大学有机化学-烯烃和炔烃
烯烃和炔烃

第五节 烯烃和炔烃的结构
一、烯烃的结构——sp2杂化
键: 284 kJ/mol
分子轨道理论
二、炔烃的结构——sp杂化
120pm
H—C≡C—H
乙烷、乙烯和乙炔分子中的键长、键角
名称
第一节 烯烃和炔烃的分类和命名
一、烯烃的分类和命名
单烯烃
➢双键的数目
二烯烃
多烯烃
链烯烃
➢分子骨架
环烯烃
端烯烃 内烯烃
(一)单烯烃的命名 烯烃分子中去掉一个氢原后剩下的一价基团叫做烯基。
乙烯基
ethenyl or vinyl
1-丙烯基
1-propenyl
2-丙烯基 或烯丙基
allyl
异丙烯基
isopropenyl
(二)醇脱水 醇在催化剂存在下加热,分子内失去一分子的水形成烯烃。
(三)邻二卤代烷脱卤素 邻二卤代烷在金属锌或镁作用下,同时脱去两个卤原子生成烯烃。
(四)卤代烷脱卤化氢 卤代烃在碱性试剂作用下失去一分子HX,生成烯烃。
二、炔烃的制备
乙炔是工业上最重要的炔烃,自然界中没有乙炔存在,通常用电石水 解法制备,近年来用轻油和重油在适当的条件下裂解得到乙炔和乙烯。
二、炔烃的分类和命名
➢三键的数目
单炔烃
多炔烃
炔烃的命名原则与烯烃类似,只需将“烯”字改为“炔”。炔
烃的英文名称是将烷烃后缀“ane”改为“yne”,例如:
三、烯炔的命名
分子中同时含有双键和三键的化合物,称为烯炔,英文名称词尾 用“-en-yne”表示。命名时,选择最长的连续碳链作为主链。
若双键和三键都在主链上,编号时要从靠近不饱和键的一端开始, 书写时先烯后炔。若两个不饱和键的编号相同,则应使双键具有最小 位次。例如:
有机化学--第三章 不饱和烃:烯烃和炔烃

碳碳双键不能绕键轴自由旋转。因此,当两个双键碳 原子各连有两个不同的原子或基团时,可能产生两种不同 的空间排列方式。
一些烯烃的物理性质
构型:(I)和(Ⅱ)的分子式相同,构造亦相同,但分子中的原子在空间 排列不同。分子中原子在空间的排列形式称为构型。 构型异构体:(I)和(Ⅱ)是由于构型不同而产生的异构体,称为构型异 构体(configurational isomers)。构型异构体具有不同的物理性质。
3.1.1 碳原子轨道的sp2杂化
H
H
CC
H
Hale Waihona Puke H1/3s +2/3p
3.1.2 碳碳双键的组成
在乙烯中,成键的两碳原子各以一个sp2杂化轨道彼 此交盖形成一个C—C σ键,并各以两个sp2杂化轨道分 别与两个氢原子的1s轨道形成两个C—H σ键,这样形成 的五个σ键其对称轴都在同一平面内。
由于每个碳原子上余下的p轨道的对称轴垂直于同一 平面,且彼此平行,这样两个p轨道就从侧面相互平行交 盖成键,组成新的轨道,称为π轨道。处于π轨道的电子称 为π电子,这样构成的共价键称为π键。
含一个碳碳三键者称为炔烃(alkynes),通式为CnH2n-2, 碳碳三键(一C≡C一)是炔烃的官能团。分子中既含有碳碳 双键,又含有碳碳三键者称为烯炔。
3.1 烯烃和炔烃的结构
碳碳双键是由两对共用电子构成,通常用两条短线表 示:C=C。碳碳三键由三对共用电子构成,通常用三条 短线表示:C≡C。但实验事实表明,它们都不是由两个 或三个σ键加合而成:
与烷基相似,一个不饱和烃从形式上去掉两个氢原 子也构成亚基。最常见的不饱和亚基有—CH=CH—, 称为1,2-亚乙烯基。
有机化学基础知识点整理烯烃聚合和炔烃聚合反应

