指数函数与对数函数经典讲义
高中三年级数学第一轮复习讲义12指数函数与对数函数

2018届高三第一轮复习讲义【12】-指数函数与对数函数一、知识梳理:1.指数函数的概念、图像和性质 (1)指数的运算性质()()()()()0,,;0,,;0,0,.m n m n nm mn nn n a a a a m n R a a a m n R a b a b a b n R ⋅⋅=>∈=>∈⋅=⋅>>∈(2)指数函数:一般地,函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .(3)指数函数的图像与性质【注意】(1)会根据复合函数的单调性特征“同增异减”,判断形如()f x y a =(0a >且1a ≠)函数的单调性;(2)会根据x y a = (0a >且1a ≠)的单调性求形如(),f x y ax D =∈,(),x y f a x D=∈(1)定义域:x R ∈(2)值域:(0,y ∈的值域;(3)解题时注意“分类讨论”、“数形结合”、“换元”等思想方法的应用。
2.对数的概念及其运算 (1)对数的定义:如果=ba N (>0a ,1a ≠),那么b 叫做以a 为底N 的对数,记作=a log N b .读作“以a 为底N 的对数”,其中a 叫做底数,N 叫做真数.必须注意真数0N >,即零与负数没有对数.(2)指数式与对数式的关系:=ba N ⇔=a log Nb (>0a ,1a ≠,0N >).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数的性质:① log a N 中0(0,1)N a a >>≠,零和负数没有对数,即0N >; ② 底数的对数等于1,即log =1a a ,log a NaN =,()0,1,0a a N >≠>③ 1的对数0,即log 1=0a . (4)对数的运算性质:① ()=+a a a log MN log M log N (0M >,0N >,>0a ,1a ≠);② =aa a Mlog log M log N N-(0M >,0N >,>0a ,1a ≠) ③ =n a a log M nlog M ;log a NaN =(0M >,0N >,>0a ,1a ≠)④ 对数换底公式:log =log a b a Nlog N b(>0a ,1a ≠,>0b ,1b ≠,0N >)【提醒】(1)注意真数0N >,即零与负数没有对数.(2)底数满足>0a ,1a ≠ 3.对数函数:对数函数的图像与性质二、基础检测:1. 设16log 27a =, 则用a 表示6log 16=_______________.2. 函数222xxy +=的单调递增区间是_____________, 值域是____________. 3. 函数|1|45x y -⎛⎫= ⎪⎝⎭的单调递减区间是_____________, 值域是____________.4. 函数20.1log (62)y x x =+-的单调递增区间是________________.5. 若2log 13a<, 则实数a 的取值范围是________________________. 6. 不等式2(21)1x a -<的解集为(,0)-∞, 则实数a 的取值范围是______________.三、例题精讲:【例1】指数函数①x y a =,②x y b =,③x y c =,④xy d =在同一坐标系内的图像如图所示,则,,,a b c d 的大小顺序是().A .b a d c <<<B .a b d c <<<C .b a c d <<<D .b c a d <<< 【参考答案】A .【例2】若不论a 取何正实数,函数12x y a +=-的图像都通过同一定点,则该点坐标是____________. 【参考答案】()1,1--【例3】不等式()2211xa -<的解集为(),0-∞,则实数a 的取值范围是.【参考答案】()(),11,-∞-+∞【例4】根据统计资料,在A 小镇,当某件信息发布后,t 小时之内听到该信息的人口是全镇人口的100(12)%kt--,其中k 是某个大于0的常数,今有某信息,假设在发布后3小时之内已经有70%的人口听到该信息.又设最快要T 小时后,有99%的人口已听到该信息,则T =_______小时.(保留一位小数) 【参考答案】11.5【例5】已知22124x x x-+⎛⎫≤ ⎪⎝⎭,求函数22x xy -=-的值域.解:222242122224414x x xxxx x x x x -++-+⎛⎫≤⇔≤⇔+≤-+⇔-≤≤ ⎪⎝⎭,而函数22xxy -=-在区间[]4,1-上是增函数,所以,函数22xxy -=-的值域为2553,162⎡⎤-⎢⎥⎣⎦.【例6】已知函数[)1423,2,x x y a x --=-⋅-∈-+∞的最小值是4-,求实数a 的值. 解:设2xu -=由于[)2,x ∈-+∞,所以(]0,4u ∈,()2124233x x y a u a a --=-⋅-=---①_x0001_(]0,4a ∈时,()()2min 34,1,f x a a =--==此时u a =,即0x =;②_x0001_当(),0a ∈-∞时,()()223g u u a a =---在(]0,4上是增函数,()f x 无最小值; ③_x0001_当()4,a ∈+∞时,()()223g u u a a =---在(]0,4上是减函数,()174,8a =∉+∞舍去. 综上所述,实数a 的值为1.