3.1.1倾斜角与斜率教案.pdf

合集下载

高中数学3.1.1 直线的倾斜角与斜率优秀教案

高中数学3.1.1 直线的倾斜角与斜率优秀教案

直线的倾斜角与斜率杨兵一、教材分析1.教材的地位直线倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素与代数表示,是在平面直角坐标系内以坐标法〔解析法〕的方式来研究直线及其几何性质的根底。

本课有着开启全章,承前启后,奠定基调,渗透方法的作用。

2.教学目标知识与技能:理解直线的倾斜角和斜率的定义,掌握过两点的直线的斜率计算公式。

过程与方法:引导学生观察、探索、合作探究、发现,培养学生的探索创新能力和合作意识。

情感、态度与价值观:通过学生之间、师生之间的交流合作,实现共同探究的目标。

并体验认识事物的一般规律:从特殊到一般的过程。

二、教学重点、难点重点:直线的倾斜角、斜率的概念和公式;难点:对直线倾斜角以及斜率的理解;三、教学过程1.创设情景,形成概念问题1:过一点能确定一条直线吗?问题2:这些直线有怎样的区别?怎样准确的表示它们的区别呢?2.〔1〕直线倾斜角的定义:直线与x 轴相交时,直线向上的方向与x 轴正方向所成的角 叫做这条直线的倾斜角.(2)直线倾斜角的范围:0︒≤α<180︒【设计意图】让学生了解到除了两点能确定一条直线的位置外,一个点和方向也能确定一条直线的位置。

学生了解倾斜角的概念,并发现倾斜角的取值范围3.发现问题,探索新知通过上面的学习,我们知道倾斜角可以刻画直线的倾斜程度,那么我们在还学习过什么量可以表达倾斜程度呢?斜率的定义:一条直线的倾斜角α的正切值叫做这条直线的斜率(slope),常用小写字母k表示;α=ktan【设计意图】通过这个问题让学生意识到可以用角的正切值来表示坡度,从而让学生理解:用倾斜角的正切值来表示直线的倾斜程度,也就是斜率。

4.深入探究,加深理解〔1〕发现直线斜率随着倾斜角的变化会怎么样变化。

是不是每条直线都有斜率?倾斜角不同,斜率是否相同?〔2〕由正切函数的图像,引导学生得到倾斜角与斜率的图像。

进一步探究斜率k和倾斜角α的关系请根据斜率k和倾斜角α的关系完成以下填空:〔3〕应用探究在平面直角坐标系中,画出经过原点且斜率分别为1,-1的直线,【设计意图】及时稳固斜率k和倾斜角α的关系式,进一步明确确定一条直线的两个几何要素:点和倾斜角。

3.1.1倾斜角与斜率教案

3.1.1倾斜角与斜率教案

张喜林制[3. 1.1 直线的倾斜角与斜率【学习目标 】1.理解直线的倾斜角的定义、范围和斜率; 2.掌握过两点的直线斜率的计算公式; 3.能用公式和概念解决问题.【教学重难点】重点:倾斜角与斜率的概念难点:直线的斜率与倾斜角的关系【教学过程】一、课前准备(预习教材 82P ~ 86P ,找出疑惑之处)复习 1:在直角坐标系中,只知道直线上的一点,能不 能确定一条直线呢? 复习 2:在日常生活中,我们常说这个山坡很陡峭, 有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢? 二、新课导学探究点一:①倾斜角的概念当直线l 与x 轴相交时,取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α 叫做直 线l 的倾斜角(angle of inclination ).发现:①直线向上方向;②x 轴的正方向;③小于平角的正角. 注意:当直线与轴x 平行或重合时,我们规定它的倾 斜角为 0 度..思考:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度” ,则坡度的公式是怎样的?②斜率与倾斜角的关系一条直线的倾斜角 α () 的正切值叫做这条直线的斜率(slope).记为k= tan .试试:已知各直线倾斜角,则其斜率的值为 (1)α=0°时,则k (2)0°<α< 90°,则k (3)α= 90°,,则k(4)90 °<α< 180°,则k③ 已知直线上两点1p (),11y x ,),(222y x p (21x x ≠)的直线的斜率公式:1212x x y y k --=.探究任务二:1.已知直线上两点 ),(),,(2211b a B b a A 运用上述公式计算直线的斜率时,与 A B 两点坐标的顺序有关吗?2.当直线平行于 y 轴时,或与轴y 重合时,上述公式还需要适用吗?为什么? 三、典型例题分析例1 已知直线的倾斜角,求直线的斜率: ⑴ 。

