OSPF多区域原理与配置

合集下载

华为实训9-1路由器动态路由协议OSPF多区域的配置

华为实训9-1路由器动态路由协议OSPF多区域的配置

华为实训9路由器动态路由协议OSPF多区域的配置(1)实验目的:掌握多区域OSPF配置技术实训技术原理:OSPF开放式最短路径优先协议,是目前网络中应用最广泛的路由协议之一。

(1)自治系统(Autonomous System)一组使用相同路由协议交换路由信息的路由器,缩写为AS。

(2)骨干区域(Backbone Area)OSPF划分区域之后,并非所有的区域都是平等的关系。

其中有一个区域是与众不同的,它的区域号(Area ID)是0,通常被称为骨干区域。

骨干区域负责区域之间的路由,非骨干区域之间的路由信息必须通过骨干区域来转发。

对此,OSPF有两个规定:1,所有非骨干区域必须与骨干区域保持连通;2,骨干区域自身也必须保持连通。

但在实际应用中,可能会因为各方面条件的限制,无法满足这个要求。

这时可以通过配置OSPF虚连接(Virtual Link)予以解决。

(3)虚连接(Virtual Link)虚连接是指在两台ABR之间通过一个非骨干区域而建立的一条逻辑上的连接通道。

它的两端必须是ABR,而且必须在两端同时配置方可生效。

为虚连接两端提供一条非骨干区域内部路由的区域称为传输区(Transit Area)。

(4)区域边界路由器ABR(Area Border Router)该类路由器可以同时属于两个以上的区域,但其中一个必须是骨干区域。

ABR 用来连接骨干区域和非骨干区域,它与骨干区域之间既可以是物理连接,也可以是逻辑上的连接。

实验内容:构建OSPF多区域连接到骨干区域上实验拓扑:图中所有的路由器都运行OSPF,并将整个自治系统划分为3个区域。

其中Router A和Router B作为ABR来转发区域之间的路由。

配置完成后,每台路由器都应学到AS内的到所有网段的路由。

实验设备:路由器2台,v.35dte线缆1条,v.35dce线缆1条实验步骤:(1)配置各接口的IP地址(对路由器的以太口和同步串口配置IP地址,过程请同学们自己完成)(2)配置OSPF基本功能#配置Router A。

