中职数学基础模块8.2.2直线的倾斜角与斜率教学设计教案人教版
人教版高中数学直线的倾斜角和斜率教案

人教版高中数学直线的倾斜角和斜率教案一、教学目标1. 理解直线的倾斜角的概念,能够求直线的倾斜角。
2. 掌握直线的斜率计算公式,能够计算直线的斜率。
3. 理解倾斜角和斜率之间的关系,能够运用关系解决实际问题。
二、教学重点与难点1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,倾斜角与斜率之间的关系。
2. 教学难点:倾斜角与斜率之间的转换,运用关系解决实际问题。
三、教学过程1. 导入:通过生活中的实例,如登山绳的倾斜角度,引出直线的倾斜角的概念。
2. 新课导入:介绍直线的倾斜角和斜率的定义,讲解直线的倾斜角和斜率的概念。
3. 实例讲解:通过具体例题,讲解直线的斜率计算公式,引导学生理解并掌握公式。
4. 练习巩固:布置练习题,让学生运用所学知识计算直线的斜率,巩固所学内容。
5. 知识拓展:引导学生思考倾斜角和斜率之间的关系,讲解二者之间的关系。
6. 课堂小结:对本节课的内容进行总结,强调直线的倾斜角和斜率的概念及计算方法。
四、作业布置1. 计算下列直线的斜率:(1)直线y=2x+1;(2)直线x=3。
2. 思考题:(1)直线的倾斜角和斜率之间的关系是什么?(2)如何运用直线的倾斜角和斜率解决实际问题?五、教学反思本节课通过具体实例引入直线的倾斜角的概念,让学生理解并掌握直线的斜率计算公式,通过练习题巩固所学内容。
在教学过程中,注意引导学生思考倾斜角和斜率之间的关系,培养学生的思维能力。
在作业布置上,既有计算题,又有思考题,让学生在巩固知识的能够运用所学知识解决实际问题。
总体来说,本节课达到了预期的教学目标。
六、教学策略1. 运用数形结合的方法,通过图形展示直线的倾斜角和斜率,帮助学生直观理解概念。
2. 采用“问题驱动”的教学模式,引导学生主动探究直线的倾斜角和斜率之间的关系。
3. 利用实际生活中的实例,让学生体验数学与生活的紧密联系,提高学习兴趣。
4. 设计层次化、多样化的练习题,满足不同学生的学习需求,提高学生的实践能力。
直线的倾斜角和斜率教学设计

直线的倾斜角和斜率教学设计教学设计:直线的倾斜角和斜率一、教学目标:1.知识目标:理解直线的倾斜角和斜率的概念,能够计算直线的斜率。
2.能力目标:能够运用直线的倾斜角和斜率解决实际问题。
3.情感目标:培养学生对数学的兴趣和积极参与数学学习的态度。
二、教学内容:1.直线的倾斜角和斜率的概念介绍。
2.直线的斜率的计算方法。
3.直线的倾斜角和斜率在实际问题中的应用。
三、教学过程:1.导入新知识(5分钟)让学生观察一些直线的图片,引导学生思考直线的特征和性质。
然后提出问题:“如何刻画直线的倾斜程度?”进一步引导学生思考斜率的概念。
2.概念讲解(10分钟)介绍直线的倾斜角和斜率的概念,并进行示例说明。
通过几个具体图例,让学生理解倾斜角和斜率的计算方法。
3.斜率计算练习(15分钟)在黑板上给出几组直线的坐标,让学生自行计算斜率。
然后互相交流答案,老师给予必要的指导和讲解。
4.斜率的性质探究(10分钟)在黑板上给出不同的两条直线,让学生分别计算斜率并进行比较,引导学生发现两条平行线的斜率相等,两条垂直线的斜率的乘积为-15.应用实例探讨(20分钟)以实际问题为例,引导学生应用倾斜角和斜率的概念计算问题。
例如,计算两个点之间的坡度、判断两个线段的交叉情况等。
6.巩固练习(15分钟)提供一些练习题,要求学生计算直线的斜率,并在给出的坐标系中绘制这些直线。
让学生将所学知识应用到实际问题中,巩固对倾斜角和斜率的理解和计算能力。
7.拓展应用(15分钟)让学生从生活实际中寻找更多的与斜率相关的问题,并用倾斜角和斜率的概念解决这些问题。
鼓励学生讨论和分享解决思路,加深对知识的理解和应用能力。
8.知识总结(5分钟)让学生自主总结直线的倾斜角和斜率的关系,并展示自己的总结。
教师进行点评和补充说明。
四、课堂训练:借助数字资源软件或练习册等材料,布置适量的作业题目,巩固学生对直线的倾斜角和斜率的理解和应用。
五、教学反思:本教学设计通过多种方式引导学生理解直线的倾斜角和斜率的概念,并加以实际问题的应用,既注重了学生的思维能力培养,又培养了学生对数学的兴趣和动手能力。
直线的倾斜角与斜率教案

直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。
3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。
二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。
2. 教学难点:直线的倾斜角与斜率之间的关系的运用。
三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。
2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。
3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。
四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。
2. 教学素材:几何图形、实际问题。
