程解析

合集下载

【七年级数学代数培优竞赛专题】专题15 含字母的一元一次方程【含答案】

【七年级数学代数培优竞赛专题】专题15 含字母的一元一次方程【含答案】

第四章 一元一次方程章前导学本章的重点是一元一次方程及其解法和运用一元一次方程来解决实际问题.我们依据本章的重点安排了五个提高的内容:1.利用一元一次方程和一元一次方程的解的概念求方程中字母的值以及如何求解含有字母系数的方程.2.根据方程的特点,利用整体法、巧去括号、裂项等方法灵活求解方程和如何求解含绝对值的方程.3.运用一元一次方程来解决行程、销售和分档的实际问题.4.运用一元一次方程来解决钟面和数轴上的问题.5.根据实际问题的具体情况,通过间接设未知数或设辅助未知数来解决实际问题.专题15 含字母的一元一次方程知识解读1.根据方程及方程的解的概念求方程中字母的值使方程左右两边相等的未知数的值是方程的解.因此将方程的解代人方程中,方程的左右两边能够相等。

2.根据整数解求方程中字母的值 一元一次方程的解为整数,即当解为b x a =时,整数b 能被整数a 整除。

3.字母系数方程解的情况方程ax b =的解有三种情况:当0a ≠时,b x a=;当0,0a b ==时,即00x =,方程有任意解;当0,0a b =≠时,即0x b =,方程无解.培优学案典例示范1. 根据方程及方程的解的概念求方程中字母的值例1 若3223kkx k -+=是关于x 的一元一次方程,求这个方程的解. 【提示】由题意可知312k -=,且0k ≠.【技巧点评】跟踪训练1若方程(m2-1)x2-mx+8=x是关于x的一元一次方程,则代数式m2008-1m-的值为_________.例2(1)若方程121112102x xx+--=-与方程2x+62a x-=a-2的解相同,求233a a-的值;(2)关于x的方程与132m x+=4的解是2311346x m x---=的解的5倍,求m的值.【提示】(1)先求出方程121112102x xx+--=-的解,再根据题意将这个解代入后一个方程,求出a;(2)先将两个方程中的m看成已知数,求出两个方程的解(用含m的式子表示),再根据题意列出关于m的方程来求出m.【技巧点评】跟踪训练2(1)已知关于x的方程323a x bx--=的解是x=2,其中a≠0且b≠0,求代数式a bb a-的值;(2)若方程3(x一k)=2(x+1)与62k xk-=的解互为相反数,求k的值.2.根据整数解求方程中字母的值例3 若关于x的方程9x-17=kx的解为正整数,求整数k的值.【提示】先解方程,把x的值用k的代数式表示,再利用整除性求出整数k的值. 【技巧点评】跟踪训练3已知关于x的方程31223x mx-+=有整数解,求满足条件的所有整数m.3.字母系数方程解的情况例4解方程11x x m n m n mn--+-=.【提示】先将方程化成ax=b的形式,再分类讨论方程解的情况.【技巧点评】跟踪训练4问当a,b满足什么条件时,方程2x+5-a=1-b;(1)有唯一解;(2)有无数个解;(3)无解.培优训练直击中考1.★(湖南永州)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.12.★(2017·湖北孝感)方程3123x x+-=的解是________.3.★(2017·黑龙江)已知关于x的方程3x-a=号x-1的解是非负数,那么a的取值范围是________.4.★已知关于x 的方程23x m m x -=+与12x +=3x -2的解互为倒数,求m 的值.5.★已知关于y 的方程4y +2n =3y +2和方程3y +2n =6y -1的解相同,求n 的值.6.★★当整数m 取什么数时,关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭的解是正整数?7.★★已知关于x 的方程a (2x -1)=3x -2无解,试求a 的值.挑战竞赛1.(江苏省竞赛试题)已知a 是任意有理数,在下面各题中结论正确的个数是( ) ①方程ax =0的解是x =1;②方程ax =a 的解是x =1;③方程ax =1的解是x 1a=;④方程|a |x =a 的解是x =±1.A .0B .1C .2D .3 2.★太(希望杯试题)当b =1时,关于x 的方程a (3x ﹣2)+b (2x ﹣3)=8x ﹣7有无数多个解,则a 等于( )A .2B .﹣2C .23-D .不存在 3.★★若k 为整数,则使得方程(k ﹣1999)x =2001﹣2000x 的解也是整数的k 的值有( ) A .4个 B .8个 C .12个 D .16个4.★★★(希望杯试题)已知p,q都是质数,并且以x为未知数的一元一次方程px+5q=97的解是1,求代数式40p+101g+4的值.5.★★★(山东省竞赛试题)如果a,b为定值,关于x的方程程2236ka x x bk+-=+无,当k取14以外的任何值时,它的解总是1,求a,b的值.。

