北师大版九年级数学-第二章-一元二次方程知识点
北师大版九年级数学上册第二章 一元二次方程1一元二次方程的应用——几何问题

−
的长为b,则S能形ABCD= ×b.
知识点 2:动态几何问题(难点)
1.关键:“以静代动”,把动的点进行转换,用时间表示长度.
2.方法:时间变路程.
3.求“动点的运动时间”可以转化为求“动点的运动路程”,也
就是求线段的长度.
4.常找的数量关系——面积、勾股定理等.
九年级北师上册
6 应用一元二次方程
第1课时 一元二次方程的应用——几何问题
1.通过阅读课本可以根据实际面积问题中的等量关系
列出方程,提高学生的应用意识
2.通过归类面积问题的题型,构建解决面积问题的数
学模型,发展学生的建模能力.
3.经历分析具体问题中的数量关系、建立方程模型并
解决问题的过程,进一步体会方程是刻画现实世界
AB 边向点 B 以 1厘米/秒的速度移动,点 Q从点 B 开始沿BC 边向
点C 以2 厘米/秒的速度移动,如果 P、Q分别从A、B同时出发,其
中一点到达终点后两点均停止运动.
(1)经过几秒,△PBQ的面积等于8平方厘米?
解:(1)设运动时间为t秒( ≤ ≤ ,由题意得, = ሺ
准备在每两幢楼房之间,开辟面积为900 平方米的一块
矩形绿地,并且长比宽多10 米,那么绿地的长和宽各
为多少?
栽种鲜花(如图中阴影部分),原空地一边减少了1 m,另一边减少了2
m,剩余空地的面积为18 m²,求原正方形空地的边长.设原正方形空
地的边长为x m,则可列方程为(
A
)
A.(x-1)(x-2)=18
B.x²-3x+16=0
C.(x+1)(x+2)=18
北师大版九年级上册第二章知识点

九年级第二章一元二次方程一、认识一元二次方程知识点1 :一元二次方程的意义1.一元二次方程:只含有一个未知数x的整式方程,并且都可以化成ax²+bx+c=0(a、b、c为常数,a不等于0)的形式,这样的方程叫一元一次方程。
2.一元二次方程必须同时满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2。
知识点2 :一元二次方程的一般形式1.一元二次方程的一般形式:ax²+bx+c=0(a、b、c为常数,a不等于0)其中,ax²、bx、c分别称为二次项,一次项,常数项,a、b分别乘为二次项系数,一次项系数。
2.一元二次方程的特殊形式:特殊形式二次项系数一次项系数常数项ax²+bx=0(a≠0,b≠0)a b0ax²+c=0(a≠0,b≠0)a0c ax²=o(a≠0)a003 确定一元二次方程各项系数的一般步骤:原方程化简成一般形式ax²+bx+c=0确定a、b、c(勿漏符号)知识点3:根据实际问题列一元二次方程从实际问题中抽象出一元二次方程的一般步骤:(1)审清题意,设出合适的未知数;(2) 找出已知量与未知量之间的等量关系; (3) 列出一元二次方程,并化为一般形式。
知识点4:一元二次方程的解1 一元二次方程的解:使一元二次方程左右两边的值相等的未知数的值,叫做一元二次方程的解。
2 判断一元二次方程的解得办法知识点5:用估算法求一元二次方程的近似解1 当x 取某一个值时,代数式ax ²+bx +c (a 、b 、c 为常数,a ≠0)的值无限接近于0,此时即可近似地将x 看成该方程的解。
2 用估算法求二元一次方程的近似解的步骤:(1) 先列表,再列出几组x 的值,并分别计算ax ²+bx +c=0(a 、b 、c 为常数,a 不等于0)中ax ²+bx +c=0的值;(2) 在列表中找出可能使ax ²+bx +c 的值等于0的未知数的取值范围;(3) 在(2)中确定的取值范围内进一步列表,计算,估计取值范围,直到近似解符合题中的经确定的要求为止。
北师大版九年级数学上册一元二次方程的解及其估算

知1-讲
例1 下面哪些数是方程x2-x-2=0的根? -3,-2,-1,0,1,2,3
导引:根据一元二次方程的根的定义,将这些数作为未 知数的值分别代入方程中,能够使方程左右两边 相等的数就是方程的根.