ospf多区域实验报告

ospf多区域实验报告

ospf多区域实验报告OSPF多区域实验报告引言:本次实验旨在深入理解和掌握OSPF(Open Shortest Path First)协议的多区域功能。

OSPF是一种内部网关协议(IGP),用于在大型网络中进行路由选择和路径计算。

通过将网络划分为多个区域,可以提高网络的可扩展性和性能。

本文将介绍实验的背景和目的,详细描述实验的步骤和结果,并对实验进行总结和讨论。

1. 实验背景在大型企业网络中,网络拓扑往往非常复杂,包含大量的子网和路由器。

当网络规模扩大时,单一区域的OSPF可能无法满足需求,因为单一区域的路由计算复杂度较高,且可能导致路由器负载过大。

为了解决这个问题,OSPF引入了多区域的概念,将网络划分为多个区域,每个区域有自己的区域边界路由器(ABR),负责与其他区域交换路由信息。

2. 实验目的本次实验的目的是通过搭建一个包含多个区域的网络拓扑,验证OSPF多区域的工作原理和效果。

具体目标包括:- 理解OSPF多区域的概念和原理;- 配置和验证OSPF多区域的路由信息交换;- 观察和分析多区域对网络性能和可扩展性的影响。

3. 实验步骤3.1 搭建实验环境我们使用GNS3模拟器搭建了一个包含多个区域的网络拓扑。

拓扑包括两个区域,每个区域都有多个子网和路由器,区域之间通过区域边界路由器连接。

我们使用虚拟机作为路由器,并在每个路由器上安装了OSPF协议。

3.2 配置OSPF多区域在每个路由器上,我们配置了OSPF协议,并将相应的接口划分到不同的区域。

在区域边界路由器上,我们配置了区域间的路由信息交换。

通过这样的配置,每个区域内的路由器只需关注自己所在区域的路由信息,大大减轻了路由计算的负担。

3.3 验证实验结果我们通过在路由器上查看OSPF邻居关系和路由表,以及通过ping命令测试不同子网之间的连通性,来验证实验结果。

我们还观察了区域边界路由器之间的路由信息交换情况,以及网络的性能和可扩展性。

4. 实验结果实验结果表明,OSPF多区域功能能够有效提高网络的可扩展性和性能。

OSPF区域与汇总

OSPF区域与汇总

OSPF区域与汇总OSPF(Open Shortest Path First)是一种用于互联网协议(IP)网络中的动态路由协议。

它使用链路状态路由算法来计算网络中最短路径,以便有效地转发数据包。

OSPF使用区域和汇总来优化网络性能和管理。

首先,让我们了解OSPF区域。

OSPF网络可以被分割成多个区域,每个区域的路由器只负责该区域内的路由计算。

这种分割减少了OSPF网络的复杂性,并提高了网络性能。

每个区域都有一个区域边界路由器(Area Border Router,ABR)用于连接不同区域。

ABR负责在区域之间转发路由信息,以便找到最佳路径。

每个区域都有一个唯一的区域号,并用32位IP地址表示。

1.减少路由器交换的路由信息数量,降低了网络开销,提高了网络性能。

2.提高网络可伸缩性。

当网络扩展时,可以简单地添加新的区域而不影响现有区域。

3.提供了更好的管理和维护。

每个区域内的路由器只需要关心本区域的路由计算,简化了网络管理和故障排除。

接下来,让我们了解OSPF的汇总功能。

在大规模的网络中,有时需要合并网段以减少路由表中的项目数量。

这可以通过汇总来实现。

OSPF提供了几种汇总方式,包括汇总路由、包含汇总和默认汇总。

1.汇总路由:将一组连续的网络合并成一个路由项目。

这样可以减少路由表中的项目数量,提高路由查询的速度。

例如,将子网192.168.1.0/24、192.168.2.0/24和192.168.3.0/24汇总成192.168.0.0/162.包含汇总:将多个网络合并到一个较长的网络范围内。

