第一章系统与系统理论概述.

合集下载

第一章灰色系统的概念和基本原理资料ppt课件

第一章灰色系统的概念和基本原理资料ppt课件
2
第一篇灰色系统理论论文发表
1982年邓聚龙教授的第一篇灰色系统论文在国际期刊发
表 : “The Control problem of grey systems ”,
3
System & Control Letter 。
新兴横断学科—灰色系统理论问世
BACK
8
第一章 灰色系统的概念与基本原理
1.1灰色系统理论的产生与发展
可能用一般手段知道其质量的确切值。
22、2、、仅仅仅有有有上上上界界界的的的灰灰灰数数数
例4:
有有有上上上界界界而而而无无无下下下界界界的的的灰灰灰数数数记记记为为为(((,a, a,]a],],,
有上界而无下界的灰数是一类取负数但 其绝对值难以限量的灰数,是有下界而
其其其中中中aa是a是是灰灰灰数数数的的的上上上确确确界界界。。。
只知道取值范围而不知其 确切值的数 。
预计200-300亿。若年底结算存 款余额为275亿,即为真值。
例பைடு நூலகம்:
•灰数的背景信息表现不完 某成年男子的身高为一灰数;
未测量之前估计其身高约为1.8-
全。
1.9米,通过测量得到该男子身
•人们认知能力有限。
高为1.86米,即为该男子身高
的真值。
BACK
27
第一章 灰色系统的概念与基本原理
1.1 灰色系统理论的产生与发展
几种不确定性方法比较分析
项目
研究对象 基础集合 方法依据 途径手段 数据要求 侧重 目标 特色
灰色系统 概率统计 模糊数学 粗糙集理论
贫信息不确定 随机不确定 认知不确定 边界不清晰
灰数集
康托集 模糊集 近似集
信息覆盖 映射

第一章 计算机控制系统概述

第一章 计算机控制系统概述

第一章计算机控制系统概述§1.1概述随着科学技术的进步,人们越来越多地用计算机来实现控制系统。

近几年来,计算机技术、自动控制技术、检测与传感技术、CRT显示技术、通信与网络技术、微电子技术的高速发展,促进了计算机控制技术水平的提高。

本章主要介绍计算机控制系统及其组成、工业控制机的组成结构及特点、计算机控制系统的发展概况和趋势。

1.1.1计算机控制技术研究的内容及特点1、研究的内容:主要研究控制理论、计算机技术(软、硬件技术)、网络通信技术、测量技术、信号处理技术等在微机控制中的应用、以及微机的控制方法及其应用。

2、主要的特点:1)理论性强:应用各种控制理论、信号处理理论等2)综合性强:应用有控制理论、计算机硬件技术、编程技术、网络技术、测量技术、信号处理技术、电子技术等3)实践性强:所有设计、计算必须要反复进行实验;在实践中积累了大量的经验方法、经验数据等4)理论与实践相结合5)实用性强6)应用广泛等1.1.2计算机控制技术这门课所应用到的技术:计算机技术、自动控制技术、微电子技术、信息处理技术、检测与传感技术、通信与网络技术、CRT显示技术等等1.1.3计算机控制技术的现状与发展趋势计算机控制技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要包括工业自动化软件、硬件和系统三大部分1.1.4目前,计算机控制技术正在向智能化、网络化和集成化方向发展。

一、以工业PC为基础的低成本工业控制自动化将成为主流二、PLC在向微型化、网络化、PC化和开放性方向发展三、面向测控管一体化设计的DCS系统四、控制系统正在向现场总线(FCS)方向发展五、仪器仪表技术在向数字化、智能化、网络化、微型化方向发展六、数控技术向智能化、开放性、网络化、信息化发展七、工业控制网络将向有线和无线相结合方向发展八、工业控制软件正向先进控制方向发展► 1.2. 计算机控制系统的组成► 1.3 计算机控制系统分类► 1.4 计算机控制系统中的计算机► 1.5 微型计算机控制系统的发展趋势§1.2 计算机控制系统的组成★自动控制:在没有人直接参与的情况下,通过控制器使生产过程自动地按照预定的规律运行。