高中数学人教A版 必修2第三章3.1.1《直线的倾斜角和斜率》教案

高中数学人教A版 必修2第三章3.1.1《直线的倾斜角和斜率》教案

课题 2.1.1倾斜角与斜率授课年级高二课型新授课授课时间主备人授课教师教学目标1.初步了解解析几何的产生及其意义,初步认识坐标法思想2.掌握直线的倾斜角与斜率的概念3.掌握过两点的直线的斜率公式教学重难点重点:直线的倾斜角与斜率的概念,过两点的直线斜率公式难点:用直线的倾斜角和斜率刻画直线的几何特征教学方法自主探究、合作交流教学过程环节设计学生活动引导语:十六、十七世纪,为了描述现实世界中的运动变化现象,如行星的运动、平面抛体的运动等,需要对它们的运动轨迹进行精确的代数刻画,运动变化进入了数学,变量观念成为数学中的重要理念。

在众多数学家工作的基础上,法国数学家笛卡尔、费马集其大成,创立了坐标系,用坐标刻画运动变化。

这是解析几何的创始。

新课导入:我们知道,点是构成直线的基本元素,在平面直角坐标系中,可以用坐标表示点,本节我们首先在平面直角坐标系中探索确定直线位置的几何要素。

引入课题学生阅读材料了解解析几何的创始问题1过一点能确定一条直线吗?这些直线有何不同? 新课讲解: 一、倾斜角1. 直线的倾斜角当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角练习:下列四图中,表示直线的倾斜角的是( )2. 直线倾斜角的范围当直线 与 轴平行或重合时,我们规定它的倾斜角为0度 ,因此,直线的倾斜角的取值范围为:学生动手画直线学生口答定义并找出其中的关键词学生口答巩固倾斜角的概念学生自助探究y x olαay xoAyxoaBayxoC yx aoD按倾斜角去分类,直线可分几类?问题2请在平面直角坐标系中,作出倾斜角为 45度 的直线,并对比你与其他同学所作的图像,你发现了什么?若增加条件过点(0,0),你能作多少条直线?3.确定平面直角坐标系中一条直线的几何要素: 直线上的一个定点 直线的倾斜角问:日常生活中有没有表示倾斜程度的量?坡度(比)二、直线的斜率直线倾斜角 的正切值,常用小写字母k 表示,即: αtan =k注意:倾斜角为90度的直线的斜率不存在.探究:借助几何画板,分析直线的倾斜角与斜率的关系。

3.1.1倾斜角与斜率

3.1.1倾斜角与斜率

∴9a5+7=3-5 a,∴25=27a+21-9a2-7a,

解得 a=2 或 a=29.
课前预习学案 课堂互动探究 课后达标训练
第 三
3.求证A(1,-1),B(-2,-7),C(0,-3)三点共线.

直 证明:∵A(1,-1),B(-2,-7),C(0,-3),
上 页
线 与 方
∴kAB=--7-2--11=2,kAC=-30---1 1=2.
上 页
与 方
∴直线 AB 的斜率为17,AC 的斜率为53.
下 页
程 (2)如图,当 D 由 B 运动到 C 时,直线 AD 的
斜率由 kAB 增大到 kAC,所以直线 AD 的斜率
的变化范围是[17,53].
课前预习学案 课堂互动探究 课后达标训练
第 三 2.如图,直线l1的倾斜角α1=30°,直线l1与l2垂直,求直


章 直 线
[错因] 由于本题中含有参数m,故需要对m的取值情况 上 进行讨论.在上述解题过程中遗漏了m=1的情况,当m= 页
与 方
1时,斜率不存在.
下 页