高中数学解题的典型方法与技巧

高中数学解题的典型方法与技巧

高中数学解题的典型方法与技巧1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。

3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、解某些复杂的特型方程要用到换元法。

换元法解题的一般步骤是:设元→换元→解元→还元。

5、待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。

其步骤是:①设②列③解④写6、复杂代数等式条件的使用技巧:右边化为零,左边变形。

10、代数式求值的方法有:①直接代入法②化简代入法③适当变形法(和积代入法)。

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。

11、方程中除未知数以外,含有的其他字母叫做参数,这种方程叫做含参方程。

解含参方程一般要用“分类讨论法”,其原则是:①按照类型求解②根据需要讨论③分类写出结论。

17、一元二次不等式的解法:一元二次不等式可以用因式分解法求解。

简便的实用解法是根据“三个二次”间的关系,利用二次函数图像去解。

具体步骤如下:二次系数化为正→判别且求根→画出示意图→解集横轴中18、一元二次方程根的讨论:一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数图像去解。

一般思路:题意→二次函数图像→不等式组(a的符号、△的情况、对称轴的位置、区间端点函数值的符号)。

含绝对值的不等式解法,一元二次不等式解法

含绝对值的不等式解法,一元二次不等式解法

含绝对值的‎不等式解法‎,一元二次不‎等式解法。

[重点]理解绝对值‎的几何意义‎,掌握|ax+b|<c与|ax+b|>c(c>0)型的不等式‎解法;利用二次函‎数图象,掌握一元二‎次不等式解‎法,弄清一元二‎次方程,一元二次不‎等式与二次‎函数的关系‎。

[难点] 含有两个绝‎对值的一次‎不等式解法‎,对含有字母‎系数的一元‎二次不等式‎的分类讨论‎求解。

[教材分析] |x|的几何意义‎是实数x在‎数轴上对应‎的点离开原‎点O的距离‎,所以|x|<a (a>0)的解集是{x|-a<x<a};不等式|x|>a (a>0)的解集是{x|x>a或x<-a}。

把不等式|x|<a与|x|>a (a>0)中的x替换‎成ax+b,就可以得到‎|ax+b|<c与|ax+b|>c (c>0)型的不等式‎的解法。

一元二次不‎等式ax2‎+bx+c>0(或<0)的解可以联‎系二次函数‎y=ax2+bx+c的图象(a≠0)图象在x 轴‎上方部分对‎应的x值为‎不等式ax‎2+bx+c>0的解,图象在x轴‎下方部分对‎应的x值为‎不等式ax‎2+bx+c<0的解。