西安交大系统工程课件1

西安交大系统工程课件1

阶段
年代(份) 1930
重大工程实践或事 重要理论与方法贡献 件 美国发展与研究广 正式提出系统方法(Systems 播电视 approach)的概念 美国实施彩电开发 采用系统方法,并取得巨大成 计划 功 美国Bell电话公司 正式使用系统工程(Systems 开发微波通讯系统 Engineering)一词 英、美等国的反空 产生军事运筹学(Military 袭等军事行动 Operations Research),也即 军事系统工程
I 1940
II
第二次世界 大战期间
本世纪40年 代 II 1945 40年代后期 到50年代初 期
美国研制原子弹的 运用SE,并推动了其发展(1万 “曼哈顿计划” 5千人,运用系统工程的方法) 美国空军建立兰德 曾经提出系统分析(Systems (RAND)公司 analysis)概念,强调了其重 要性 运筹学的广泛运用与发展、控制论的创立与应用、 电子计算机的出现,为SE奠定了重要的学科基础

美国H.切斯纳
系统工程则是按照各个目标进行权衡, 全面求得最优解(或满意解)的方法,并 使各个组成部分能够最大限度地互相适应。
日本学者三浦武雄
跨学科,因为系统工程的目的是研究 系统,而系统不仅涉及到工程学的领域, 还涉及到社会、经济和政治等领域,为了 圆满解决这些交叉领域的问题,除了需要 某些纵向的专门技术以外,还要由一种技 术从横向把他们组织起来,这种横向技术 就是系统工程。
(5) 交通运输系统工程 研究铁路、公路、航运、航空综合运 输规划及其发展战略,铁路运输规划, 铁路调度系统,公路运输规划,公路运 输调度系统,航运规划,航运调度系统, 空运规划,空运调度系统,综合运输规 划,综合运输优化模型,综合运输效益 分析。

第一章 自动控制系统概述

第一章 自动控制系统概述

回章首
回节首
11
举例说明开环控制与闭环控制
图1-2是直流电动机转速开环控制示意图。
V+ 电动机 负载
电 位 器
功率
放大器
图1-2 直流电动机转速开环控制
电动机的转速可由调节电位器来给定。但当电动机 受到负载变化影响时,电动机的转速是要发生变化的。 开环控制系统不能做到自动调节,控制的精度是比 较低的。
自动控制系统的基本结构如图1-4所示。
输入量 r
+ -
偏差
控制器Gc
控制量 u
扰动量 n
受控对象Go
输出量 c
反馈量b
反馈环节H
图1-4 自动控制系统的基本结构
回章首
16
1. 控制系统的一些常用术语
受控对象
是指被控制的装置或者设备(如电动机、车床等),有 时也指受控的物理量。
受控过程
受控物理量的变化过程称为受控过程。例如化学反应 过程、水泥窑炉的生产过程等。
在此,对于系统的性能要求可以简要概括为: 响应动作要快 动态过程平稳 跟踪值要准确 上述三条自动控制系统的基本要求如图1-8所示。
回章首 回节首
30
c(t) 给定值 响应缓慢 响应快速 t
c(t) 变化剧烈
c(t)
跟踪误差
响应平稳
t
t
(a)响应快速性
(b)动态平稳性
(c)跟踪准确性
图1-8 控制系统的基本要求
回章首
回节首
3
自动控制理论的发展与应用
可以改善劳动条件,把人类从繁重的劳动中解放出来; 由于自动控制系统能以某种最佳方式运行,可以提高劳
动生产率,提高产品质量,节约能源,降低成本。