【例7】若两个函数的图像经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列四个函数:()x x f 21log 2=,()()22log 2f x x =+,232log f x =,42log (2)f x =则“同形”函数是( ) A 1()f x 与2()f x B 2()f x 与3()f x C 2()f x 与4()f x D 1()f x 与4()f x【参考答案】C【例8】函数221()log (2)2ax f x x x -=+-+在[1,3]x ∈上恒有意义,则实数a 的取值范围是_________.【参考答案】(2)-+∞【例9】函数20.3log (2)y x x =-的单调递减区间为.解:先求定义域:由220x x ->得(2)0x x ->0x ∴<或2x >.∵函数0.3log y t =是减函数,故所求单调减区间即22t x x =-在定义域内的增区间, 又22t x x =-的对称轴为1x =,∴所求函数的单调递减区间为(2,)+∞. 【例10】已知函数2()log (01)2axf x a x+=<<-(1)试判断()f x 的奇偶性; (2)解不等式()log 3a f x x ≥. 解:(1)20222xx x+>⇒-<<-故()f x 的定义域关于原点对称, 且122()log log ()()22aa x x f x f x x x--+-===-+-∴()f x 是奇函数. (2)2()log 3log log 3.012a aa xf x x x a x+≥⇔≥<<-,故2220221(32)(1)230322xx x x x x x x x x+⎧-<<>⎧⎪⎪⎪-⇔⇔≤≤--⎨⎨+≥⎪⎪≤-⎩⎪-⎩,即原不等式的解集为2{|1}3x x ≤≤.【例11】设不等式211222(log )9(log )90x x ++≤的解集为M ,求当x M ∈时,函数22()(log )(log )28x xf x =的最大、最小值. 解:211222(log )9(log )90x x ++≤1122(2log 3)(log 3)0x x ∴++≤1233log 2x ∴-≤≤-即3333221112221111log ()log log (),()()2222x x ----≤≤∴≤≤∴8x ≤≤即{|M x x =∈又2222222()(log 1)(log 3)log 4log 3(log 2)1f x x x x x x =--=-+=--∵8x ≤≤∴23log 32x ≤≤ ∴当2log 2x =即4x =时min 1y =-;当2log 3x =,即8x =时,max 0y =. 【例12】通常表明地震能量大小的尺度是里氏震级,其计算公式是0lg lg M A A =-,其中,A 是被测地震最大振幅,0A 是“标准地震”的振幅,M 为震级.则7级地震的最大振幅是5级地震最大振幅的__倍.解:7050(lg lg )(lg lg )752A A A A ---=-=,即75lg 2A A =,75100AA =.【例13】已知函数()|lg |f x x =,若a b ≠,且()()f a f b =,则a b +的取值范围是________.解:如图,由()()f a f b =得|lg ||lg |a b =设0a b <<则lg lg 0a b +=∴1ab =∴22a b ab +>=,答案:(2,)+∞【例14】已知函数()log (01).a f x x x b a a =+->≠,且当234a b <<<<时,函数()f x 的零点*0(,1),,=x n n n N n ∈+∈则.解:方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图像与函数(34)y x b b =-<<的交点横坐标为0x , 且*0(,1),x n n n N ∈+∈,结合图像,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图像上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图像上点的横坐标(5,6)x ∈.故所求的2n =.四、难题突破: 例1. 已知函数1()log 1axf x x-=+(0, 1a a >≠). (1) 讨论函数()f x 的奇偶性和单调性;(2) 设函数()f x 的定义域为[,)a b , 值域为[1,)+∞, 求实数a , b 的值. (1)解: 函数的定义域为区间(1,1)-, 关于原点对称,任取(1,1)x ∈-, 111()log log log ()111a a ax x x f x f x x x x +--⎛⎫-===-=- ⎪-++⎝⎭, 即()f x 是奇函数.任取12,(1,1)x x ∈-, 12x x <, 则12011x x <+<+, 故有121211221111x x x x >⇔>++++, 因此1212121122111111x x x x x x ---+>-+⇔>++++, 当01a <<时, 由log a y x =在(0,)+∞上单调递减, 得121211log log 11a ax x x x --<++, 此时()f x 在(1,1)-上单调递增;当1a >时, 由log a y x =在(0,)+∞上单调递增, 得121211log log 11a ax x x x -->++, 此时()f x 在(1,1)-上单调递减.(2)解: 由题意, [,)(1,1)a b ⊆-, 故11a b -<<≤, 即01a b <<<,由(1)可知()f x 在(1,1)-上单调递增, 故有11()1log 111a a af a a a a--=⇔=⇔=++, 解得1a =;当1b <时, 由单调性得1()log 1a bf x b-<+, 不合题意, 故1b =;综上有1, 1a b =.例2. 