这个较长的网络范围包含所有要汇总的网络。

例如,将子网192.168.1.0/24和192.168.2.0/24包含汇总到192.168.0.0/223.默认汇总:将所有未知目的地汇总到一个默认路由上。

这样做可以减少对未知目的地的路由计算。

默认汇总通常由边界路由器执行。

例如,将所有从区域内部到外部的流量汇总到默认路由上。

OSPF多区域原理和配置

OSPF多区域原理和配置

OSPF多区域配置和原理一、OSPF协议是链路状态路由协议,它是一个开放的标准。

优点:1、它应用在大多数的路由器上。

2、用SPF(最短路径优先算法),提供环路自由的拓扑结构。

3、通过触发更新,提供快速收敛。

4、是无类的路由协议,允许分等级的划分可变长子网掩码。

缺点:1、需要更多的内存来调整拓扑结构。

2、需要额外的CPU 来处理运行SPF算法。

3、对于一个大的网络,需要小心的把网络划分适当的层次,通过把路由器划分到不同的区域里。

4、它配置起来更复杂,更难排除故障。

二、OSPF 用COST(成本)作为计量值。

三、OSPF中分类的路由器:内部路由器:是指所有接口都在一个区域的路由器。

区域边界路由器(ABR):是指连接一个或多个区域到骨干区域的路由器,并且这些路由器会作为域间通信量的路由网关。

ABR路由器总是至少有一个接口是属于骨干区域的。

自治系统边界路由器(ASBR):是OSPF域外部的通信量进入OSPF域的网关路由器。

四、一个OSPF路由器与DR交换信息用多播地址:DR与BDR与其他路由器交换信息用多播地址:CCNA只涉及一个区域的OSPF路由配置。

1、配置IP地址Router1配置Router1(config)#Router1(config)#inter f1/0Router1(config-if)#ip addRouter1(config-if)#no shutRouter1(config)#inter f0/0Router1(config-if)#ip addRouter1(config-if)#no shutRouter1(config)#inter f0/1Router1(config-if)#ip addRouter1(config-if)#no shutRouter2配置Router2(config)#inter f0/0Router2(config-if)#ip addRouter2(config-if)#no shutRouter2(config)#inter f0/1Router2(config-if)#ip addRouter2(config-if)#no shutRouter3配置Router(config)#inter f0/1Router(config-if)#ip addRouter(config-if)#no shutRouter(config)#inter f0/0Router(config-if)#ip addRouter(config-if)#no shutRouter4配置Router4(config)#inter f0/1Router4(config-if)#ip addRouter4(config-if)#no shutRouter4(config)#inter f1/0Router4(config-if)#ip addRouter4(config-if)#no shutRouter4(config)#inter f0/0Router4(config-if)#ip addRouter4(config-if)#no shut2、OSPF配置Router1配置Router1(config)#router ospf 10Router1(config-router)#network area 0Router1(config-router)#network area 0Router1(config-router)#network area 0Router1(config-router)#Router2配置Router2(config)#route ospf 10 ^ Router2(config-router)#network area 0Router2(config-router)#network area 1Router2(config-router)#Router3配置Router(config)#route ospf 10Router(config-router)#network area 0Router(config-router)#network area 1Router(config-router)#exiRouter4配置Router4(config)#route ospf 10Router4(config-router)#network area 1Router4(config-router)#network area 1Router4(config-router)#network area 1Router4(config-router)#exi3、show ip router 查看路由表例如查看Router1 的路由表Router1#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC is directly connected, FastEthernet1/0C is directly connected, FastEthernet0/0O IA [110/2] via , 00:01:44, FastEthernet0/0O IA [110/3] via , 00:00:29, FastEthernet0/0C is directly connected, FastEthernet0/1O IA [110/3] via , 00:00:29, FastEthernet0/0Router1#4、测试联通性PC>PC>pingPinging with 32 bytes of data:Request timed out.Reply from bytes=32 time=125ms TTL=125Reply from bytes=32 time=125ms TTL=125Reply from bytes=32 time=111ms TTL=125Ping statistics forPackets: Sent = 4, Received = 3, Lost = 1 (25% loss),Approximate round trip times in milli-seconds:Minimum = 111ms, Maximum = 125ms, Average = 120msPC>5、练习改变接口的COST。

OSPF多区域

OSPF多区域

多区域 OSPFOSPF MultiArea【实验目的】了解和掌握ospf的原理,熟悉ospf多域配置步骤。

懂得如何配置Vitrul links,Transit area, Stub Area ,Totally Stubby Area, Not-so-stubby area(nssa)。

【实验原理】了解Internal router,Backbone router,Area Border Router (ABR), Autonomous System Boundary Router (ASBR) 以及各种类型链路通告的不同之处,优化ospf网络。

【实验拓扑】【实验设备】路由器五台,串行线,用于配置路由的主机【实验内容】1、按图示配置端口,用ping检查各端口间连通性(A/B,E/F用于virtul links实验; C的lo地址在用于验证external routesummarization D的lo地址加入area 8,为验证interarea summarization; A/F的lo 地址在nssa时才加入)建议配置好各个neighber的vty,可以用一台终端观察整个拓扑。

(config)#enable password cisco(config)#line vty 0 4(config-line)#Login(config-line)#Password cisco利用terminal monitor可在telnet上看到debug输出2、在各个路由器启动ospf进程,注意area的分布Router(config)#router ospf *Router(config-router)#network *.*.*.* *.*.*.* area *查看ABR/ASBR/DR/BDR。

show ip ospfshow ip ospf interfaceshow ip ospf neighborshow ip ospf neighbor detail3、 show ip route查看各router路由表,注意area 10,area 11没出现在别的router。

多区域OSPF

多区域OSPF

多区域OSPF多区域的ospf一、区域司1.为何要划分区域① 随着网络规模的不断扩大,当大型网络中的路由器运行OSPF路由协议时,路由器数量的增多会导致lsdb非常庞大,占用大量的存储空间,并使得运行spf算法的复杂度增加,导致cpu负担很重。

② 网络规模增大后,拓扑变化的概率也随之增大,网络往往处于“振荡”状态之中,造成网络中会有大量的ospf协议报文在传递,降低了网络的带宽利用率。

更为严重的是,每一次变化都会导致网络中所有的路由器重新进行路由计算。

......2.解决方法:① OSPF协议通过将自治系统划分为不同的区域来解决上述问题。

②区域是从逻辑上将路由器划分为不同的组,每个组用区域号(areaid)来标识3.区域示例4.描述①区域的边界是路由器,而不是链路。

....② 路由器可以属于不同的区域,但网段(链路)只能属于一个区域,或者说每个运行ospf的接口必须指明属于哪一个区域。

③ 划分区域后,可以在区域边界路由器上进行路由聚合,以减少到其他区域的广告数量lsa数量,还可以将网络拓扑变化带来的影响最小化。

5.区域分工的优势①降低spf计算频率②减小路由表③ 减少LSA广告的开销④ 将不稳定性限制在特定区域二、路由器的区域类型1.内部路由器:这种路由器的所有接口都属于同一个OSPF区域。