自动控制系统概述

自动控制系统概述
清华大学:熊光楞教授 一般的自动化的定义:自动化是指人把命令(即控制的信息)授给“控制机(或控制系 统)”,使它按信息的要求,自动控制机器,而机器再去运作工具于工件。自动化是分 析、组织和控制生产过程的一种手段。 自动化实现人类劳动模式的转换:“人—工具”的劳动模式、“人—机器—工具”的劳 动模式、“人—控制机—机器—工具”的劳动模式。
自动控制原理:经典控制理论,即研究反馈控制。 自动化 自动控制(视频资料) 在没有人参与的情况下,通过控制器或控制装置来控制机器或者设备等物理装置,使
得机器设备的受控物理量按照希望的规律变化,达到控制目的。 是研究控制系统的一般规律,不是讲具体的控制对象、系统、元件。 对象:如炼钢、化工反应,航空航天,机械汽车加工。 系统:运动过程,力学、电学、光学、生物等 元件:控制器、执行(电机),传感器
2021/3/27
2
CHENLI
第一章 自动控制系统概述
自动化的发展过程回顾: ①设备自动化 本世纪50年代开始发展起来,由最初的机器、设备的控制问题,引出了机床、轧钢机等设备 的自动化。主要特点:自动调节系统的出现及其大量应用。 ②生产过程自动化 生产过程自动化需要考虑生产过程的协调、优化、计划与调度等问题。它是生产车间级的自动 化。 离散型生产过程的自动化 机械制造自动化,电子制造自动化,…… 连续型生产过程的自动化 化工自动化,冶金自动化,…… ③工厂自动化 工厂是由若干个生产车间组成的、能够完成一定的产品生产任务的实体,工厂自动化实现了产 品加工生产的自动化,工厂自动化=生产过程自动化+管理自动化。 ④企业自动化 企业自动化包括企业的生产加工、企业管理、产品(设计/开发)、市场、销售、计划等方面 的综合自动化,企业自动化的支撑技术包括:制造资源管理MRP-II,企业资源计划ERP,计 算机辅助设计/制造CAD/CAM,计算机集成制造CIM,并行工程CE,产品数据管理PDM,… 计算机集成制造CIM将制造视为一个信息处理、信息转换的过程,将制造过程视为一个集成的 过程,多种计算机技术与工具的综合应用。

线性系统理论(第一章)

线性系统理论(第一章)

x1(k +1) 0.9696 0.0202 x1(k) x (k +1) = 0.0404 0.9898 x (k) , k = 0,1,2,L 2 2 7 x1(0) 10 x (0) = 7 2 9×10
016
向量方程的形式:
Y = g (x,u,t)
, t ≥ t0
008
第一章
Ø线性系统的状态空间描述为:
& = A (t ) x + B (t )u x t ≥ t0 y = C (t ) x + D (t )u
其中:
a11 (t ) L a1n (t ) A(t ) = M M an1 (t ) L ann (t )
线性系统。
017
第一章
& = A(t ) x + B (t )u x t ≥ t0 y = C (t ) x + D (t )u
D(t ) + B(t ) +
+ +
u

A(t )
C (t )
y
018
第一章
若向量函数中 f 为变量
( x,u,t)

g ( x, u , t ) 至少包含一个元
其中: ai 和 b j 为实常数,i = 0 ,1, L , n
j = 0 ,1, L , n − 1
003
第一章
假定初始条件为零,取拉氏变换。 复频率域描述,即传递函数。
bn −1 s + L + b1 s + b0 G (s) = n n −1 s + a n − 1 s + L + a1 s + a 0

第一章 自动控制系统的基本概念(修改) (2)

第一章  自动控制系统的基本概念(修改) (2)

上篇自动控制原理第一章自动控制系统概述本章要点本章简要介绍有关自动控制的基本概念、开环控制和闭环控制的特点、自动控制系统的基本组成和分类以及对自动控制系统的基本要求。

第一节自动控制的基本概念自动控制是指在没有人的直接干预下,利用物理装置对生产设备和工艺过程进行合理的控制,使被控制的物理量保持恒定,或者按照一定的规律变化。

自动控制系统则是为实现某一控制目标所需要的所有物理部件的有机组合体。

在自动控制系统中,被控制的设备或过程称为被控对象或对象;被控制的物理量称为被控量或输出量;决定被控量的物理量称为控制量或给定量;妨碍控制量对被控量进行正常控制的所有因素称为扰动量。