已知函数22()lg[(1)(1)1]f x a x a x =-+++(其中a 为实常数). (1) 若函数的定义域为, 求实数a 的取值范围; (2) 若函数的值域为, 求实数a 的取值范围.(1)解: 即不等式22(1)(1)10a x a x -+++>的解集为,当1a =时, 不等式为210x +>, 不合题意;当1a =-时, 不等式为10>恒成立, 符合题意;当21a ≠时, 则有22210(1)4(1)0a a a ⎧->⎪⎨∆=+--<⎪⎩, 解得5(,1)(,)3a ∈-∞-⋃+∞; 综上所述, 5(,1](,)3a ∈-∞-⋃+∞;(2)解: 即函数22(1)(1)1y a x a x =-+++的值域包含+,当1a =时, 函数为21y x =+, 符合题意; 当1a =-时, 函数为1y =, 不合题意;当21a ≠时, 则有22210(1)4(1)0a a a ⎧->⎪⎨∆=+--≥⎪⎩, 解得5(1,]3a ∈, 综上所述, 5[1,]3a ∈.例3. 已知函数2()log ()a f x ax x =-(0, 1a a >≠)在区间[2,4]上是增函数, 求实数a 的取值范围.解: 令210(1)0(,0)(,)ax x x ax x a->⇔->⇒∈-∞⋃+∞给出,函数在[2,4]有定义, 则1122a a <⇒>, 令2t ax x =-, 其图像对称轴为直线12x a=, 当1a >时, 外层函数单调递增, 因此内层函数2t ax x =-在[2,4]上单调递增, 得11224a a ≤⇔≥, 结合定义域要求, 即1a >; 当01a <<时, 外层函数单调递减, 因此内层函数2t ax x =-在[2,4]上单调递减, 因此11428a a ≥⇒≤, 结合定义域要求, 无解; 综上所述, 1a >. 五、课堂练习:1. 函数||3x y -=的值域是____________.2. 已知01a <<, 1b <-, 则函数x y a b =+的图像不会经过第______象限.3. 函数y =_________________.4. 若()log (0, 1)a f x x a a =>≠在[,2]a a 上的最大值是最小值的3倍, 则实数a 的值为_____.5. 函数lg100xy =的图像与函数10010x y =⋅的图像关于直线______________对称; 函数lg100x y =的图像与函数0.1log 100x y =的图像关于直线______________对称. 6. 函数3()log |2|f x x a =+的图像的对称轴是直线2x =, 则实数a =__________. 7. 使2log ()1x x -<+成立的x 的取值范围是_____________. 8. 设223()2(1)xx f x x -+=≥, 则其反函数1()f x -=_______________________.9. 求2211()log ()log ()24f x x x =⋅, 当[2,8]x ∈时的最小值和最大值.10. 求函数2221()log log (1)log ()1x f x x p x x +=+-+--(其中p 为常数, 且1p >)的值域.11. 已知0a >, 1a ≠, 21(log )()1a a f x x a x=--, (1) 判断()f x 的定义域内的奇偶性及单调性, 并加以证明; (2) 若()40f x -<的解集为(,2)-∞, 求a 的值.12. 已知函数()lg()x x f x a b =-(其中a , b 为常数, 且01b a <<<). (1) 求函数()f x 的定义域;(2) 在函数()y f x =的图像上是否存在两个不同的点, 使得过它们的直线平行于x 轴? 若存在, 求出这样的点; 若不存在, 说明理由;(3) 当a , b 满足什么条件时, 不等式()0f x >对一切(1,)x ∈+∞都成立?六、回顾总结:1.主要方法:①指数函数、对数函数的单调性决定于底数a ,要分1a >与01a <<来分类讨论.②熟练掌握对、指数公式的使用和化简计算;2.易错、易漏点:①解决与对数函数有关的问题,要特别注意定义域(对数的底数和真数应满足的条件);注意区别log (1)a b +与log 1a b +的区别;②不同底的对数运算问题,应化为同底对数式进行运算.七、课后作业:1.幂函数)(x f y =图像经过点)21,41(,则=)(x f . 2.已知幂函数a x y =的图像,当10<<x 时,在直线x y =的上方,当1>x 时,在直线x y =的下方,则a 的取值范围是.3.函数2223()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =. 4.幂函数),*,,,()1(互质n m N k n m xy m nk ∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为.5.设,函数在区间上的最大值与最小值之差为,则( ) AB . C. D .6.已知函数|lg|)(x x f =,若b a <<0,且)()(b f a f =,则b a 2+的取值范围是 ( )A .B .C .D .7.设函数)(x f =若)()(a f a f ->,则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)8.函数的值域为 A . B . C . D .9.为了得到函数的图像,只需把函数的图像上所有的点() A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.在同一平面直角坐标系中,函数的图象与的图象关于直线对称.