解:-1,2.
总结
知1-讲
判断一个数值是不是一元二次方程的根的方法: 将这个值代入一元二次方程,看方程的左右两
边是否相等,若相等,则是方程的根;若不相等, 就不是方程的根.
知1-讲
例2 如果2是一元二次方程x2+bx+2=0的一个根, 那么字母b的值为( B ) A. 3 B. -3 C. 4 D.-4
知2-讲
(2)步骤: ①列表:根据实际情况确定方程解的大致范围,分别计算 方程ax2+bx+c=0(a≠0)中ax2+bx+c的值; ②在表中找出当ax2+bx+c的值可能等于0的未知数的范 围; ③进一步在②的范围内列表、计算、估计范围,直到找出 符合要求的范围.
知2-讲
例3 在前一课的问题中,梯子底端滑动的距离x(m)满足 方程(x+6)2+72=102,也就是x2+12x-15=0. (1)小明认为底端也滑动了1 m,他的说法正确吗? 为什么? (2)底端滑动的距离可能是2 m吗?可能是3 m吗? 为什么? (3)你能猜出滑动距离x(m)的大致范围吗? (4)x的整数部分是几?十分位是几?
解:小亮把他的求解过程整理如下:
x
0 0.5 1 1.5 2
x2+12x-15 -15 -8.75 -2 5.25 13
所以1<x<1.5.
北师大版九年级数学上册《一元二次方程》知识点归纳

北师大版九年级数学上册《一元二次方程》
知识点归纳
北师大版九年级数学上册《一元二次方程》知识点归纳
第二章一元二次方程
1.定义:方程是只含有一个未知数的整式方程,并且可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
2用配方法求解一元二次方程
思路:将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边同时开平方,转化为一元一次方程,便可求出它的根。
我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
3.用公式法求解一元二次方程
对于一元二次方程,当b2-4ac≥0时,它的根是:
初中数学北师大版九年级上册《第二章一元二次方程》知识点归纳
上面这个公式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法。
对于ax2+bx+c=0(a,b,c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根。
当b2-4ac=0时,方程有两个相等的实数根。
当b2-4ac4、用因式分解法求解一元二次方程
当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就可以将方程分解成两个一元一次方程,这两个一元一次方程的解就是一元二次方程的根,这种解一元二次方程的方法,叫做因式分解法。
5、一元二次方程的根与系数的关系
如果方程ax2+bx+c=0(a,b,c为常数,a≠0)有两个实数根
x1x2,那么
x1+x2=-b/a,x1x2=c/a。
北师大版九年级数学上册 第二章 考点整合

12.已知 x=a 是 2x2+x-2=0 的一个根,求代数式 2a4+a3+ 2a2+2a+1 的值.
【点拨】对于一些复杂的高次幂代数式,利用整体思想,把某些 式子当成一个整体来求解. 解:∵x=a 是 2x2+x-2=0 的一个根, ∴2a2+a-2=0,即 2a2+a=2. ∴原式=a2(2a2+a)+2a2+2a+ 1=2a2+2a2+2a+1=2(2a2+a)+1=5.
5.(2019·烟台)当 b+c=5 时,关于 x 的一元二次方程 3x2+bx-c=0 的根的情况为( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定
【点拨】∵b+c=5,∴c=5-b, ∴Δ=b2-4×3×(-c)=b2+12c=b2+12(5-b) =b2-12b+60=(b-6)2+24. ∵(b-6)2≥0,∴(b-6)2+24>0,∴Δ>0, ∴关于 x 的一元二次方程 3x2+bx-c=0 有两个不相等的实数 根.故选 A. 【答案】A
13.解方程:(2x+1)2-3(2x+1)=-2.