而方程ax‎2+bx+c=0的根表示‎图象与x轴‎交点的横坐‎标。

求解一元二‎次不等式的‎步骤,先把二次项‎系数化为正‎数,再解对应的‎一元二次方‎程,最后根据一‎元二次方程‎的根,结合不等号‎的方向,写出不等式‎的解集。

求解以上两‎种不等式的‎方法,就是将不等‎式转化为熟‎悉,可解的不等‎式,因此一元二‎次不等式的‎求解,也可采用以‎下解法。

x2+3x-4<0 (x+4)(x-1)<0 或或-4<x<1或。

原不等式解‎集为{x|-4<x<1}。

x2+3x-4<0 (x+)2<|x+|<-<x+<-4<x<1。

几种类型的一元一次方程的解法

几种类型的一元一次方程的解法

几种类型的一元一次方程的解法一、含字母系数的一元一次方程例1、解下列关于的方程:()()()(0)cx b c x a b x b a x a c --=---+≠.例2、解关于x 的方程:. 同步练习:1、解关于x 的方程.2 解关于x 的方程()()m x n x m -=-413 二、一元一次方程的整数解1、若方程139125325+=-x m x 有一个正整数解,则m 取的最小正数是多少?并求出相应的解 2、 已知关于x 的方程:17834-=-x m x ,当m 为某些负整数时,方程的解为负整数,试求负整数m 的最大值。

三、含绝对值的方程的解法解含有绝对值符号的一元一次方程的基本思路就是去掉绝对值符号.转化为一般方程来求解.常用的转化方法有以下几种:(一)、对于最简绝对值方程,依据绝对值的定义,去掉绝对值符号,化为两个一元一次方程分别解之,即:若||x a = ,则x a =± .例1、已知|31|2x -=,则x =( ).例2.若||,x a =则||x a -=( ).例3.若|20002000|202000x +=⨯.则x 等于( ).同步练习:1、解方程:4213)1(=-x (2)、|5|25x x -+=- 3213)3(+=-x x 3、已知关于x 的方程22()mx m x +=-的解满足1||102x --=,则x 的值是( ).4、方程|56|65x x +=-的解是_________.5、方程 |x|=ax+1有一负根而无正根, 则a 的取值范围是_________.(二)、对于含有双重或多重绝对值符号的较复杂的绝对值方程,可用零点分段法分类讨论转化为最简绝对值方程来解.例1.解方程|3||1|1x x x +--=+同步练习:1.若0a <,则200011||a a +等于_________.2.方程|1||99||2|1992x x x +++++=共有( )个解.(三)、对于某些特殊的绝对值方程,还可借助数轴用绝对值的几何意义求解.2371022331-1x x x x x ---=+-例1、适合|27||21|8a a ++-=的整数的值的个数有_________.例2、若0,0a b ><则使||||x a x b a b -+-=-成立的的取值范围是_______.同步练习:1、适合关系式|34||32|6x x -++=的整数的值是_____.(A )0 (B )1 (C )2 (D )大于2的自然数2、解方程|1||5|4x x -+-=:. 四、特殊方程1、方程2001200220013221=⨯++⨯+⨯x x x 的解是_________. 2、方程⎪⎭⎫ ⎝⎛≠++=--+--+--01113c b a c b a x b a c x a c b x 其中的解为 五、不定方程不定方程(组)是指未知数的个数多于方程个数的方程(组)。