课前预习学案 课堂互动探究 课后达标训练
[正解] 当 m=1 时,直线的斜率不存在,此时直线的倾斜角为

α=90°.
三 章 直
当 m≠1 时,由斜率公式可得 k=m3--21=m-1 1.
线 提示:这句话是不对的,当倾斜角α=0°时,k=0;当
与 方
0°<α<90°时,k>0,并且随α的增大k也增大;当α
下 页
程 =90°时,k不存在;当90°<α<180°时,k<0,并
且随α的增大k也增大.
课前预习学案 课堂互动探究 课后达标训练

学案4:3.1.1 倾斜角与斜率

学案4:3.1.1 倾斜角与斜率

3.1.1倾斜角与斜率课标要求1.理解直线的倾斜角和斜率的概念.2.掌握求直线斜率的两种方法.3.了解在平面直角坐标系中确定一条直线的几何要素.核心扫描1.求直线的倾斜角和斜率.(重点)2.常与三点共线、平面几何知识等结合命题.(难点)3.准确把握与y轴平行或重合的直线的倾斜角和斜率.(易混点)新知探究新知导学1.倾斜角的概念和范围当直线l与x轴相交时,我们取x轴作为基准,x轴与直线l方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴或时,我们规定它的倾斜角为0°.直线的倾斜角α的范围是≤α<.温馨提示:直线的倾斜角概念的理解注意三个方面:(1)直线与x轴相交;(2)x轴正方向;(3)直线向上的方向2.斜率的概念及斜率公式本质上是一致的.但倾斜角是角度,是直线倾斜度的直接体现;斜率是实数,是直线倾斜度的间接反映,用斜率比用倾斜角更方便.(2)直线的倾斜角α与斜率的关系如下表:探究点1 直角坐标系中的任何一条直线是否都有一个倾斜角?探究点2 (1)与x轴垂直的直线l倾斜角等于多少度?其斜率存在吗?(2)不垂直于x轴的直线l的斜率的大小与在l上取的两个点有关吗?题型探究类型一直线的倾斜角与斜率的概念例1 已知直线l向上方向与y轴正向所在的角为30°,则直线l和倾斜角为________.[规律方法](1)由已知角推断倾斜角,常画出图形,借助图形来解决,注意画图时要考虑出现的各种情况.(2)斜率或倾斜角之间的大小比较要根据k=tan α在0°≤α<90°及90°<α<180°的增减性来判断.活学活用1 (1)已知点P(1,1),直线l过点P且不经过第四象限,则直线l的倾斜角α的最大值为()A.135° B.90° C.45° D.30°(2)如图,设直线l1,l2,l3的斜率分别为k1,k2,k3,则k1,k2,k3的大小关系为()A.k1<k2<k3B.k1<k3<k2C.k2<k1<k3D.k3<k2<k1类型二求斜率及其范围例2 已知直线l过P(-2,-1),且与以A(-4,2),B(1,3)为端点的线段相交,求直线l的斜率的取值范围.[规律方法] (1)由倾斜角(或范围)求斜率(或范围)利用定义式k =tan α(α≠90°)解决 (2)由两点坐标求斜率运用两点斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求解.(3)涉及直线与线段有交点问题常数形结合利用公式求解.活学活用2 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点. (1)求直线l 的斜率k 的取值范围; (2)求直线l 的倾斜角α的取值范围.类型三 斜率公式的应用例3 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.[规律方法] 若所求最值或范围的式子可化为y 2-y 1x 2-x 1的形式,则联想其几何意义,利用图形数形结合来求解.活学活用3 已知实数x ,y 满足y =x 2-x +2(-1≤x ≤1),试求y +3x +2的最大值和最小值.易错辨析 因忽略两点斜率公式的条件而致错示例 求经过A (m,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围. [错解] 由斜率公式可得k =3-2m -1=1m -1. ①当m >1时,k =1m -1>0,所以直线的倾斜角的取值范围是0°<α<90°.②当m <1时,k =1m -1<0,所以直线的倾斜角的取值范围是90°<α<180°.[错因分析] 未考虑两点斜率公式运用的条件从而忽略了对m =1情况. [正解] 当m =1时,直线斜率不存在,此时直线的倾斜角为α=90°. 当m ≠1时,由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角的取值范围是0°<α<90°.②当m <1时,k =1m -1<0,所以直线的倾斜角的取值范围是90°<α<180°.[防范措施] 学习定理、公式一定要注意它们的适用条件,对k =tan α注意α≠90°;对k =y 2-y 1x 2-x 1注意x 1≠x 2,对不满足公式适用条件的可能情况,要多加考虑,不可忽略.感悟提升课堂达标1.