扰动量按其来源可分为内部扰动和外部扰动。

给定量和扰动量都是自动控制系统的输入量。

通常情况下,系统有两种外作用信号:一是有效输入信号(以下简称输入信号),二是有害干扰信号(以下简称干扰信号)。

输入信号决定系统被控量的变化规律或代表期望值,并作用于系统的输入端。

干扰信号是系统所不希望而又不可避免的外作用信号,它不但可以作用于系统的任何部位,而且可能不止一个。

由于它会影响输入信号对系统被控量的有效控制,严重时必须加以抑制或补偿。

第二节开环控制和闭环控制自动控制有两种基本的控制方式:开环控制和闭环控制。

与这两种控制方式对应的系统分别称之为开环控制系统和闭环控制系统。

一、开环控制系统开环控制系统是指系统的输出端和输入端不存在反馈关系,系统的输出量对控制作用不发生影响的系统。

这种系统既不需要对输出量进行测量,也不需要将输出量反馈到输入端与输入量进行比较,控制装置与被控对象之间只有顺向作用,没有反向联系。

电加热系统的控制目标是,通过改变自耦变压器滑动端的位置,来改变电阻炉的温度,并使其恒定不变。

因为被控制的设备是电阻炉,被控量是电阻炉的温度,所以该系统可称为温度控制系统,如图1-1所示。

开环控制系统的优点是系统结构和控制过程简单,稳定性好,调试方便,成本低。

线性系统

线性系统

线性系统理论论文论文题目:线性系统理论综述—连续系统线性二次最优控制学院:年级:专业:姓名:学号:指导教师:目录摘要 (3)前言 (3)第一章线性系统理论概述 (3)1.1线性系统理论的研究对象 (4)1.2 线性系统理论的主要任务 (4)1.3 线性系统的主要学派 (5)1.4 现代线性系统的主要特点 (5)1.5 线性系统的发展 (6)第二章连续系统线性二次最优控制 (6)2.1最优控制问题 (6)2.2最优控制的性能指标 (7)2.3 最优控制问题的求解方法 (8)2.4 线性二次型最优控制 (9)2.5 连续系统线性二次型最优控制实例 (10)2.6 小结 (13)总结 (13)参考文献 (13)摘要线性系统理论是现代控制理论中最基本、最重要也是最成熟的一个分支,是生产过程控制、信息处理、通信系统、网络系统等多方面的基础理论。

本文对线性系统的历史背景、研究现状和发展趋势作了简单的综述。

线性二次最优控制理论内容丰富、应用广泛,引起广泛地关注并取得了丰硕成果。

最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。

本文基于连续系统线性二次最优控制,提出新的控制算法并结合实例进行了仿真验证。

关键字:线性系统;线性二次最优控制;控制系统;连续系统前言线性系统理主要阐述线性系统时域理论,给出了线性系统状态空间的概念、组成方法和基本性质,进而导出系统的状态空间描述。

以状态空间法为主要工具研究多变量线性系统的理论[1]。

随着计算机技术的发展,以线性系统为对象的计算方法和计算辅助设计问题也受到普遍的重视。

与经典线性控制理论相比,现代线性系统主要特点是:研究对象一般是多变量线性系统,而经典线性理论则以单输入单输出系统为对象;除输入和输出变量外,还描述系统内部状态的变量;在分析和综合方面以时域方法为主而经典理论主要采用频域方法;使用更多数据工具。

随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统科学是一门新的基础学科


不可把系统科学看成是交叉科学或 边缘科学 系统科学是科学重新统一的历史需 要
1.系统的概念 .



古希腊:事物中共性部分和每一事物应 占据的位置,也就是部分组成整体的意 思。 冯.贝塔朗菲(1937):相互作用的诸要 素的综合体。 钱学森:系统是由相互作用和相互依赖 的若干组成部分(要素)结合而成的、 具有特定功能的有机整体。
2.2 开放系统与封闭系统


封闭系统是指与外界环境不发生任何形 式交换的系统 . 开放系统是指系统内部与外界环境有相 互关系,能进行能量、物质和信息交换 的系统 .
系统的环境
广义的来讲,一个系统之 外的一切事物或系统的总 和。 系统的边界 .

2.3 实体系统与概念系统


实体系统是以矿物、生物、能源、机械 等实体组成的系统 . 概念系统是由概念、原理、原则、方法、 制度、程序等观念性的非物质实体所组 成的系统 .
3.2 相关性 .

系统内的各要素相互作用又相互联系。 系统中任一要素与该系统中的其他要素 是相互关联、互相制约的,如果某一要 素发生了变化,对应的其它相关联的要 素也要相应的改变和调整,从而保持系 统整体的最佳状态。
3.3 目的性 .


元素和元素的组合所没有存在。 系统特有的目的性。
2.4 动态系统与静态系统


静态系统是其固有的状态参数不随时间 改变的系统 . 动态系统是系统状态变量随时间改变的 系统。一切实际存在的系统原则上都是 动态系统 .
连续系统和离散系统
连续系统:在实数集或闭子集上 连续取值的时间t,称为连续时 间。状态变量为连续时间函数的 系统,称为连续系统。 离散系统:状态变量仅在离散时 间上出现或被观察到的系统 .

多值响应特性 循环特性 间断(跳跃) 特性 失灵特性 折叠特性 .