《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练

《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练

整式的加减(二)—去括号与添括号(提高)知识讲解【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.(2020•泰安模拟)化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+- 答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )].(3)-3[(a 2+1)-16(2a 2+a )+13(a -5)]. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}.【答案】解: (1) 15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x )-(1-x+x 2)+(1-x+x 2)-x 3=18-3x -x 3.. ……整体合并,巧去括号(2) 3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )]=3x 2y -2x 2z+(2xy -x 2z+4x 2y ) ……由外向里,巧去括号=3x 2y -2x 2z+2xyz -x 2z+4x 2y=7x 2y -3x 2z+2xyz .(3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}=ab -4a 2b+3a 2b -2ab+a 2b+3ab ……一举多得,括号全脱=2ab .类型四、化简求值4. 先化简,再求各式的值:(){}123225,,12x y x x y x y x y --+-++==-⎡⎤⎣⎦其中. 【答案与解析】解:原式[2(3245)][2(3)]x y x x y x y x y x x y =--+--+=--+-+(23)(43)43444().x y x x y x y x x y x x y x y =---+=--=-+=-=- 将1,12x y ==-代入,得:134[(1)]4622--=⨯=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当……时,原式=?举一反三:【变式】(2020春•万州区期末)先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. .已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知: 10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7. (湖南益阳)有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n -10)厘米【答案】C .【解析】观察上图,可知n 块石棉瓦重叠的部分有(n -1)处,则n 块石棉瓦覆盖的宽度为:60n -10(n -1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a2提示:由图形可知阴影部分面积=长方形面积29--,而长方形的长为3+a,宽为3,从而使问a题获解.第二课时【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】 解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a 的一元一次方程.举一反三:【变式】(2020•温州模拟)已知3x=4y,则=.【答案】.解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. (2020春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x 天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x折出售此商品,得:x⨯=+40000.12000(120%),x=解得: 6.答:售货员最低可以打六折出售此商品.。

第8讲_绝对值方程

第8讲_绝对值方程

第八讲 含字母系数的方程、绝对值方程一、知识要点1. 关于x 的方程ax b =有:(1)当0a ≠时,方程有唯一解b x a =;(2)当0,0a b =≠时,方程无解; (3)当0,0a b ==时,方程有无数多个解,且解为任意数。

以上结论,反过也是正确的。

2.含有绝对值符号的方程,应去掉绝对值符号而转化为一个或几个一元一次方程。

含绝对值方程的解法:含绝对值方程指的是绝对值符号内含有未知数的方程,最简单的绝对值方程是x a =,它的解的情况是:(1)当a >0时,方程的解为x a =或x a =-;(2)当0a =时,方程的解为0x =;(3)当a <0时,方程无解。

二、知识运用典型例题例1:当1b =时,关于x 的方程(32)(23)87a x b x x -+-=-有无数多个解,则a 等于( ).2A .2B - 2.3C - .D 不存在例2:方程5665x x +=-的解是_______________。

例3:解关于x 的方程 (1)11()(2)34m x n x m -=+ (2)22mnx n mn m x -=-例4:若a b c x b c a c a b ===+++,试求x 的值。

例5:解方程:421x x x +--=+。

例6: 是否存在整数x ,使322411?x x x x ++++-+-=如果存在,求出所有整数x ;如果不存在,请说明理由。

例7:有12个方格,每个方格都有一个数字,已知任何相邻三个数的和都第八讲 知识运用课后训练 等级1.已知关于x 的方程2(1)(5)3a x a x b -=-+有无数多个解,那么___,a = ____b =。

2.方程214x x -+=的解是______________.3. 已知关于x 的方程(38)70a b x ++=无解,则ab 是( ).A 正数 .B 非正数 .C 负数 .D 非负数4.已知2220012c a b +=-==,且2001a b c k ++=,那么k 的值为( ) 1.4A .4B 1.4C - .4D - 5.方程550x x -+-=的解的个数为( ).A 不确定 .B 无数个 .C 2个 .D 3个6.(1)解关于x 的方程2(1)1a x ax -=+ (2)解方程: 31x x x ++-=7.若1abc =,试解关于x 的方程2001111x x x a ab b bc c ac++=++++++。