下列说法中,正确的是( )A.直线的倾斜角为α,则此直线的斜率为tan αB.直线的斜率为tan α,则此直线的倾斜角为αC.若直线的倾斜角为α,则sin α>0D.任意直线都有倾斜角α,且α≠90°时,斜率为tan α2.直线l经过第二、四象限,则直线l的倾斜角范围是()A.0°≤α<90° B.90°≤α<180°C.90°<α<180° D.0°<α<180°3.已知直线过点A(0,4)和点B(1,2),则直线AB的斜率为________.4.过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5 C.-1 D.-55.已知点A(1,2),在坐标轴上求一点P,使直线P A的倾斜角为60°.课堂小结1.直线的斜率和倾斜角是从数和形两个角度来刻画直线的坐标系中的倾斜程度,要理解k =tan α(α≠90°)在0°≤α<90°和90°<α<180°上的变化情况.2.注意两个公式的适用条件,注意考虑直线垂直于x轴这种情形,善于运用分类讨论、数形结合思想来思考和解决问题.参考答案新知探究新知导学1.正方向 向上 平行 重合 0° 180° 2.正切值 tan α k =0 k >0 k <0 不存在 互动探究探究点1 提示 是.探究点2 提示 (1)90° 不存在 (2)无关题型探究类型一 直线的倾斜角与斜率的概念 例1 60°或120° 【解析】有两种情况:①如图(1),直线l 向上方向与x 轴正向所成的角为60°,即直线l 的倾斜角为60°. ②如图(2),直线l 向上方向与x 轴正向所成的角为120°,即直线l 的倾斜角为120°. 活学活用1 (1)C (2)A【解析】(1)如图,因为直线l 不经过第四象限,故当直线l 处于图示位置,即过坐标原点(0,0)时,它的倾斜角有最大值.易求得其值为45°,故选C.(2)设直线l 1、l 2、l 3的倾斜角分别为α1、α2、α3,则0°<α1<α2<α3<90°,故k 1<k 2<k 3,选A.类型二 求斜率及其范围例2 【解】根据题中的条件可画出图形,如图所示,又可得直线P A 的斜率k P A =-32,直线PB 的斜率k PB =43,结合图形可知当直线l 由PB 变化到与y 轴平行的位置时,它的倾斜角逐渐增大到90°, 故斜率的取值范围为⎣⎡⎭⎫43,+∞, 当直线l 由与y 轴平行的位置变化到P A 位置时,它的倾斜角由90°增大到P A 的倾斜角,故斜率的变化范围是⎝⎛⎦⎤-∞,-32. 综上可知,直线l 的斜率的取值范围是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫43,+∞. 活学活用2 【解】如图所示,由题意可知k P A =4-0-3-1=-1,k PB =2-03-1=1.(1)要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1,或k ≥1. (2)由题意可知,直线l 的倾斜角介于直线PB 与P A 的倾斜角之间, 又PB 的倾斜角是45°,P A 的倾斜角是135°, 所以α的取值范围是45°≤α≤135°. 类型三 斜率公式的应用例3 【解】如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得y x 的最大值为2,最小值为23.活学活用3 【解】由y +3x +2的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k ,由图可知k P A ≤k ≤k PB ,由已知可得A (1,2),B (-1,4).则k P A =2--31--2=53,k PB =4--3-1--2=7.∴53≤k ≤7,∴y +3x +2的最大值为7,最小值为53. 感悟提升课堂达标1.D【解析】对于A ,当α=90°时,直线的斜率不存在,故不正确;对于B ,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C ,当直线平行于x 轴时,α=0°,sin α=0,故C 不正确,故选D. 2.C【解析】直线倾斜角的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角范围是90°<α<180°. 3.-2【解析】由过两点的直线的斜率公式,知直线AB 的斜率为4-20-1=-2.4.D【解析】由斜率公式可得:y +34-2=tan 135°, ∴y +32=-1,∴y =-5.∴选D.5.【解】①当点P 在x 轴上时,设点P (a,0), ∵A (1,2),∴k =0-2a -1=-2a -1.又∵直线P A 的倾斜角为60°, ∴tan 60°=-2a -1.解得a =1-233.∴点P 的坐标为⎝⎛⎭⎫1-233,0.②当点P 在y 轴上时,设点P (0,b ),同理可得b =2-3,∴点P 的坐标为(0,2-3).。