2.区域边界路由器(ABR):这种路由器可以同时属于两个以上的区域,但其中一个必须是主干区域。

ABR用于连接主干区和非主干区。

它可以是与主干区的物理连接或逻辑连接。

3.骨干路由器(backbonerouter)该类路由器至少有一个接口属于骨干区域。

因此,所有的abr和位于area0的内部路由器都是骨干路由器。

4.自治系统边界路由器(asbr):与其他as交换路由信息的路由器称为asbr。

asbr并不一定位于as的边界,它有可能是区域内路由器,也有可能是abr。

只要一台ospf路由器引入了外部路由的信息,它就成为asbr。

OSPF_协议的解析及详解

OSPF_协议的解析及详解

OSPF_协议的解析及详解OSPF协议的解析及详解OSPF(Open Shortest Path First)是一种内部网关协议(IGP),用于在IP网络中实现动态路由。

本文将对OSPF协议进行解析和详解,包括其基本概念、工作原理、路由计算算法、协议报文格式以及配置和故障排除等方面的内容。

一、基本概念1.1 OSPF协议OSPF是一种链路状态路由协议,通过交换链路状态信息来计算最短路径,并维护路由表。

它基于Dijkstra算法,具有快速收敛、可扩展性强等特点。

1.2 OSPF区域OSPF将网络划分为不同的区域,每个区域由一个区域边界路由器(Area Border Router,ABR)连接。

区域之间通过区域边界路由器进行路由信息的交换。

1.3 OSPF邻居关系OSPF通过建立邻居关系来交换路由信息。

邻居关系的建立是通过Hello报文来实现的,Hello报文中包含了路由器的标识、优先级、网络类型等信息。

二、工作原理2.1 OSPF路由计算OSPF使用Dijkstra算法来计算最短路径。

每个路由器维护一个链路状态数据库(Link State Database,LSDB),其中保存了所有邻居路由器发送的链路状态信息。

根据LSDB中的信息,路由器计算出最短路径树,并更新路由表。

2.2 OSPF的路由选择OSPF使用最短路径优先(Shortest Path First,SPF)算法来选择最优路径。

SPF算法考虑了路径的成本(Cost),成本越低的路径被认为是最优路径。

2.3 OSPF的路由更新OSPF使用链路状态通告(Link State Advertisement,LSA)来更新路由信息。

当网络拓扑发生变化时,路由器会生成LSA,并向邻居路由器发送更新信息。

邻居路由器收到LSA后,更新自己的链路状态数据库,并重新计算最短路径。

三、协议报文格式3.1 Hello报文Hello报文用于建立邻居关系。

它包含了路由器的标识、优先级、Hello间隔等信息。

OSPF协议原理与配置详解

OSPF协议原理与配置详解

网络类型
点到点网络(point-to-point)
链路层封装 PPP/HDLC协议
广播网络(broadcast )
链路层封装 Ethernet/FDDI/Token Ring
网络类型
NBMA网络(Non-Broadcast Multi-Access)
FR/ATM/X.25
点到多点网络(point-to-multipoint)
等值路由:OSPF支持到同一目的地址的多 条等值路由。在RIP中也有。
OSPF协议概述(3)
路由分级:OSPF使用4类不同的路由,按 优先顺序分别是:区域内路由、区域间路由、 第一类外部路由、第二类外部路由。
支持验证:它支持基于接口的报文验证以 保证路由计算的安全性。
组播发送:OSPF在有组播发送能力的链路 层上以组播地址发送协议报文,即达到了 广播的作用,又最大程度的减少了对其他 网络段设备的干扰。(224.0.0.5)
OSPF和RIP的比较(2)
只有当链路状态发生变化时,路由器才用 洪泛法向所有路由器发送此信息。而RIP不 管网络拓扑有无发生变化,路由器之间都 要定期交换路由器表的信息。
基本的OSPF协议
Router ID:一个32bit的无符号整数,是一 台路由器的唯一标识,在整个自治系统内 惟一。一般是手工配置。
由32位数组成,在AS内唯一。这个Router ID 一般需要手工配置,一 般将其配置为该路由器的某个接口的IP地址。由于IP地址是唯一的,所 以这样就很容易保证Router ID 的唯一性。在没有手工配置Router ID 的 情况下,一些厂家的路由器支持自动从当前所有接口的IP 地址自动选举 一个IP 地址作为Router ID。
的路由。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OSPF多区域原理与配置
【OSPF三种配置方法】
1、network 192.168.1.0 0.0.0.255 area0
2、network 0.0.0.0 255.255.255.255 area0
3、network 192.168.1.1 0.0.0.0 area0
【OSPF通信量分三类】
域内通信量:LSA1、LSA2
域间通信量:LSA3
外部通信量:LSA4、LSA5、LSA7
a)标准区域允许‘域内’‘域间’及‘外部’通信量。