解:设 2x+1=y,则原方程可变形为 y2-3y=-2, 解得 y1=1,y2=2. 当 y=1 时,有 2x+1=1,所以 x=0; 当 y=2 时,有 2x+1=2,所以 x=12. 所以原方程的解为 x1=0,x2=12.
14.已知关于 x 的方程 x2-(2k+1)x+4k-12=0. (1)求证:无论 k 取什么实数,这个方程总有实数根;
上将增加 2a%,每户物管费将会减少130a%;6 月份参加活动 的 80 平方米的总户数在 5 月份参加活动的同户型户数的基础 上将增加 6a%,每户物管费将会减少14a%.这样,参加活动的 这部分住户 6 月份总共缴纳的物管费比他们按原方式共缴纳 的物管费将减少158a%,求 a 的值.
北师大版 九年级上册 第二章 《一元二次方程》(解法)

一元二次方程教学目标1.一元二次方程的概念2.直接开平方法、配方法解一元二次方程3.推导一元二次方程的求根公式,并运用公式法解一元二次方程4.用因式分解法解一元二次方程重点难点灵活选择直接开平方法、配方法、公式法和因式分解法解一元二次方程知识解析1.一元二次方程的概念方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a、b、c为常数,a≠0)这种形式叫做一元二次方程的一般形式.其中______是二次项,_____是二次项的系数;______是一次项,______是一次项系数;______是常数项.2.直接开平方法与配方法①直接开平方:注意:用直接开平方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b 同号,且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c 同号,且a≠0)。
②通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.③配方法的一般步骤:①把常数项移到等号的右边②二次项的系数化为1;③等式两边同时加上一次项系数一半的平方。
3.公式法、根的判别式以及根与系数的关系①求根公式的推导用配方法解方程:ax2+bx+c=0(a≠0).解:移项,得____________________________________二次项系数化为1,得___________________________配方,得___________________________即⎝⎛⎭⎫x +b 2a 2=b 2-4ac4a 2.提示:这时能不能开方解方程?为什么?当b 2-4ac >0时,直接开平方,得____________________________________即x =____________________________________∴x 1=_____________________, x 2=_______________________.当b 2-4ac =0时,方程_________________________________当b 2-4ac <0时,方程_________________________________.由上可知,一元二次方程ax 2+bx +c =0(a≠0)的根由_______________而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当____________________时,将a ,b ,c 的值代入x =-b±b 2-4ac2a就可得到方程的根. (2)_________________________________叫做一元二次方程的求根公式.(3)利用_______________________解一元二次方程的方法叫公式法.②公式法注意事项及根的判别式(1)在运用求根公式求解时,应先计算b 2-4ac 的值. 当b 2-4ac ≥0时,可以用公式求出两个实数解;当b 2-4ac<0时,方程没有实数解,就不必再代入公式计算了. (2)把方程化为一般形式后,在确定a ,b ,c 时,需注意符号.总结:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可___________来确定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a≠0)的根的判别式,通常用希腊字母“Δ”来表示. 当b 2-4ac >0时,方程有_________________________________; 当b 2-4ac =0时,方程有_________________________________; 当b 2-4ac <0时,方程_________________________________.③一元二次方程根与系数的关系一般地,对于关于x 的一元二次方程ax 2+bx +c =0(a≠0),用求根公式求出它的两个根x 1、x 2,由一元二次方程ax 2+bx +c =0的求根公式知x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a,能得出以下结果: x 1+x 2= ,x 1·x 2= .4.因式分解法当一元二次方程的一边为0,而另一边易于分解为两个 的乘积时,我们就可以采用分解因式法解一元二次方程.典例解析考点一:一元二次方程的概念例1、(一元二次方程的判断)下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=0 【变式1】下列方程中,是一元二次方程的是( )A 、5x+3=0B 、x 2-x (x+1)=0C 、4x 2=9D 、x 2-x 3+4=0 1-2、若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .例2、(一元二次方程一般形式的理解)把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A 、2,-3B 、-2,-3C 、2,-3xD 、-2,-3x【变式1】若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( ) A 、1 B 、2 C 、1或-1 D 、0【变式2】关于x 的方程013)2(22=--+-x x a a是一元二次方程,则a 的值是( )A 、a=±2B 、a=-2C 、a=2D 、a 为任意实数【变式3】把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( ) A 、8 B 、9 C 、-2 D 、-1 【变式3】方程5)1)(13(=+-x x 的一次项系数是 。
九年级数学上册第二章一元二次方程复习新版北师大版

因式分解法:
适应于左边能分解为两个一次式 一元二次方程的应用 的积,右边是0的方程
列方程解应用题的解题过程。
1. 审清题意,弄清题中的已知量和未知量找 出题中的等量关系。
2. 恰当地设出未知数,用未知数的代数式表 示未知量。
3. 根据题中的等量关系列出方程。
4. 解方程得出方程的解。
5. 检验看方程的解是否符合题意。
行途中侦察船能否侦察到这艘
军舰 ?如果能,最早何时能侦察
●B
到?如果不能,请说明理由.