而函数的图象与的图象关于轴对称,若,则的值是()1a >()log a f x x =[]2a a ,12a =24)+∞)+∞(3,)+∞[3,)+∞()212log log x x ⎧⎪⎨-⎪⎩0,0x x ><()()2log 31x f x =+()0,+∞)0,+∞⎡⎣()1,+∞)1,+∞⎡⎣3lg 10x y +=lg y x =()y g x =x y e =y x =()y f x =()y g x =y ()1f m =-mA .B .C .D . 11.函数的图象大致是( )12.若在上是减函数,则的取值范围是 ( )A .B .C .D .13.若函数|1|()2x f x m --=-的图象与x 轴有交点,则实数m 的范围是__________. 14.函数)1,0(≠>=a a a y x 在[]2,1上最大值比最小值大2a ,则_________=a . 15.已知函数),0[,)(+∞∈+⋅=x cb a x f x 的值域为)3,2[-,则)(x f 的一个可能的解析式为__________.【思考题】1.设函数()121,x f x x R -=-∈e -1e -e 1elg ||x y x=)2(log ax y a -=]1,0[a )1,0()2,0()2,1(),2(+∞(1)分别作出()y f x =和()y f x =的图像;(2)求实数a 的取值范围,使得方程()fx a =与()f x a =都有且仅有两个实数解.2.已知2()lg x f x ax b =+,(1)0f =,当0x >时,恒有1()lg f x f x x ⎛⎫-= ⎪⎝⎭.⑴求()f x 的解析式;⑵若方程()lg()f x m x =+的解集是∅,求实数m 的取值范围.3.已知函数2()log (1)f x x =-,222x t g x t ⎛⎫-=∈ ⎪⎝⎭R ,.⑴求()y g x =的解析式;⑵若1t =,求当[2,3]x ∈时,()()g x f x -的最小值;⑶若在[2,3]x ∈时,恒有()()g x f x ≥成立,求实数t 的取值范围.。
幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。
高考数学总复习(整合考点+典例精析+深化理解)第二章 第七节指数函数与对数函数精讲课件 文

<1,∴x∈(-1,0).
答案:(1)B (2)A 第十四页,共14页。
第十页,共14页。
令g(x)=-x2+2x+3,则g(x)在(-∞,1)上递增,在(1,+∞)上递 减.
又y=log4x在(0,+∞)上递增, ∴f(x)的单调递增区间是(-1,1),递减区间是(1,3).
(2)假设存在实数(shìshù)a使f(x)的最小值为0,则h(x)=ax2+2x+3应 有最小值1,
∴此时f(x)在其定义域内为减函数(hánshù),不符合要求.当 0<a<1时,同理可知f(x)在其定义域内是减函数(hánshù),不符 合题意.
(2)∵f(x) 为 奇 函 数 (hánshù) , ∴ f(0) = 0. 解 之 , 得 a = -
1.∴f(x)=lg
.
令f(x)<0,则0<
答案:B
第七页,共14页。
点评:(1)因为y=ax(a>0且a≠1)的图象经过定点(0,1), 根据图象的平移可知(kě zhī),函数的图象y=ax-m+n经过 定点(m,1+n).
(2)因为y=logax(a>0且a≠1)的图象经过定点(1,0),根据 图象的平移可知(kě zhī),函数y=loga(x-m)+n的图象经过 定点(m+1,n).
第八页,共14页。
变式探究(tànjiū) 2.不论(bùlùn)a(a>0且a≠1)取何实数,函数y=p+loga(x-q)
的图象都经过定点(2,3),则p=__________,q=__________. 解析:依题意,即将y=logax图象经过定点(1,0)平移到点(2,3),
只需将y=logax的图象向右平移1个单位(dānwèi)长度,再向上平移3 个单位(dānwèi)长度即可.∴p=3,q=1.
《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)

第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2
指数函数与对数函数总结复习课件

小结:
1
指数函数与对数函数互为反函数
2
应结合图象牢记性质,掌握分类讨论的方法并应用。
作业
【教育类精品资料】
单击此处添加副标题
汇 报 人 姓汇名报 日 期
指数函数与对数函数复习课件
潘继林
汇 报 人 姓汇名报 日 期
复 习课
01
题目:指数函数与对数函数
02
目的:1、使学生熟练掌握指数函数与对数 函数的概念图象和性质。
03
进一步提高学生数形结合能力。
一.有关概念
1.指数函数定义:y=ax (a>0 且 a=1)
(1, 0)
x
(0,1)
o
(1, 0)
a>1时
0<a<1时
y=x
y=loxgax
二.例题和练习
1. 下列图象正确的是 ( )
y
y
y=10x (0,1)
0
x
(A)
(0,1)
0 (B)
y=10-x
x
y
y=lgx
y
y=lgx
0 (1,0) (C)
x
0 (1,0) x
(D)
2. 下列函数在0是,(
内是减函数的 )
定义域: (,) 值 域:(0,)
图象
y
(0,1)
o
(a>1时)
y=ax
x
y=ax y
(0,1)
o
x
(0<a<1时)
观察图象归纳性质
y
y=ax
(0,1)
o
x
a>1时
(1)图象过点(0,1)
(2)在上 (,是增)函数
第四章-指数函数与对数函数PPT课件

-
43
在ab=N中,b叫以a为底N的对数.