人教高一数学教学设计之《3.1.1倾斜角与斜率》

人教高一数学教学设计之《3.1.1倾斜角与斜率》

人教高一数学教学设计之《3.1.1倾斜角与斜率》一. 教材分析《3.1.1倾斜角与斜率》是高中数学人教版必修二的第一节,本节课主要介绍直线的倾斜角和斜率的概念,以及它们之间的关系。

通过本节课的学习,学生能够理解直线的倾斜角和斜率的定义,掌握它们的计算方法,并能运用它们解决一些实际问题。

二. 学情分析高一的学生已经具备了一些几何的基础知识,例如直线的倾斜角和斜率的概念,他们对于新的知识有较强的接受能力。

但是,对于如何运用这些知识解决实际问题,他们可能还不够熟练。

因此,在教学过程中,需要注重培养学生的实际应用能力。

三. 教学目标1.知识与技能:理解直线的倾斜角和斜率的定义,掌握它们的计算方法。

2.过程与方法:通过观察和操作,培养学生的空间想象能力。

3.情感态度与价值观:培养学生对数学的兴趣,使他们能够主动探索和发现。

四. 教学重难点1.重点:直线的倾斜角和斜率的定义,它们的计算方法。

2.难点:如何运用直线的倾斜角和斜率解决实际问题。

五. 教学方法1.情境教学法:通过实物和图片,引导学生观察和思考。

2.问题驱动法:通过提问和讨论,激发学生的学习兴趣。

3.实践操作法:通过动手操作,培养学生的实际应用能力。

六. 教学准备1.准备一些直线的倾斜角和斜率的实例,用于讲解和演示。

2.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一些图片,如直线、斜坡等,引导学生思考:直线的倾斜角和斜率是什么?它们有什么关系?2.呈现(10分钟)讲解直线的倾斜角和斜率的定义,以及它们的计算方法。

通过实物和图片,让学生直观地理解这两个概念。

3.操练(10分钟)让学生动手操作,尝试计算一些直线的倾斜角和斜率。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

教师选典型题目进行讲解,巩固所学知识。

5.拓展(10分钟)引导学生思考:如何运用直线的倾斜角和斜率解决实际问题?出示一些实例,让学生分组讨论和解答。

3.1.1直线的倾斜角与斜率教学设计

3.1.1直线的倾斜角与斜率教学设计

第三章 直线与方程3.1.1 倾斜角与斜率(2课时)主备教师:李劲东一、内容及其解析“直线的倾斜角与斜率”是人教版数学必修2第三章第一节的内容,是高中解析几何内容的开始。

这节课学习的内容是直线在平面直角坐标系下的倾斜角和斜率。

其核心内容是直线倾斜角的概念和斜率的求法,理解它的关键是在平面直角坐标系中直线向上的方向与X 轴正方向所成的角和角的正切值。

之前学生已经学过一次函数的图像和平面中两点可以确定一条直线,这节内容就是刻画直线倾斜程度的几何要素与代数表示,是平面直角坐标系内以坐标法(解析法)的方式来研究直线及其几何性质(如直线位置关系、交点坐标、点到直线距离等)的基础。