解: 设电子侦察船最早需要 x小时能侦察到军舰 ,根据题意,得
(90 30 x)2 202 502. 北
整理得:
A
东
13x2 54x 56 0.
●B
解得:
●B
28
x1
2;
x2
. 13
答 :电子侦察船最早能在2h时能侦察到军舰.
第二章 一元二次方程 复习
定义及一般形式:
1.定义 只含有一个未知数,未知数的最高次数二是次___整___
的___式a方x2+程bx,+叫c=做o 一(a≠元o二) 次方程。 一般形式:________________
• [注意] 定义应注意四点:(1)含有一个未知数;
(2)未知数的最高次数为2;(3)二次项系数不为
解下列方程
1(x+2)2=9(用直接开平方法)
2、x2-2x-1 =0(用配方法)
3、3x2 4x 7 (用公式法)
4、(2 x 1)2 x2 0
(用因式分解法)
步骤归纳
① 二次项系数化为1; ②移常数项到右边; ③两边加上一次项系数一半的平方; ④化直接开平方形式; ⑤解方程。
北师大版九年级数学上第二章一元二次方程2

自主学习
基础夯实
整合运用
思维拓展
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
典例导学 一名跳水运动员进行 10 m 跳台跳水训练,运动员必须在距水面 5 m
以上完成规定动作,否则容易出现失误,假设运动员起跳后的运动时间 t(s)和距离水面高度 h(m)满足:h=10+3t-5t2,那么他最多有多长时 间完成规定动作?(精确到 0.1 s) 【思路分析】先把函数关系转化成一元二次方程,并把方程化成一元二 次方程的一般形式.结合实际问题在 t 的取值范围内列表,采用“夹逼” 的方法求 t 的近似值.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
17.如图,现有篱笆长 11 m,一面靠墙,要建一个矩形养鸡场.
(1)设宽为 xm,则长为((1111--22xx)) m,面积为((--22xx22++1111xx) )m2;
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
(2)填写下列表格:
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
14.一元二次方程(a+1)x2+ax+1-a2=0 的一个根为 0,求 a 的值. a+1≠0,
解:由题意,得1-a2=0, ∴a=1.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 北师版
15.关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的一个根为 1,且 a,b 满足等式 b= a-3+ 3-a+3,求 c 的值.