人教版初一数学上册一元一次方程的解法(提高)知识讲解

人教版初一数学上册一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】类型一、解较简单的一元一次方程1.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.-8 C.-10 D.8【答案】B.【解析】解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2由题意知=m﹣2解之得:m=﹣8.【总结升华】根据题目给出的条件,列出方程组,便可求出未知数.举一反三:【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?3x+2=7x+5解:移项得3x+7x=2+5,合并得10x=7.,系数化为1得710x=.【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x移到方程左边应变为-7x,方程左边的2移到方程右边应变为-2.正确解法:解:移项得3x-7x=5-2,合并得-4x=3,系数化为1得34x=-.类型二、去括号解一元一次方程2. 解方程:112 [(1)](1) 223x x x--=-.【答案与解析】解法1:先去小括号得:11122[]22233x x x-+=-.再去中括号得:1112224433x x x-+=-.移项,合并得:5111212x-=-.系数化为1,得:115x=.解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-.去小括号,并移项合并得:51166x-=-,解得:115x=.解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-.去中括号,得1112(1)(1)(1) 2243x x x-+--=-.移项、合并,得51(1)122x--=-.解得115x=.【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.3.解方程:111111110 2222x⎧⎫⎡⎤⎛⎫----=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭.【答案与解析】解法1:(层层去括号)去小括号11111110 2242x⎧⎫⎡⎤----=⎨⎬⎢⎥⎣⎦⎩⎭.去中括号1111110 2842x⎧⎫----=⎨⎬⎩⎭.去大括号111110 16842x----=.移项、合并同类项,得115168x=,系数化为1,得x=30.解法2:(层层去分母)移项,得11111111 2222x⎧⎫⎡⎤⎛⎫---=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭.两边都乘2,得1111112 222x⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦.移项,得111113 222x⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦.两边都乘2,得11116 22x⎛⎫--=⎪⎝⎭.移项,得111722x⎛⎫-=⎪⎝⎭,两边都乘2,得11142x-=.移项,得1152x=,系数化为1,得x=30.【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做.举一反三:【变式】解方程11111641 2345x⎧⎫⎡⎤⎛⎫--+=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭.【答案】解:方程两边同乘2,得1111642 345x⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦.移项、合并同类项,得111162 345x⎡⎤⎛⎫--=-⎪⎢⎥⎝⎭⎣⎦.两边同乘以3,得11166 45x⎛⎫--=-⎪⎝⎭.移项、合并同类项,得1110 45x⎛⎫-=⎪⎝⎭.两边同乘以4,得110 5x-=.移项,得115x=,系数化为1,得x=5.类型三、解含分母的一元一次方程4.(2016春•淅川县期中)解方程﹣=.【思路点拨】方程整理后,去分母,去括号,移项合并同类项,把x系数化为1,即可求出解.【答案与解析】解:原方程可化为6x﹣=,两边同乘以6,得36x﹣21x=5x﹣7,移项合并,得10x=-7解得:x=﹣0.7.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.举一反三:【变式】解方程0.40.90.30.210.50.3y y++-=.【答案】解:原方程可化为49321 53y y++-=.去分母,得3(4y+9)-5(3+2y)=15.去括号,得12y+27-15-10y=15.移项、合并同类项,得2y=3.系数化为1,得32y =. 类型四、解含绝对值的方程5.解方程:3|2x|-2=0 .【思路点拨】将绝对值里面的式子看作整体,先求出整体的值,再求x 的值. 【答案与解析】解:原方程可化为:223x = . 当x ≥0时,得223x =,解得:13x =, 当x <0时,得223x -=,解得:13x =-,所以原方程的解是x =13或x =13-.【总结升华】此类问题一般先把方程化为ax b c +=的形式,再根据(ax b +)的正负分类讨论,注意不要漏解.举一反三:【变式】(2014秋•故城县期末)已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( )A. B. 2 C.D.3【答案】B解:∵|x﹣|=0,∴x=,把x 代入方程mx+2=2(m ﹣x )得:m+2=2(m ﹣), 解之得:m=2.类型五、解含字母系数的方程6. 解关于x 的方程:1mx nx -= 【答案与解析】解:原方程可化为:()1m n x -=当0m n -≠,即m n ≠时,方程有唯一解为:1x m n=-; 当0m n -=,即m n =时,方程无解.【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论.【高清课堂:一元一次方程的解法388407解含字母系数的方程】 举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴40k-≠原方程的解为:64xk=-为正整数,∴4k-应为6的正约数,即4k-可为:1,2,3,6∴k为:5,6,7,10答:自然数k的值为:5,6,7,10.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形; (2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x 2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有( )个.A .1B .2C .3D .4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断. 【答案】B.【解析】解:①x 2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B . 【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c.D.在等式2x=2a-b两边都除以2,可得x=a-b.【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x=21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。