通过该内容的学习,帮助学生初步了解直角坐标平面内几何要素代数化的过程,渗透解析几何的基本思想和基本研究方法。

直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与二次曲线的位置关系,直线的斜率都发挥着重要作用。

二、目标及其解析目标定位:1、正确理解直线的倾斜角和斜率的概念.2、会求出直线的倾斜角和直线的斜率3、掌握过两点的直线的斜率公式。

目标解析:1、正确理解直线的倾斜角是指理解平面直角坐标系中以X 轴为基准,直线与X 轴相交时,X 轴正方向与直线向上的方向的角;理解斜率概念是指直线的斜率就是直线倾斜角的正切值。

2、会求出直线倾斜角是指已知直线的斜率求出其对应倾斜角,会求直线斜率是指知道直线的倾斜角会求出其对应直线的斜率。

3、掌握过两点的直线的斜率公式就是要熟练应用经过P 1(x 1,y 1),P 2(x 2,y 2)两点的直线的斜率公式k = (x 1≠x 2)三、问题诊断与分析在本节课的教学中,学生可能遇到的问题是对直线的倾斜角的概念及范围理解时会不糊不清 和当直线的倾斜角是钝角时的求值会困难,产生这两个问题的原因是对倾斜角的概念理解不透彻和没有从定义上认真正理解和对新公式tan(180)tan αα-=-。

3.1.1倾斜角与斜率(最新)

3.1.1倾斜角与斜率(最新)

锐 . 角
3 ).
( 2 ) P ( 0 , 0 ), Q ( 1 ,
k 3,
钝 . 角
19
练习4:已知a、b、c是两两不等的实数,求经 过下列两点的倾斜角:
(1) A ( a , c ), B ( b , c );

0
( 2 ) C ( a , b ), D ( a , c );
90

( 3 ) P ( b , b c ), Q ( a , c a ).
45

20
例2 在平面直角坐标系中,画出经过原点 且斜率分别为1,-1,2及-3的直线l1,l2, l3及l4.
l4
l2
y
l3
l1
o
x
21
练习5:画出经过点(0,2),且斜率分别为 2和-2的直线: y 2
由2
解: P1 , P2 , P3 在一条直线上
k P1 P2 k P2 P3
即 32 x 1 1 3 3 x
x
7 3
.
23
【总一总★成竹在胸】
坡度
平面解 析几何
直线的斜率
斜率定义
几何意义
应用
24
1.当直线平行于x轴,或与x轴重合时, 上述公式还适用吗?为什么? k 0 y y y 2 1 k P (x , y ) P (x , y ) x 2 x1
1 1 1
0

2
2
2
x1
o
x2
答:成立,因为分子 x 为0,分母不为0, k =0
14
90 , tan 90 ( 不存在 ) 2.当直线平行于y轴,或与y轴重合时,
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度. (三) 直线的斜率公式:
给定两点 P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示 直线 P1P2 的斜率? 可用计算机作动画演示: 直线 P1P2 的四种情况, 并引导学生如何 作辅助线, 共同完成斜率公式的推导.(略)
当直线 l 与 x 轴垂直时, α= 90°. 因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入 直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标 系内的每一条直线的倾斜程度.
学生活动
Y

ab
c

O
X
学生完成


如图, 直线 a∥b∥c, 那么它们 的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一
而当 k = tanα=0 时, 倾斜角α是 0°.
略解: 直线 AB 的斜率 k1=1/7>0, 所以它的倾斜角α是锐角;
直线 BC 的斜率 k2=-0.5<0, 所以它的倾斜角α是钝角;
直线 CA 的斜率 k3=1>0, 所以它的倾斜角α是锐角.
教 例 2 在平面直角坐标系中, 画出经过原点且斜率分别为 1, -1, 2, 及
-3 的直线 a, b, c, l.