=2 的根是
(D )
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学-第二章-一元二次方程知识点知识点一:认识一元一次方程(一)一元二次方程的定义:只含有一个未知数(一元)并且未知数的次数是2(二次)的整式方程;这样的方程叫一元二次方程.(注意:一元二次方程必须满足以下三个条件:是整式方程;一元;二次)(二) 一元二次方程的一般形式:把20ax bx c ++=(a 、b 、c 为常数;a ≠0)称为一元二次方程的一般形式.其中a 为二次项系数;b 为一次项系数;c 为常数项. 【例题】1、一元二次方程3x 2=5x -1的一般形式是 ;二次项系数是 ;一次项系数是 ;常数项是 .2、一元二次方程(x+1)(3x -2)=10的一般形式是 .3、当m= 时;关于x 的方程5)3(72=---x x m m是一元二次方程.4、下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0232057x +-=知识点二:求解一元一次方程(一)一元二次方程的根定义:使得方程左右两边相等的未知数的值就是这个一元二次方程的解;一元二次方程的解也叫做一元二次方程的根. 【例题】例1、关于x 的一元二次方程()22110a x x a -++-=的一个根是0;则a 值为( ) A 、1 B 、1- C 、1或1- D 、12(二)解一元二次方程的方法: 1.配方法 <即将其变为2()0x m +=的形式> 配方法解一元二次方程的基本步骤: ①把方程化成一元二次方程的一般形式; ②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方; ⑤把方程转化成2()0x m +=的形式; ⑥两边开方求其根. 【例题】例2 一元二次方程x 2-8x-1=0配方后可变形为( )A .(x+4)2=17B .(x+4)2=15C .(x-4)2=17D .(x-4)2=15例3 用配方法解一元二次方程x 2-6x-4=0;下列变形正确的是( ) A .(x-6)2=-4+36B .(x-6)2=4+36C .(x-3)2=-4+9D .(x-3)2=4+9例4 x 2-6x-4=0; x 2-4x=1; x 2-2x-2=02.公式法x =(注意在找abc 时须先把方程化为一般形式)【例题】例5若一元二次方程x 2+2x+a=0的有实数解;则a 的取值范围是( ) A .a <1B .a≤4C .a≤1D .a≥1例6 已知一元二次方程2x 2-5x+3=0;则该方程根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .两个根都是自然数D .无实数根 例7 已知关于x 的方程x 2+2x+a-2=0.(1)若该方程有两个不相等的实数根;求实数a 的取值范围; (2)当该方程的一个根为1时;求a 的值及方程的另一根.3.分解因式法 把方程的一边变成0;另一边变成两个一次因式的乘积来求解.(主要包括“提公因式”和“十字相乘”) 【例题】例8 一元二次方程x 2-2x=0的解是( ) A .0 B .2 C .0;-2 D .0;2例9 方程3(x-5)2=2(x-5)的根是例10 x 2-3x+2=0; x 2+2x=3; (x-1)2+2x (x-1)=0知识点三:一元二次方程的根与系数的关系1.根与系数的关系:如果一元二次方程20ax bx c ++=的两根分别为x1、x2;则有:1212,b c x x x x aa+=-⋅=. 2.一元二次方程的根与系数的关系的作用: (1)已知方程的一根;求另一根;(2)不解方程;求二次方程的根x1、x2的对称式的值. (3)对比记忆以下公式:①222121212()2x x x x x x +=+- ②12121211x x x x x x ++=③22121212()()4x x x x x x -=+-④12||x x - ⑤2212121212(||||)()22||x x x x x x x x +=+-+⑥33312121212()3()x x x x x x x x +=+-+ ⑦其他能用12x x +或12x x 表达的代数式.(3)已知方程的两根x1、x2;可以构造一元二次方程:12212()0x x x x x x -++=(4)已知两数x1、x2的和与积;求此两数的问题;可以转化为求一元二次方程12212()0x x x x x x -++=的根 【例题】 例11 已知关于x 的方程x 2+2x+a-2=0.