析解含字母系数的不等式组问题

析解含字母系数的不等式组问题

析解含字母系数的不等式组问题在初中数学学习中,我们已经学习了不等式的基本概念和解法,例如一次不等式、二次不等式、绝对值不等式等等。

然而,当不等式中的系数含有字母时,我们就需要运用代数方法来解决问题。

本文将详细介绍含字母系数的不等式组问题的解法和应用。

一、含字母系数的一元一次不等式对于含字母系数的一元一次不等式,我们可以先将其转化为一元一次方程,然后解出方程的解集,再根据解集判断不等式的解集。

例如:解:将不等式两边乘以2,得到 $2x-4leqslant 2x+1$,化简得$-4leqslant 1$,显然不成立。

因此,原不等式无解。

二、含字母系数的一元二次不等式对于含字母系数的一元二次不等式,我们可以将其化为标准形式,即 $ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a,b,c$ 均为含字母的实数系数。

然后我们可以通过求解二次方程的解集来确定不等式的解集。

例如:解:将不等式两边移项,得到 $2x^2-5x+2leqslant 0$。

将其化为标准形式,得到 $2x^2-5x+2=0$。

解出方程 $2x^2-5x+2=0$ 的解集为 $x_1=frac{1}{2}$,$x_2=2$。

根据二次函数的图像,我们可以画出其图像:由于 $a>0$,因此该二次函数的开口朝上。

从图像可以看出,当$xin (frac{1}{2},2)$ 时,函数的取值小于等于0,满足原不等式。

因此,原不等式的解集为 $xin (frac{1}{2},2)$。

三、含字母系数的一元二次不等式组对于含字母系数的一元二次不等式组,我们需要先将其化为标准形式,然后运用解方程组的方法来求解。

例如:解:将不等式组两边移项,得到 $begin{cases}2x^2-5x+2leqslant 0 x^2-2x+1>0 end{cases}$。

将第二个不等式化为标准形式,得到 $(x-1)^2>0$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含字母系数方程与绝对值方程
【知识要点】
1.关于x 的方程ax=b ,我们有:
(1) 当a ≠0时,方程有唯一解;
(2) 当a=0,b ≠0时,方程无解;
(3) 当a=0,b=0时,方程有无数多个解,且解为任意数.
反过来,结论也是正确的,即对方程ax=b,我们有:
(1) 若方程有唯一解,则a ≠0;
(2) 若方程无解,则a=0且b ≠0;
(3) 若方程有无数多个解,则a=0且b=0.
2.关于x 的方程a x =:
(1) 当a>0时,方程有两个解:a x a x -==,;
(2) 当a=0时,方程有一个解:0=x ;
(3) 当a<0时,方程无解;
注: (1) 绝对值方程不是一元一次方程.
(2) 解绝对值方程的关键:
根据绝对值的定义或性质去掉绝对值符号,化为一般方程,从而解决问题.
【典型例题】
例1.已知关于x 的方程 23()ax a x -=+ 的根是2,求a 的值.
例2.关于x 的方程n x mx -=+34,分别求m ,n 为何值时原方程:
(1)有惟一解; (2)有无数多解; (3)无解.
例3.解关于x 的方程nx mx =-1.
例4.解关于x 的方程),0,0(b a b a a b
a b
x b a
x ≠≠≠=---
例5.若1x =是关于x 的方程(0)ax b c a +=≠的解,求:
(1)2001)(c b a -+的值; (2)b
a c +的值; (3)1c a
b ---的值.
例6.(1)解关于x 的程4(1)(5)2a x a x b -=-+有无数多个解,试求b
a , (2)当k 取什么整数时,方程24kx kx +=的解是正整数?
例7. 先阅读下列解题过程,然后解答问题(1)、(2)
解方程:|x+3|=2