LSA为(1.2.3.4.5)
b)末梢区域不允许‘外部’通信量存在,允许‘域内’‘域间’通信量及一条默认路由。

LSA为(1.2.3)
c)完全末梢只允许‘域内’通信量及一条默认路由。

LSA为(1.2)
d)非纯末梢不允许其他区域的外部通信量,允许‘域内’‘域间’及‘本区域’外部通信量。

LSA为(1.2.3.7)
e)完全非纯末梢只允许本区域内部,本区域外部通信量及一条默认路由存
在,不允许区域间及其他区域外部通信量存在。

LSA为(1.2.7)
表-LSA类型
一、OSPF的多区域
【使用OSPF协议经常遇到的问题】
?在大型网络中,网络结构的变化是时常发生的,因些OSPF路由器就会经常运行SPF算法来重新计算路由信息,大量消耗路由器的CPU和内存资源?在OSPF网络中,随着多条路径的增加,路由表变得越来越庞大,每一次路径的改变都使路由器不得不花大量的时间和资源去重新计算路由表,路由器就会越来越低效
?包含完整网络结构信息的链路状态数据库也会越来越大,这将有可能使路
由器CPU和内存资源彻底耗尽,从而导致路由器的崩溃
【解决OSPF协议的以上问题】
OSPF允许把大型区域划分成多个更易管理的小型区域。

这些小型区域可以交
换路由汇总信息,而不是每一个路由的细节
(1)、生成OSPF多区的原因
1、生成OSPF多区域的原因
改善网络的可扩展性
快速收敛
2、OSPF区域的容量
?单个区域所支持路由器的范围大约是30~200
?一些区域包含25台都有可能会显多了,而另一些区域却可以容纳多于500台的路由器
【对于和区域相关的通信量定义了下面三种类型】
域内通信量(Intra-AreaTraffic):指单个区域内路由器之间交换的数据包构成的
通信量
域间通信量(Inter-AreaTraffic):指由不同区域的路由器之间交换的数据包构成
的通信量
外部通信量(External-Traffic):指由OSPF区域内的路由器与OSPF区域外或另一
个自治系统内的路由器之间交换的数据包构成的通信量
【分层路由的优势】
?降低了SPF运算的频率
?减少了路由表
?减小了链路状态更新报文(LSU)的流量
(2)、路由器的类型
内部路由器(Internal Router):指所有接口都属于同一个区域的路由器区域边界路由器(Areea BorderRouter):指连接一个或多个区域到骨干区域的路
由器,并且这些路由器会作为夫域间通信量的路由网关。

ABR路由器至少有一个接口是属于骨干区域的,而且必须为每一个与之相连的区域维
护不同的链路状数据库
自治系统边界路由器(Autonomous SystemBoudary Router,ASBR):可以认为是
OSPF域外部的通信量进入OSPF域的网关路由器,也就是说,ASBR路由器是用来把其他路由选择协议学习到的路由通过路由选择重分配的方式
注入到OSPF域的路由器
(3)、区域的类型
?非骨干区域为做优化处理成为标准区域,经过优化配置后,可以分为四种末梢
?类型:骨干区域、标准区域、末梢区域、完全末梢区域、非纯末梢区域、完全非纯末梢区域
?运行OSPF的整个区域属于一个自治系统(AS),除了AS的路由都属于外部路由
1、骨干区域Area0
该区域的ID一定为0,它是连接所有其他区域的核心域,相当于交换网络的汇聚层
2、标准区域
?该区域可以接收各种链路状态信息和汇总的路由通告
?没有特殊定义的区域就是标准区域
二、链路状态数据库
(1)、链路状态数据库的组成
?每台路由器都创建了由每个接口,对应的相邻节点和速率组成的数据库
?链路状态数据库中的每个条目都称为LSA(链路状态通告)
(2、)链路状态通告
LSA有六种类型:LSA1、LSA2、LSA3、LSA4、LAS5、LAS7
LSA1(路由器LSA:Router LSA):每一台运行OSPF路由协议的路由器都会产生
路由器的LSA通告,这些LSA通告只会在始发它们的区域内部进行泛洪LSA2(网络LSA:Network LSA):每一个地址网络(广播型和NBMA)中的指定路
由器(DR)都将会产生网络LSA通告。