3. 教学工具:黑板、粉笔、直尺、圆规。
五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。
3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。
4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。
5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。
6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。
7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。
六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。
如有问题,要及时调整教学方法,提高教学质量。
七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。
八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。
直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。
2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。
2. 教学难点:直线的斜率与倾斜角的计算。
三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。
3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。
4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。
四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。
(1)直线y = 2x + 3;(2)直线x = 4。
五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。
在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。
布置适量的练习题,让学生巩固所学知识。
在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。
六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。
2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。
人教版高中数学直线的倾斜角和斜率教案

人教版高中数学直线的倾斜角和斜率教案第一章:直线的倾斜角教学目标:1. 理解直线的倾斜角的概念;2. 学会计算直线的倾斜角;3. 掌握直线的倾斜角与斜率的关系。
教学重点:直线的倾斜角的概念及计算方法。
教学难点:直线的倾斜角与斜率的关系。
教学准备:直角坐标系图。
教学过程:1. 引入:引导学生回顾初中阶段学过的直线的倾斜概念,提问:直线的倾斜角是什么?2. 讲解:讲解直线的倾斜角的定义,通过直角坐标系图,演示直线的倾斜角的计算方法。
3. 练习:让学生在直角坐标系图中找出给定直线的倾斜角,并计算。
第二章:斜率的定义教学目标:1. 理解斜率的定义;2. 学会计算直线的斜率;3. 掌握斜率的符号表示。
教学重点:斜率的定义及计算方法。
教学难点:斜率的符号表示。
教学准备:直角坐标系图。
教学过程:1. 引入:引导学生回顾初中阶段学过的斜率概念,提问:斜率是什么?2. 讲解:讲解斜率的定义,通过直角坐标系图,演示斜率的计算方法。
3. 练习:让学生在直角坐标系图中找出给定直线的斜率,并计算。
第三章:斜率的计算教学目标:1. 掌握斜率的计算方法;2. 学会使用斜率公式;3. 能够应用斜率公式解决实际问题。
教学重点:斜率的计算方法及应用。
教学难点:斜率公式的运用。
教学准备:直角坐标系图。
教学过程:1. 引入:让学生回顾上一章所学的内容,提问:如何计算直线的斜率?2. 讲解:讲解斜率的计算方法,通过直角坐标系图,演示斜率的计算过程。
3. 练习:让学生运用斜率公式计算给定直线的斜率,并解决实际问题。
第四章:直线的倾斜角与斜率的关系教学目标:1. 理解直线的倾斜角与斜率的关系;2. 学会利用直线的倾斜角求斜率;3. 能够利用斜率求直线的倾斜角。
教学重点:直线的倾斜角与斜率的关系。
教学难点:利用斜率求直线的倾斜角。
教学准备:直角坐标系图。
教学过程:1. 引入:让学生回顾前几章所学的内容,提问:直线的倾斜角与斜率有什么关系?2. 讲解:讲解直线的倾斜角与斜率的关系,通过直角坐标系图,演示如何利用直线的倾斜角求斜率,以及如何利用斜率求直线的倾斜角。
直线的倾斜角和斜率教学教案