(1)若该方程有两个不相等的实数根;求实数a 的取值范围;(2)当该方程的一个根为1时;求a 的值及方程的另一根.例12 已知关于x 的一元二次方程x 2-4x+m=0.(1)若方程有实数根;求实数m 的取值范围; (2)若方程两实数根为x 1;x 2;且满足5x 1+2x 2=2;求实数m 的值.知识点四:应用一元一次方程在利用方程来解应用题时;主要分为两步:①设未知数(在设未知数时;大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑); ②寻找等量关系(一般地;题目中会含有一表述等量关系的句子;只须找到此句话即可根据其列出方程). 【例题】例13 某校准备修建一个面积为180平方米的矩形活动场地;它的长比宽多11米;设场地的宽为x 米;则可列方程为( ) A .x (x-11)=180B .2x+2(x-11)=180C .x (x+11)=180D .2x+2(x+11)=180例14 某商品现在的售价为每件60元;每星期可卖出300件.市场调查反映:每降价1元;每星期可多卖出20件.已知商品的进价为每件40元;在顾客得实惠的前提下;商家还想获得6080元的利润;应将销售单价定位多少元?经典习题练题平台:(请认真审题;我一定行!) 一、填空题:1.已知两个数的差等于4;积等于45.则这两个数为 和 .2.当m 时;方程(m 2-1)x 2-mx+5=0不是一元二次方程.当当m 时;上述方程是一元二次方程.3.用配方法解方程x 2-4x-6=0;则x 2-4x+ =6+ .所以x 1= ;x 2= .4.如果x 2-2(m+1)x+4是一个完全平方式;则m= .5.当 ≥0时;一元二次方程ax 2+bx+c=0的求根公式为 .6.如果x 1、x 2是方程2x 2-3x-6=0.那么x 1+x 2= ;x 1x 2= .7.若方程x 2-3x+m=0有两个相等的实数根.则m= ;两根分别为 .8.若方程kx 2-9x+8=0的一个根为1;则k= ;另一个根为 .9.以-3和7为根且二次项系数为1的一元二次方程是 .10.关于x 的一元二次方程mx 2+x+m 2+3m=0有一个根为零;则m 的值等于 . 二、选择题:1.下列方程中;一元二次方程是( )(A ).(B ) ax 2+bx (C )(x-1)(x+3)=1 (D )3x 2-2xy-5y 2=02.方程(2x+3)(x-1)=1的解的情况是( )(A )有两个不相等实数根 (B )没有实数根 (C )有两个相等的实数根 (D )有一个实数根 3.如果一元二次方程x 2+(m+1)x+m=0的两个根是互为相反数;那么有( ) (A )m=0 (B) m=-1 (C ) m=1 (D)以上结论都不对212x x +4.已知x 1;x 2是方程x 2=2x+1的两个根;则 的值为( )(A ) (B )2 (C )-2 (D )5.不解方程2x 2+3x-1=0的两根的符号为( )(A ) 同号 (B ) 异号 (C )两根都为正 (D )不能确定 6.已知一元二次方程mx 2+n=0 (m ≠0);若方程有解;则必须( ) (A )n=0 (B )mn 同号 (C )n 是m 的整数倍 (D )mn 异号 7.若a 为方程x 2+x-5=0的解;则a 2+a+1的值为( ) (A )12 (B ) 6 (C )9 (D )168.某超市一月份的营业额为200万元;三月份的营业额为288万元;如果每月比上月增长的百分数相等;则平均每月增长率为( )(A )10% (B )15% (C )20% (D )25%解 三、解下列方程1. x 2-5x+1=0 (用配方法解)2. 3(x-2)2=x (x-2)3. 2x 2-22x-5=04. (y+2)2 = (3y-1)2四、当m 为何值时;一元二次方程x 2+(2m-3)x+(m 2-3)=0有两个不相等的实数根?五、不解方程;求作一个新的一元二次方程;使它的两个根分别是方程x 2-7x=2的两根的 2倍.六、已知方程x 2+2(k-2)x+k 2+4=0有两个实数根;且这两个实数根的平方和比两根的积大21; 求k 的值.七、解答题1. 将进货单价40元的商品按50元出售;能卖出500个;已知这种商品每涨价1元;就会少销售10个.为了赚的8000元利润;售价应定为多少?这时应进货多少个? 2111x x +21-212. 如图在ΔABC 中;∠B=90º;点P 从A 开始沿边AB 向点B 以的速度移动;与此同时;点Q 从点B 开始沿边BC 向点C 以的速度移动.如果P 、Q 分别从A 、B 同时出发;经过几秒;ΔBPQ 的面积等于8cm 2?(AB=6cm ;BC=8cm )scm 1scm2。