2 3 8 中, 3叫以2为底8的对数, 记作3=log28.
3 2 9 中,
记作2=log39.
1
0
1 中,
2
0叫以1/2为底1的对数,记作0=log1/21.
5 -1 1 中, 5
(4)y
=
x-
3 2
.
解:(1)函数 y = x 3 的定义域为 R ;
-
16
4.3幂函数
二、幂函数应用
例1 写出下列函数的定义域:
(1)y = x 3 ;
1
(2)y = x 2 ;
(3)y = x -2 ;
(4)y
=
x-
3 2
.
解:(2)函数
y
=
x
1 2
,即
y
=
x
,
定义域为 [ 0,+∞);
-
17
的函数叫做指数函数,其中 x是自变量.
函数的定义域是 R .
-
27
变式练习: 请问同学们下面的式子是不是指数函 数?
y 32x
-
28
图象
y 2x
x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
y 0.25 0.35 0.5 0. 71 1 1.41 2 2.83 4
y
y 2x
-
7
4.2 有理指数幂
❖ 2.有理指数幂的定义
❖ 正数的正分数指数幂的意义是:
❖ amn nam(a 0 ,m ,且 n N ) ❖ 正数的负分数指数幂:
❖
新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数对数函数讲义

最新课程标准:(1)通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.(2)知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).(3)收集、阅读对数概念的形成与发展的历史资料,撰写小论文,论述对数发明的过程以及对数对简化运算的作用.知识点一对数函数的概念函数y=log a x (a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).错误!形如y=2log2x,y=log2错误!都不是对数函数,可称其为对数型函数.知识点二对数函数的图象与性质a>10<a<1图象性质定义域(0,+∞)值域R过点(1,0),即当x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数错误!底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.知识点三反函数一般地,指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的定义域与值域正好互换.[教材解难]1.教材P130思考根据指数与对数的关系,由y =错误!5730x(x ≥0)得到x =log 573012y (0<y ≤1).如图,过y 轴正半轴上任意一点(0,y 0)(0<y 0≤1)作x 轴的平行线,与y =错误!5730x(x ≥0)的图象有且只有一个交点(x 0,y 0).这就说明,对于任意一个y ∈(0,1],通过对应关系x =log 573012y ,在[0,+∞)上都有唯一确定的数x 和它对应,所以x 也是y 的函数.也就是说,函数x =log 573012y ,y ∈(0,1]刻画了时间x 随碳14含量y 的衰减而变化的规律.2.教材P 132思考利用换底公式,可以得到y =log 12x =—log 2x .因为点(x ,y )与点(x ,—y )关于x轴对称,所以y =log 2x 图象上任意一点P (x ,y )关于x 轴的对称点P 1(x ,—y )都在y =log 12x 的图象上,反之亦然.由此可知,底数互为倒数的两个对数函数的图象关于x 轴对称.根据这种对称性,就可以利用y =log 2x 的图象画出y =log 12x 的图象.3.教材P 138思考一般地,虽然对数函数y =log a x (a >1)与一次函数y =kx (k >0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,log a x可能会大于kx,但由于log a x的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有log a x<kx.4.4.1对数函数的概念[基础自测]1.下列函数中是对数函数的是()A.y=log14xB.y=log14(x+1)C.y=2log14xD.y=log14x+1解析:形如y=log a x(a>0,且a≠1)的函数才是对数函数,只有A是对数函数.答案:A2.函数y=错误!ln(1—x)的定义域为()A.(0,1)B.[0,1)C.(0,1] D.[0,1]解析:由题意,得错误!解得0≤x<1;故函数y=错误!ln(1—x)的定义域为[0,1).答案:B3.函数y=log a(x—1)(0<a<1)的图象大致是()解析:∵0<a<1,∴y=log a x在(0,+∞)上单调递减,故A,B可能正确;又函数y=log a(x—1)的图象是由y=log a x的图象向右平移一个单位得到,故A正确.答案:A4.若f(x)=log2x,x∈[2,3],则函数f(x)的值域为________.解析:因为f(x)=log2x在[2,3]上是单调递增的,所以log22≤log2x≤log23,即1≤log2x≤log23.答案:[1,log23]题型一对数函数的概念例1下列函数中,哪些是对数函数?