它仅仅在产生这条网络LSA的区域内部进行泛洪
LSA3(网络汇总LSA:Network Summary LSA):是由ABR路由器发出的。

ABR路
路器将发送汇总LSA到一个区域,用来通告该区域外部的目的地址
三、0SPF多区域配置
(1)、配置多区域OSPF
没有特殊的命令来生成ABR,只要一台路由器的两个接口被配置到不同的区
域,那么这笞路由器就会成为ABR
R1(config)# router ospf 1
network10.0.0.0 255.255.255.255 area 0
R2(config)# router ospf 1
network10.0.0.0 0.255.255.255 area 0
network10.2.0.0 0.255.255.255 area 1
(注意:ospf 1是进程号,R1和R2的进程号不一定要一样)(2)、OSPF多区域配置的验证及OSPF路由表
1、OSPF常用的检查命令
2、OSPF路由表
(O:代表OSPF区域内的路由;O |A:代表OSPF区域间的路由)
区域内路径(Intra-area Path):是指在路由器所在的区域内就可以到达目的地
的路径
区域间路径(Inter-area Path):是指在其他区域但仍在OSPF自治系统内的目
的地路径,打上了IA标志的条目就是区域间路径
3、路由器对路由条目的选择
?路由器只把最优的路由条目添加到自己的路由表中
?路由器在选择路由条目并将其添加到路由表中时,使用两个参数:
Metrics(度量值):代表距离,由度量值来确定寻路时的最优路径
Distance Metric(管理距离):是指一种路由协议的路由可信度
OSPF路由协议中的度量值为接口代价(Cost)
RIP路由协议中度量值代表距离/跳数
OSPF协议的管理距离默认是110,度量值是接口代价
RIP协议的管理距离是120,度量值是跳数
静态路由的管理距离是1,度量值是0
【路由器对路由条目的选择过程】
a)当路由器收到相同目的地址的的路由条目时,首先比较管理距离,选择管理距离小的路由条目添加到路由表中
b)如果管理距离相同,则比较度量值,选择度量值小的路由条目添加到路由表中
c)当收到目的地址,度量值和管理距离值都相同的路由条目时,路由表中会形成负载均衡的路由条目
d)当线路出现故障时,管理距离小的路由失效,管理距离大的路由为最佳路由,会被路由器选入路由表中
四、Stub区域及配置
(1)、LSA4和LSA5
1、LSA4
ASBR汇总LSA(ASBR Summary LSA):也是由ASBR路由器始发的
2、LSA5
自治系统外部LSA(Autonomous SystemExternal LSA):也称为外部LSA,始发于ASBR路由器,用来通告到达OSPF自治系统外部的目的地或者OSPF 自治系统外部的默认路由的LSA
(2)、末梢区域和完全末梢区域
?stub区域内不能有自治系统边界路由器(ASBR)
?stub区域允许LSA1、LSA2、LSA3类型,禁止LSA4、LSA5、LSA7进入stub区域
?Totally Stubby(完全末梢)允许LSA1、LSA2和一个默认路由,禁止其他型进入
【满足以下四个条件的区域可以被认定为stub或者Totally Stubby区域】
a)只有一个默认路由作为其他区域的出口
b)区域不能作为虚链路的穿越区域
c)stub区域里无自治统边界路由器(ASBR)
d)不是骨干区域Area 0
《注意》:
配置成NSSA区域的路由器也不能和其他非NSSA区域的路由器形成邻接关系
(3)、配置末梢区域和完全末梢区域
?配置末梢区域要求在本区域中所有路由器上都配置末梢命令
?配置完全末梢区域要求在本区域中ABR上配置完全末梢命令,在其他路由
器上配置末梢命令
【配置Stub Area】
Router(config-router)# area area-id stub
如:Router(config-router)#area 1 stub
【配置Totally Stubby Area】
Router(config-router)# area area-id stub no-summary 如:Router(config-router)# area 1 stub no-summary。

相关文档
最新文档