直线的倾斜角和斜率一教学教案教学目标(1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.(3)理解公式的推导过程,掌握过两点的直线的斜率公式.(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(5)通过斜率概念的建立和斜率公式的推导,援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学建议1.教材分析(1)知识结构本节内容首先依据一次函数与其图像一一直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而完成了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分表达了解析几何的思想方法.(2)重点、难点分析①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及商量直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不简单接受.2.教法建议(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程也有三个阶段①在教学中首先是创设问题情境,然后通过商量明确用角来刻画直线的方向,如何定义这个角呢,学生在商量中逐渐明确倾斜角的概念.②本节的难点是对斜率概念的理解.学生认为倾斜角就可以刻画直线的方向,而且每一条直线的倾斜角是唯一确定的,而斜率却不这样.学生还会认为用弧度制表示倾斜角不是一样可以数量化吗.再有,为什么要用倾斜角的正切定义斜率,而不用正弦、余弦或余切哪要解决这些问题,就要求教师援助学生认识到在直线的方程中表达的不是直线的倾斜角,而是倾斜角的正切,即直线方程(一次函数的形式,下同)中X的系数恰好就是直线倾斜角的正切.为了便于学生更好的理解直线斜率的概念,可以借助几何画板设计:(1)α变化一直线变化一中的系数变化(同时注意的变化(2)中的系数变化一直线变化一Q变化(同时注意的变化〕.运用上述正反两种变化的动态演示充分揭示直线方程中系数与倾斜角正切的内在关系,这对援助学生理解斜率概念是极有好处的.③在进行过两点的斜率公式推导的教学中要注意与前后知识的联系,课前要对平面向量,三角函数等有关内容作肯定的复习打算.④在学习直线方程的概念时要通过举例清楚地指出两个条件,最好能用充要条件表达直线方程的概念,强化直线与相应方程的对应关系.为将来学习曲线方程做好打算.(2)本节内容在教学中宜采纳启发引导法和商量法,设计为启发、引导、探究、评价的教学模式.学生在积极思维的根底上,进行充分的商量、争辩、交流、和评价.倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式的建立,这三项教学任务都是在商量、交流、评价中完成的.在此过程中学生的思维和能力得到充分的开展.教师的任务是创设问题情境,引发争论,组织交流,参与评价.教学设计例如直线的倾斜角和斜率教学目标:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.(3)培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(4)援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点、难点:直线斜率的概念和公式教学用具:计算机教学方法:启发引导法,商量法教学过程:(一)直线方程的概念如图1,对于一次函数,和它的图像一一直线有下面关系:(1)有序数对(0,1)满足函数,则直线上就有一点A,它的坐标是(0,1).(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足.一般地,满足函数式的每一对,的值,都是直线上的点的坐标(,);反之,直线上每一点的坐标都满足函数式,因此,一次函数的图象是一条直线,它是以满足的每一对X,y的值为坐标的点构成的.从方程的角度看,函数也可以看作是二元一次方程,这样满足一次函数的每一对,的值“变成了〃二元一次方程的解,使方程和直线建立了联系.定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的全部点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.以上定义改用集合表述:,的二元一次方程的解为坐标的集合,记作.假设(1) (2),则.问:你能用充要条件表达吗?答:一条直线是一个方程的直线,或者说这个方程是这条直线的方程的充要条件是…….(问题1)请画出以下三个方程所表示的直线,并观察它们的异同.99过定点,方向不同.如何确定一条直线?两点确定一条直线.还有其他方法吗?或者说如果只给出一点,要确定这条直线还应增加什么条件?学生:思考、回忆、答复:这条直线的方向,或者说倾斜程度.(导入)今天我们就共同来研究如何刻画直线的方向.(问题2)在坐标系中的一条直线,我们用怎样的角来刻画直线的方向呢?商量之前我们可以设想这个角应该是怎样的呢?它不仅能解决我们的问题,同时还应该是简单的、自然的.学生:展开商量.学生商量过程中会有错误和不严谨之处,教师注意引导.通过商量认为:应选择α角来刻画直线的方向.依据三角函数的知识,说明一个方向可以有无穷多个角,这里只需一个角即可(开始时可能有学生认为有四个角或两个角),当然用最小的正角.从而得到直线倾斜角的概念.(板书)定义:一条直线1向上的方向与轴的正方向所成的最小正角叫做直线的倾斜角.(教师强调三点:(1)直线向上的方向,(2)轴的正方向,(3)最小正角.)特别地,当与轴平行或重合时,规定倾斜角为0。