(1)y=log a错误!(a>0,且a≠1);(2)y=log2x+2;(3)y=8log2(x+1);(4)y=log x6(x>0,且x≠1);(5)y=log6x.【解析】(1)中真数不是自变量x,不是对数函数.(2)中对数式后加2,所以不是对数函数.(3)中真数为x+1,不是x,系数不为1,故不是对数函数.(4)中底数是自变量x,而非常数,所以不是对数函数.(5)中底数是6,真数为x,系数为1,符合对数函数的定义,故是对数函数.用对数函数的概念例如y=log a x(a>0且a≠1)来判断.方法归纳判断一个函数是对数函数的方法跟踪训练1若函数f(x)=(a2—a+1)log(a+1)x是对数函数,则实数a=________.解析:由a2—a+1=1,解得a=0或a=1.又底数a+1>0,且a+1≠1,所以a=1.答案:1对数函数y=log a x系数为1.题型二求函数的定义域[教材P130例1]例2求下列函数的定义域:(1)y=log3x2;(2)y=log a(4—x)(a>0,且a≠1).【解析】(1)因为x2>0,即x≠0,所以函数y=log3x2的定义域是{x|x≠0}.(2)因为4—x>0,即x<4,所以函数y=log a(4—x)的定义域是{x|x<4}.真数大于0.教材反思求定义域有两种题型,一种是已知函数解析式求定义域,常规为:分母不为0;0的零次幂与负指数次幂无意义;偶次根式被开方式(数)非负;对数的真数大于0,底数大于0且不等于1.另一种是抽象函数的定义域问题.同时应注意求函数定义域的解题步骤.跟踪训练2求下列函数的定义域:(1)y=lg(x+1)+错误!;(2)y=log(x—2)(5—x).解析:(1)要使函数有意义, 需错误!即错误!∴—1<x <1,∴函数的定义域为(—1,1). (2)要使函数有意义,需错误!∴错误! ∴定义域为(2,3)∪(3,5).真数大于0,偶次根式被开方数大于等于0,分母不等于0,列不等式组求解. 题型三 对数函数的图象问题例3 (1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )(2)已知函数y =log a (x +3)—1(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f (log 32)=________.(3)如图所示的曲线是对数函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象,则a ,b ,c ,d 与1的大小关系为________.【解析】 (1)A 中,由y =x +a 的图象知a >1,而y =log a x 为减函数,A 错;B 中,0<a <1,而y =log a x 为增函数,B 错;C 中,0<a <1,且y =log a x 为减函数,所以C 对;D 中,a <0,而y =log a x 无意义,也不对.(2)依题意可知定点A (—2,—1),f (—2)=3—2+b =—1,b =—错误!,故f (x )=3x —错误!,f (log 32)=33log 2—错误!=2—错误!=错误!.(3)由题干图可知函数y=log a x,y=log b x的底数a>1,b>1,函数y=log c x,y=log d x的底数0<c<1,0<d<1.过点(0,1)作平行于x轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c,d,a,b,显然b>a>1>d>c.【答案】(1)C (2)错误!(3)b>a>1>d>c错误!(1)由函数y=x+a的图象判断出a的范围.(2)依据log a1=0,a0=1,求定点坐标.(3)沿直线y=1自左向右看,对数函数的底数由小变大.方法归纳解决对数函数图象的问题时要注意(1)明确对数函数图象的分布区域.对数函数的图象在第一、四象限.当x趋近于0时,函数图象会越来越靠近y轴,但永远不会与y轴相交.(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a的取值范围是a>1,还是0<a<1.(3)牢记特殊点.对数函数y=log a x(a>0,且a≠1)的图象经过点:(1,0),(a,1)和错误!.跟踪训练3(1)如图所示,曲线是对数函数y=log a x(a>0,且a≠1)的图象,已知a取错误!,错误!,错误!,错误!,则相应于C1,C2,C3,C4的a值依次为()A.错误!,错误!,错误!,错误!B.错误!,错误!,错误!,错误!C.错误!,错误!,错误!,错误!D.错误!,错误!,错误!,错误!(2)函数y=log a|x|+1(0<a<1)的图象大致为()解析:(1)方法一作直线y=1与四条曲线交于四点,由y=log a x=1,得x=a(即交点的横坐标等于底数),所以横坐标小的底数小,所以C1,C2,C3,C4对应的a值分别为错误!,错误!,错误!,错误!,故选A.方法二由对数函数的图象在第一象限内符合底大图右的规律,所以底数a由大到小依次为C1,C2,C3,C4,即错误!,错误!,错误!,错误!.故选A.增函数底数a>1,减函数底数0<a<1.(2)函数为偶函数,在(0,+∞)上为减函数,(—∞,0)上为增函数,故可排除选项B,C,又x=±1时y=1,故选A.先去绝对值,再利用单调性判断.答案:(1)A (2)A课时作业231.