解:当x+3≥0时,原方程可化为:x+3=2,解得x=-1
当x+3<0时,原方程可化为:x+3=-2,解得x=-5
所以原方程的解是x=-1,x=-5
(1)解方程:|3x-2|-4=0
(2)探究:当b 为何值时,方程|x-2|=b+1 ① 无解;②只有一个解;③ 有两个解.
例8. 解方程:
(1)123=-x (2)
2173
x -=
*(3)45x -= *(4)310x x --+=
* 思考题:
当a 为何值时,关于x 的方程a x =--32恰有三个解?
【初试锋芒】
1. 若方程()0122
=++-c bx x a 是关于x 的一元一次方程,则( ) A.为任意数c b a ,0,21== B.0,0,21=≠≠c b a C.0,0,21≠≠=c b a D.为任意数c b a ,0,2
1≠= 2. 要使方程a ax =有唯一的解1=x ,必须满足条件( )
A. a 任意
B. a>0
C. a<0
D. a ≠0
3.已知1x =是方程12()23
m x x --=的解,那么方程(3)2(25)m x m x --=-的解是( ) A .10x = B .0x = C .x=1 D .以上答案都不对
4.如果a 、b 互为相反数,(a ≠0),则ax +b =0的根为( )
A .1
B .-1
C .-1或1
D .任意数
5. 方程 x x -=|| 的解是 ( )
A.1-
B.负整数
C.所有负有理数
D. 所有非正有理数
* 6. 若k 为整数,则使得方程x x k 20002001)1999(-=-的解也是整数的k 的值 有( )个.
A.4
B.8
C.12
D.16
7. 关于x 的方程357x a bx -+=+有唯一解,那么a 、b 应满足条件为( )
A .a 、b 是不为0的数;
B .a b ≠
C .1a ≠
D .3b ≠
8. 若2=a ,且02=+b a ,则b=
9. 关于x 的方程)(b a a bx b ax ≠+=+的解为 .
10. 若15.0=x 与方程ax a x =+3的解相同,则=a .
11.已知12
x =是关于x 的方程432ax ax +=-的解,那么a = . 12.已知方程1(2)40a a x
--+=是一元一次方程,求a 与x 的值.
13. 已知12
x =
是方程23)2(6+=+x m x 的解,求关于x 的方程)21(2x m mx -=+的解.
14. 已知3x =是方程45(1)8(2)ax x a x x a a x -+=++--+的解,
0y =是方程232()yb ab y ab y b +-=++的解,求22()()a b a b --+的值.
15.m 为何值时方程(1)72m x x -+=的解为:(1)3; (2)
12
; (3)零.
【大展身手】
1.当a 时,方程b ax =的解为a b
x =
2.方程2=x 的解为 .
3.(1)已知1=x 是方程x k x k 3)2(+=-的解.求k 的值;
(2)已知-4适合方程0623=-kx ,求2001
k 的值.
4. 当k 取何值时,方程 k x x k -=-4)1(的解为2-=x ?
5.解关于x 的方程x n m x n m m )()(2-=+-.
6.若1-=y 是方程)(76)(34y a y y a y --=--的解,求a a 1
+的值.
7.解关于x 的方程,13)21
(2-=---x x k ),2(为有理数且k k -≠
8.已知03242=--+-x y ax y ,问a 为何值时x 为负值?
9.已知关于x 的方程b x a x a 3)5()1(2+-=-有无数多解,试求b a ,的值.
* 10.()()()()112120k k x k k +--++=
* 11.如果m 、n 为常数,关于x 的方程()2232x km kx n -+-=
无论k 取何值, 方程的根总是
12,试求m 、n 的值.。

相关文档
最新文档