3.系统的特征 .
3.1 3.2 3.3 3.4

整体性 . 相关性 . 目的性 . 环境适应性 .
3.1 整体性 .
系统的整体性主要表现为系统的整体功能, 这种整体功能不是各组成要素功能的简 单叠加,而是呈现出各组成要素所没有 的新功能。 “整体不等于部分和” Fs >、=、< F1+F2+F3+……+Fi Fs:系统的整体功能 Fi:各要素的功能(i=1,2,3…n)
线形关系



线形与非线形原本是一对数学概念,用 以区别不同变量间的两种基本关系。 变量之间最简单、最基本的关系是函数 关系,即因变量对自变量的依存关系, 因变量与自变量成比例的变化,即变化 过程中二者的比值不变,称为线形函数。 叠加原理和齐次性 .
非线形关系
变比特性 饱和特性 非单调性 震荡特性

静态系统
静态系统基于这样一个假设: 系统状态的转移可以在瞬间 完成。这意味着系统有无限 多的储能可以利用 .
2.5 白色系统、灰色和黑色系 统
白色系统:一目了然 灰色系统:一知半解 黑色系统:一窍不通 .

2.6 线形系统和非线形系统


线形系统:能够用线形数学模型描述的 系统 . 线形系统在数学处理上十分简便,因此 广泛应用 .
2.系统的形态 .
2.1 2.2 2.3 2.4 2.5 2.6 自然系统与人造系统 . 开放系统与封闭系统 . 实体系统与概念系统 . 动态系统与静态系统 . 白色系统、灰色和黑色系统 . 线形系统和非线形系统 .
2.1 自然系统与人造系统


自然系统是由自然物质(矿物、植物、 动物、海洋等)形成的系统。大气系统、 海洋系统,生态系统等 . 人造系统是为了达到人类所需要的目的, 由人类设计和建造的系统。工程技术系 统、经营管理系统、科学技术系统等 .
第一章 系统与系统工程基础
第一节 系统与系统理论 第二节 系统工程 .
第一节 系统与系统理论
1.系统概念 . 2.系统的形态 . 3.系统的特征 . 4.系统的结构与功能 . 5.系统的环境 6.系统理论简介 .
什么是系统意义?

在现实生活和理论探讨中,凡是 着眼于处理部分与整体、差异与 统一、结构与功能、自我与环境、 有序与无序、合作与竞争、行为 与目的、阶段与全过程等相互关 系的问题,都是具有系统意义的 问题。
4.1.2 结构的特点 .
1.稳定性 2.层次性 3.开放性 4.相对性

. . . .
1.稳定性
“稳定”是指系统整体状态能够持 续出现,可以静态稳定存在,也 可以动态稳定存在。 系统结构的稳定性指系统总是趋向 于保持某一状态。
整体性
“整体不等于部分和” 1整体大于部分和 :Fs >F1+F2+F3+……+Fi 2整体等于于部分和: Fs =F1+F2+F3+……+Fi 3整体小于部分和: Fs < F1+F2+F3+……+Fi Fs:系统的整体功能 Fi:各要素的功能(i=1,2,3…n)
整体性的体现

系统量:指系统在组分上表现出来的量, 他们在组分上不可理解或不能被发现。 系统质:整体与部分之间存在某种可以 比较的同质特性。
要素


要素是构成系统的最小单位。 系统必须由两个以上的要素(部分、元 素)所组成。 要素与要素之间存在着一定的有机联系。 系统与要素的相互作用
系统与要素的相互作用


系统通过整体作用支配和控制要素 要素通过相互作用决定系统的特性和功 能 系统和要素的概念是相对的 P
功能

任何系统都有特定的功能, 这是整体具有不同于各个组 成要素的新功能,这种新功 能是由系统内部的有机联系 和结构所决定的。
3.4 环境适应性 .
4 系统的结构与功能 .
4.1系统的结构 . 4.2 系统的功能 . 4.3 结构与功能的关系

4.1 系统的结构 .

4.1.1结构的基本概念 . 4.1.2结构的特点 .
4.1.1结构的基本概念
指系统内部各组成要素之间的相互联系、 相互作用的方式和秩序,即各要素在时 间和空间上的排列组合的具体形式。 空间结构:雪花 钻石 煤渣 时间结构:系统运行过程中呈现出来的 内在时间规律。如:天体的运行轨道 生 物钟 时空混合结构:树的年轮 .
相关文档
最新文档