分析:要画出经过原点的直线 a, 只要再找出 a 上的另外一点 M. 而

M 的坐标可以根据直线 a 的斜率确定; 或者 k=tanα=1 是特殊值,

所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在 x 轴 学生独立完
的上方作 45°的角, 再把所作的这一边反向延长成直线即可.

联系呢?
学生回答

Y

ab
c

O
P
X


(1)它们都经过点 P. (2)它们的‘倾斜程度’不同. 怎样描述 这种‘倾斜程度’的不同? 引入直线的倾斜角的概念:
1
学海无涯
教师课时教案
问题与情境及教师活动
当直线 l 与 x 轴相交时, 取 x 轴作为基准, x 轴正向与直线 l 向上方向之间所成的角α叫做直线 l 的倾.斜.角..特别地,当直线 l 与 x 轴平行或重合时, 规定α= 0°. 问: 倾斜角α的取值范围是什么? 0°≤α<180°.
⑵当直线 l 与 x 轴垂直时, α= 90°, k 不存在.
由此可知, 一条直线 l 的倾斜角α一定存在,但是斜率 k 不一定存
在.
例如:
α=45°时, k = tan45°= 1;
α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1. 2
学海无涯 问题与情境及教师活动
及 条直线.

确定平面直角坐标系内的一条直线位置的几何要素: 一.个.点.P.和.
一.个.倾.斜.角.α..

(二)直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜
率常用小写字母 k 表示,也就是
k = tanα
⑴当直线 l 与 x 轴平行或重合时, α=0°, k = tan0°=0;
谨的科学态度和求简的数学精神.
重点
直线的倾斜角、斜率的概念和公式.
难点
斜率的概念和公式.
问题与情境及教师活动
学生活动
教学过程:
(一) 直线的倾斜角的概念
我们知道, 经过两点有且只有(确定)一条直线. 那么,

经过一点 P 的直线 l 的位置能确定吗? 如图, 过一点 P 可以作
无数多条直线 a,b,c, …易见,答案是否定的.这些直线有什么
(2) 直线的斜率公式.
(七)课后作业: P94 习题 3.1 1. 3.
教 学 小 结 课 后 反 思
4
斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线,
图略)
分析: 已知两点坐标, 而且 x1≠x2, 由斜率公式代入即可求得 k
的值;
3
学海无涯
河北武中·宏达教育集团教师课时教案
问题与情境及教师活动
而当 k = tanα<0 时, 倾斜角α是钝角;
学生活动
而当 k = tanα>0 时, 倾斜角α是锐角;
备课人
学海无涯
教师课时教案
授课时间
课题
3.1.1 直线的倾斜角和斜率
课标要求
了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;

知识目标


技能目标

情感态度价值观
(1) 正确理解直线的倾斜角和斜率的概念. (2) 理解直线的倾斜角的唯一性. (3) 理解直线的斜率的存在性. 斜率公式的推导过程,掌握过两点的直线的斜率 公式. 培养学生树立辩证统一的观点,培养学生形成严


略解: 设直线 a 上的另外一点 M 的坐标为(x,y),根据斜率公式有

1=(y-0)/(x-0)
所以 x = y

M(1,1), 可作直线 a.
同理, 可作直线 b, c, l.(用计算机作动画演示画直线过程)
(五)练习: P91 1. 2. 3. 4.
(六)小结:
(1)直线的倾斜角和斜率的概念.
学生活动


斜率公式:
对于上面的斜率公式要注意下面四点:
学生完成

(1) 当 x1=x2 时,公式右边无意义,直线的斜率不存在,倾斜角α

= 90°, 直线与 x 轴垂直;
(2)k 与 P1、P2 的顺序无关, 即 y1,y2 和 x1,x2 在公式中的前后次

序可以同时交换, 但分斜角而直接由直线上两点的坐标求得;
(4) 当 y1=y2 时, 斜率 k = 0, 直线的倾斜角α=0°,直线与 x 法
轴平行或重合.
(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而 得到.
(四)例题:
例 1 已知 A(3, 2), B(-4, 1), C(0, -1), 求直线 AB, BC, CA 的
相关文档
最新文档