下列函数是对数函数的是()A.y=2+log3xB.y=log a(2a)(a>0,且a≠1)C.y=log a x2(a>0,且a≠1)D.y=ln x解析:判断一个函数是否为对数函数,其关键是看其是否具有“y=log a x”的形式,A,B,C全错,D正确.答案:D2.若某对数函数的图象过点(4,2),则该对数函数的解析式为()A.y=log2xB.y=2log4xC.y=log2x或y=2log4xD.不确定解析:由对数函数的概念可设该函数的解析式为y=log a x(a>0,且a≠1,x>0),则2=log a4即a2=4得a=2.故所求解析式为y=log2x.答案:A3.设函数y=错误!的定义域为A,函数y=ln(1—x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(—2,1)D.[—2,1)解析:由题意可知A={x|—2≤x≤2},B={x|x<1},故A∩B={x|—2≤x<1}.答案:D4.已知a>0,且a≠1,函数y=a x与y=log a(—x)的图象只能是下图中的()解析:由函数y=log a(—x)有意义,知x<0,所以对数函数的图象应在y轴左侧,可排除A,C.又当a>1时,y=a x为增函数,所以图象B适合.二、填空题5.若f(x)=log a x+(a2—4a—5)是对数函数,则a=________.解析:由对数函数的定义可知错误!,∴a=5.答案:56.已知函数f(x)=log3x,则f错误!+f(15)=________.解析:f错误!+f(15)=log3错误!+log315=log327=3.答案:37.函数f(x)=log a(2x—3)(a>0且a≠1)的图象恒过定点P,则P点的坐标是________.解析:令2x—3=1,解得x=2,且f(2)=log a1=0恒成立,所以函数f(x)的图象恒过定点P(2,0).答案:(2,0)三、解答题8.求下列函数的定义域:(1)y=log3(1—x);(2)y=错误!;(3)y=log7错误!.解析:(1)由1—x>0,得x<1,∴函数y=log3(1—x)的定义域为(—∞,1).(2)由log2x≠0,得x>0且x≠1.∴函数y=错误!的定义域为{x|x>0且x≠1}.(3)由错误!>0,得x<错误!.∴函数y=log7错误!的定义域为错误!.9.已知f(x)=log3x.(1)作出这个函数的图象;(2)若f(a)<f(2),利用图象求a的取值范围.解析:(1)作出函数y=log3x的图象如图所示(2)令f(x)=f(2),即log3x=log32,解得x=2.由图象知,当0<a<2时,恒有f(a)<f(2).∴所求a的取值范围为0<a<2.[尖子生题库]10.已知函数y=log2x的图象,如何得到y=log2(x+1)的图象?y=log2(x +1)的定义域与值域是多少?与x轴的交点是什么?解析:y=log2x错误!y=log2(x+1),如图.定义域为(—1,+∞),值域为R,与x轴的交点是(0,0).。
最新指数函数、对数函数、幂函数的图像与性质的讲义

指数函数、对数函数、幂函数的图像与性质理解有理数指数幂的含义,掌握幂的运算;理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。
理解对数的概念及其运算性质。
理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。
了解指数函数y=a x 与对数函数log x a y =互为反函数(0,1a a >≠且)。
了解幂函数的概念。
结合函数y=x ,y=x 2,y=x 3,1y x=,12y x =的图象,了解它们的变化情况。
指数函数、对数函数在高中数学中占有十分重要的地位,是高考重点考查的对象,热点是指数函数、对数函数的图象与性质的综合应用.同时考查分类讨论思想和数形结合思想;多以选择、填空题的形式出现,有时会与其他知识结合在知识交汇点处命题。
(一)指数与指数函数1.根式(1)根式的概念如果n x a =,那么x 叫做a 的n 次方根1n n N *>∈且当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数na零的n 次方根是零当n 为偶数时,正数的n 次方根有两个,它们互为相反数(0)n a a ±> 负数没有偶次方根(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:(0,,1)mn m naa a m n N n *=>∈>、且;②正数的负分数指数幂: 1(0,,1)m nm nmnaa m n N n a a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 y=a x a>10<a<1图象定义域 R值域 (0,+∞)n 为奇数 n 为偶数性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,0<y<1(2) 当x>0时,0<y<1; x<0时, y>1(3)在(-∞,+∞)上是增函数 (3)在(-∞,+∞)上是减函数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
--
指数函数与对数函数
重点:指数函数、对数函数的图像和性质;指、对数方程(含不等式)的解法;数学思
想方法的运用.
难点:幂函数、指数函数和对数函数组成的复合函数的性质.