直线的倾斜角与斜率教案

直线的倾斜角与斜率教案直线的倾斜角与斜率教案一、教学目标:1. 知识目标:了解直线的倾斜角和斜率的概念;2. 能力目标:能够计算直线的倾斜角和斜率;3. 情感目标:培养学生对数学知识的兴趣和自信心。
二、教学重难点:1. 重点:直线的倾斜角和斜率的概念;2. 难点:直线的斜率的计算方式。
三、教学过程:1. 导入(5分钟):通过给学生出示两条不同斜率的直线,让学生观察并思考,引导学生讨论直线的倾斜角和斜率的关系,激发学生学习的兴趣。
2. 了解直线的倾斜角和斜率(10分钟):通过简单直观的图形,引导学生理解直线的倾斜角和斜率的概念。
并且给出直线的斜率公式:k = tanθ,其中k为直线的斜率,θ为直线的倾斜角。
3. 计算直线的倾斜角和斜率(25分钟):(1)通过给出两个点的坐标,引导学生计算直线的斜率的计算方法:k = (y2 - y1) / (x2 - x1);(2)通过给出直线方程,引导学生计算直线的倾斜角的计算方法:θ = arctank。
4. 练习与巩固(15分钟):让学生进行相关的计算练习,巩固和加深对直线的倾斜角和斜率的理解。
通过多种情况的练习,让学生熟练掌握计算直线斜率和倾斜角的方法。
5. 拓展(10分钟):通过给学生展示各种曲线的斜率和倾斜角的计算方法,引导学生思考如何计算曲线的斜率和倾斜角。
通过观察各种曲线的特点,引导学生发现曲线斜率和倾斜角的规律。
6. 总结(5分钟):对刚才的学习内容进行总结,帮助学生回顾和巩固所学知识。
引导学生思考直线斜率和倾斜角的重要性以及实际应用。
四、教学反思:本节课通过以具体的图形为例,引导学生理解直线倾斜角和斜率的概念,通过具体的计算方法,让学生能够实际计算直线的斜率和倾斜角。
同时,通过拓展的内容引导学生思考更加复杂形状的曲线的斜率和倾斜角的计算方法,培养学生的综合应用能力。
针对学生的不同水平,提供了多种练习,巩固学生对知识的掌握,创设了有利于学生自主思考和交流的氛围。
《直线的倾斜角和斜率》教学设计和教案

1.教师对本节课进行总结,强调直线的倾斜角和斜率的重要性。
2.学生针对本节课的内容进行复习,理清思路。
五、教学资源
1.图像展示:直线的示意图;
2.课件:直线倾斜角和斜率的计算方法;
3.习题:直线倾斜角和斜率的练习题。
六、教学评价
1.课堂练习评价:通过学生的课堂练习来评价他们对直线倾斜角和斜率的掌握情况;
《直线的倾斜角和斜率》教学设计和教案
教学设计:
一、教学目标
1.通过学习,使学生了解直线的倾斜角和斜率的概念;
2.能够掌握直线的倾斜角和斜率的计算方法;
3.能够应用斜率和倾斜角的概念解决实际问题;
4.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容
直线的倾斜角和斜率。
三、教学重难点
直线的倾斜角和斜率的计算方法,以及应用。
Step 4 斜率与倾斜角的关系: (10分钟)
1.教师引导学生思考斜率和倾斜角的关系。
2.教师通过示例,讲解斜率和倾斜角的关系。
3.学生进行课堂练习,巩固所学内容。
4.教师对学生练习结果进行讲解和评价。
Step 5 应用实际问题: (15分钟)
1.教师提供一些实际问题,引导学生利用斜率和倾斜角解决问题。
1.教师引导学生思考斜率和倾斜角的关系。
2.教师通过示例,讲解斜率和倾斜角的关系。
3.学生进行课堂练习,巩固所学内容。
4.教师对学生练习结果进行讲解和评价。
步骤五:应用实际问题(15分钟)
1.教师提供一些实际问题,引导学生利用斜率和倾斜角解决问题。
2.学生进行课堂讨论,解决实际问题。
3.教师对学生解决问题的方法和结果进行讲解和评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做(2),教师巡视.
(3)因为 P1,P2 的横坐标相同,所 以直线 P1P2 的斜率不存在.
练习二 判断直线 P1P2 的斜率是否存在.若存 在,求出它的值: (1)P1(1,-1),P2(-3,2); (2)P1(3,4),P2(3,2).
学生练习,教师巡视.
斜率的坐标公式
率的坐标公式.
系.
一般地,若 x1≠x2,过点 P(x1,y1)和 P2(x2,y2)的直线斜率为
教师强调 x1≠x2.
k=yx22--yx11.
例 判 断 直 线 P1P2 的 斜 率 是 否 存
教师引导学生解答(1)(3),
斜率的坐
在.若存在,求出它的值:
进一步强调公式中 x1≠x2 这一条 标公式.
使 用 教 材 的 构 想
中职中专数学教学设计教案
教师行为
学生行为
设计意图
☆补充设计☆
导入; 1.由一点能确定一条直线吗? 2.观察并回答问题:
y A
教师提出问题,学生讨论回
引入本节
答.
课题.
由直观图 形引入问题,激 发学生学习兴
B
C
1
-1 O 1 x
师:从图中可以看出,直线 趣. AC 比直线 AB 更陡一些.在数学 中,我们用倾斜角和斜率来衡量
在)也相应确 定.
在吗?
教师根据学生回答情况给予
(2)当 y1=y2 时,直线 P1P2 与 y 轴 点评. 什么关系?直线的倾斜角是多少?斜率存
通过探究 问题,使学生了
在吗?是多少? (3)当 x1≠x2,y1≠y2 时,直线的倾斜
角存在吗?斜率存在吗?
解 P1,P2 的坐 标与直线 P1P2 学生在回答(3)后,教师问: 的斜率以及倾 此时斜率怎么求呢?从而引出斜 斜角之间的关
在图中,直线 AB,AC 都经过哪一点? 直线相对于 x 轴的倾斜程度. 它们相对于 x 轴的倾斜程度相同吗?
新课:
1.直线倾斜角的定义
教师对定义进行三方面的诠
明确直线
一般地,平面直所成的最小正角叫 做这条直线的倾斜角.
y
(1)直线向上的方向; (2)x 轴的正方向; (3)最小的正角.
(1)P1(3,4),P2(-2,4);
件.
(2)P1(-2,0),P2 (-5,3);
(3)P1(3,8),P2 (3,5).
解 (1)因为 P1,P2 的横坐标不同,
公式应用,
所以直线 P1P2 的斜率存在,而且斜率为
强化对公式的
k=-4-2-43=0;
掌握.
(2)因为 P1,P2 的横坐标不同,所 以直线 P1P2 的斜率存在,而且斜率为
中职中专数学教学设计教案
强化训练.
小结 1.直线的倾斜角定义和范围. 2.直线的斜率:
k=tan (≠90)
=y2-y1 x2-x1
(x1≠x2).
教师引导学生共同回顾本节
总结本节
所学的知识.
内容.
中职中专数学教学设计教案
1.直线的倾斜角定义和范围. 2.直线的斜率: k=tan (≠90)
板书设计
中职中专数学教学设计教案
课题
8.2.2 直线的倾斜角与斜率 课型 新授
第几 课时
1
课
时
1. 掌握直线的倾斜角的概念,知道直线的倾斜角的范围.
教
学
2. 理解直线的斜率,掌握过两点的直线的斜率公式,了解倾斜角与斜率之间的关系.
目
标
3. 让学生从学习中体会到用代数方法解决几何问题的优点,能够从不同角度去分析问题, 体会代数与几何结合的数学魅力.
教师强调倾斜角是 90的直 线的斜率不存在.应当使学生明 确所有的直线都有倾斜角,但与 x 轴垂直的直线的斜率不存在.
倾斜角与 斜率的关系.
练习一
已知直线的倾斜角,求对应的斜率 k:
学生练习,教师巡视点评.
(1)=0; (2)=30;
教师指明,当倾斜角是锐角
(3)=135;(4)=120.
时,斜率 k 为正值;当倾斜角是
l
学生结合图形理解倾斜角的
概念.
O
x
特别地,当直线与 y 轴垂直时,规定
教师强调与 y 轴垂直的直线
这条直线的倾斜角为 0.
(包括 x 轴)的倾斜角.
2.倾斜角的范围 0≤<180.
3.直线斜率的定义 倾斜角不是 90的直线,它的倾斜角的 正切值叫做这条直线的斜率,通常用 k 表 示,即
k=tan .
合作探究,使学
(3)如果直线的倾斜角不等于 90, 直线的斜率也能确定吗?
生明确由两点 确定一条直线,
相应的倾斜角
探究二
和斜率(如果存
设 P1(x1,y1)和 P2(x2,y2): (1)当 x1=x2 时,直线 P1P2 与 x 轴 什么关系?直线的倾斜角是多少?斜率存
教师提出问题,学生结合图 形回答.
(三维)
教学 重点 与 难点
教学重点:
直线的倾斜角和斜率.
教学难点:
直线的斜率
教学 方法 与 手段
这节课主要采用讲练结合的教学法.本节首先通过观察同一坐标系中的两条直线引入了直 线倾斜角的定义,在明确了倾斜角范围后,定义了直线的斜率,最后讨论了直线斜率与直线上 两个不同点坐标之间的关系.直线的倾斜角和斜率是反映直线相对于 x 轴正方向的倾斜程度的, 是研究两条直线位置关系的重要依据,要引导学生正确理解概念.
钝角时,斜率 k 为负值.
探究一
(1)由不同的两点 P1(x1,y1)和 P2(x2, y2)能否确定一条直线?
教师投影探究问题,学生分
使学生通 过练习感悟倾 斜角的变化对 斜率的影响.
中职中专数学教学设计教案
(2)由 P1 和 P2 所确定的直线的倾斜 组讨论并尝试回答,教师点评.
通过小组
角也能确定吗?
例题
=y2-y1 x2-x1
(x1≠x2).
教材 P76 练习 A 组. 教材 P76 练习 B 组第 1 题(选做)
作业设计
教学后记
☆补充设计☆