一、 指数与对数的运算法则
1、 指数的运算法则
① mnmnaaaﻩ② mmnnaaa ③ nmmnmnaaa ﻩ④ 1nnaa
2、 对数式与指数式的互换
logbaaNbN
(0a且1a)、(上式中bR,0N)
3、 对数的运算法则
(1)对数运算法则
① logloglogaaaMNMN ② logloglogaaaMMNN
③ loglognaaMnM ﻩ ﻩ ④ 1loglognaaMMn
(2)几个常用的恒等式
① logaNaNﻩﻩ② logNaaN ③ logloglogbabNNa(换底公式)ﻩ
④ 1loglogabba ⑤ loglogmnaanbbm
例1、 求:82log9log3的值.
解:82lg9log9lg9lg22lg3lg22lg8lg3log3lg833lg2332lglglg.
二、 指数函数与对数函数
--
--
1、 指数函数与对数函数的图像和性质
指数函数xya和对数函数logayx互为反函数,所以它们的图像关于yx对称.
指数函数 对数函数
一般形
式 xya (0a且1a) logayx (0a且1a)
定义域
,
0,
值域
0,
,
图像
性质
(1)0y
(1)0x
(2)图像经过0,1点 (2)图像经过1,0点
指数函数 对数函数
性质
1a 01a 1a
01a
当0x时, 1y 当0x时, 01y 当1x时, 0y 当01x时,
0y
单调递增 单调递减 单调递增 单调递减
2、 指数函数与对数函数的图像的应用
例2、 在下列一次函数baxy(10a)与指数函数bxay的图像中,正确的是
( )
解:由()A,01b,则指数函数xbxbyaa中底数01ba,不吻合;
由()B,0b,则指数函数xbxbyaa中底数1ba,不吻合;
O x y 1
1a
01a
O
x
y
1
1a
01a
(A) y x y x y x y x (B) (C) (D)
--
--
由()C,1b,则指数函数xbxbyaa中底数01ba,不吻合;
所以,应该选()D。
例3、 当1a时,在同一坐标系中,函数xya与logayx的图像
是
( )
解:∵1a,∴由logayx的图像可知只有A、B可选,
又∵1xxyaa的底数101a,∴根据函数xya的图像应选A.
3、 指数函数与对数函数的性质的应用
例4、 比较三个数0.76,60.7,0.7log6的大小关系.
解:0.70661,600.70.71,0.70.7log6log10,
所以0.760.760.7log6.
例5、 已知12x,求函数13239xxfx的最大值和最小值.
解:设3xt,∵12x,∴193t,则2236312yttt,
所以,当3t即1x时,fx取得最大值12;
当9t即2x时,fx取得最小值24.
例6、 求函数2221xxy的值域.
解:由2221xxy,得2122xxy,即122xyy,
因为1y,所以221xyy.又xR,故20x,因此201yy,解得21y.
因此,函数的值域为2,1.
(A) (B) (C) (D)
y x y x y x y
x
--
--
例7、 设函数logafxx在区间2,上总有1fx成立.求实数a的取值范围.
解:分1a和01a两种情况讨论,于是有1log21aa或01log21aa,
解得12a或112a.
例8、 设函数lgfxx,若0ab,且fafb.求证:1ab
证明:∵fafb,∴lglgab.
上式等价于22lglgab,即lglglglg0lglg0aabababb,
由已知0ab.得01ab,∴lg0ab,所以lg0ab,即1ab.
例9、 已知函数2log2axbfxxb(0a,1a,0b)
(1) 求函数fx的定义域;
(2) 判断函数fx的奇偶性,并说明理由;
解:(1)由2020xbxbb,解得2xb或2xb,
所以函数的定义域为,22,bb.
(2)显然函数的定义域关于原点对称.
对函数fx的定义域,22,bb内任意实数x,有
222logloglog222aaaxbxbxbfxfxxbxbxb
,且函数fx不恒为零,
所以,函数fx是奇函数.
例10、 已知log2ayax在0,1上是x的减函数,求实数a的取值范围.
解:∵0a,∴2uax在0,1上是减函数,
因此函数logayx在0,1上是增函数,即1a,
根据题设有120aa,即12a.
4、 指数函数与对数函数的综合应用
--
--
例11、 已知函数22lg111fxaxax.若fx的定义域为,,求
实数a的取值范围;
解:由题意知,不等式221110axax对一切xR恒成立,其充要条件是
2
2
2
10141aaa
或1a,解得1a或35a.
例12、 已知函数233xxya,当1,3x时有最小值8,求a的值.
解:令22333324uxxu,
当31,32x时,u取得最小值34;
当3x时,u取得最小值3.
当1a时,233348xxyaa,∴16a;
当01a时,23338xxyaa,∴2a.
--