有机化学基础知识点整理烯烃聚合和炔烃聚合反应有机化学基础知识点整理:烯烃聚合和炔烃聚合反应在有机化学领域中,聚合反应是一类重要的化学反应。
聚合反应是指通过共轭烯烃或炔烃的化学反应,使得分子间的多个单体(单元)结合形成高聚物(聚合物)。
烯烃聚合和炔烃聚合是两种常见的聚合反应类型。
本文将对这两种聚合反应进行细致的整理和介绍。
一、烯烃聚合反应烯烃聚合反应是指将共轭烯烃单体通过反应聚合形成高聚物的过程。
烯烃是一类具有双键的碳氢化合物,其双键上的π电子能轻易地与其他单体反应,形成新的共轭体系。
烯烃聚合反应可分为两类:加聚和环聚。
1. 加聚反应加聚是指多个烯烃单体中的双键相互加成形成碳碳单键,从而使得分子量增加,形成高分子。
加聚反应一般需要催化剂的参与,促进反应的进行。
常见的催化剂有Ziegler-Natta催化剂和茂金属催化剂等。
例如,乙烯(CH2=CH2)的加聚反应可以得到聚乙烯([-CH2-CH2-]n)。
这是一种常见的聚合反应,聚乙烯被广泛应用于塑料制品的生产中。
2. 环聚反应环聚是指烯烃分子中的双键内部相互加成,形成环状的共轭体系。
环聚反应一般需要高温和高压下进行。
环聚反应的产物是环状聚合物,具有特殊的性质和应用。
例如,环己烯(C6H10)的环聚反应可以得到聚环己烯([-C6H8-]n)。
聚环己烯具有柔韧性和高剪切强度,广泛用于橡胶制品的生产。
二、炔烃聚合反应炔烃聚合反应是指将炔烃单体通过反应聚合形成高聚物的过程。
炔烃是一类具有三键的碳氢化合物,其三键上的π电子能与其他单体反应,形成新的共轭体系。
炔烃聚合反应也可分为加聚和环聚两类。
1. 加聚反应加聚是指多个炔烃单体中的三键相互加成形成碳碳单键,从而使得分子量增加,形成高分子。
炔烃加聚反应一般需要催化剂的参与,以促进反应的进行。
例如,乙炔(C2H2)的加聚反应可以得到聚乙炔([-C2H2-]n)。
聚乙炔是一种黑色金属光泽的固体,具有导电性和高机械强度,被广泛应用于导电材料和纤维材料的制备。
烯烃和炔烃的命名和反应特点

烯烃和炔烃的命名和反应特点烯烃和炔烃是有机化合物的两个重要类别,它们具有不同的分子结构和反应特点。
在本文中,我们将讨论烯烃和炔烃的命名规则,并探讨它们的一些常见反应特点。
一、烯烃的命名和反应特点烯烃是由含有一个或多个碳碳双键的碳氢化合物。
根据双键的数量,烯烃可以分为单烯、二烯和多烯。
在命名烯烃时,我们需要考虑碳链的长度以及双键的位置和数目。
对于单烯来说,我们首先需要确定主链的长度,然后给出主链上双键所在的位置。
在给出双键位置的时候,我们使用数字来表示,将双键所在的碳原子数目写在主链名称前面,并用破折号将其与主链名称分开。
例如,1-丁烯表示主链长度为四个碳原子,第一个碳原子上含有一个双键。
对于二烯来说,我们需要确定两个双键所在的碳原子的位置,并用数字分别表示。
例如,2,4-戊二烯表示主链长度为五个碳原子,第二和第四个碳原子上含有双键。
多烯则需要对每个双键给出它们所在的碳原子的位置。
例如,1,4,7-庚三烯表示主链长度为八个碳原子,第一个、第四和第七个碳原子上含有双键。
烯烃具有较强的化学活性,常见的反应包括加成、氧化和聚合等。
其中,加成反应是最为重要的一类反应。
在加成反应中,烯烃可以与其他化合物发生反应,双键上的π电子可以与亲电试剂或自由基试剂发生作用。
例如,1-丁烯与溴水反应后生成1,2-二溴丁烷。
二、炔烃的命名和反应特点炔烃是由含有一个或多个碳碳三键的碳氢化合物。
根据三键的数量,炔烃可以分为单炔、二炔和多炔。
与烯烃类似,在命名炔烃时,我们需要考虑碳链的长度以及三键的位置和数目。
对于单炔来说,我们首先需要确定主链的长度,然后给出主链上三键所在的位置。
在给出三键位置时,我们使用数字来表示,将三键所在的碳原子数目写在主链名称前面,并用破折号将其与主链名称分开。
例如,1-丙炔表示主链长度为三个碳原子,第一个碳原子上含有一个三键。
对于二炔和多炔来说,我们需要对每个三键给出它们所在的碳原子的位置。
例如,1,4-戊二炔表示主链长度为五个碳原子,第一个和第四个碳原子上含有三键。
烯烃与炔烃的合成与性质

烯烃与炔烃的合成与性质烯烃与炔烃是有机化学中常见的两类碳氢化合物,它们在化学反应中具有独特的合成途径和性质表现。
本文将对烯烃与炔烃的合成方法和性质进行探讨。
一、烯烃的合成与性质烯烃是指分子中两个相邻的碳原子之间存在双键的碳氢化合物。
烯烃的合成方法多种多样,包括烯烃的脱氢反应、卤代烷基化合物消去反应以及烯烃的重排等。
以下将分别介绍这些方法:1.1 烯烃的脱氢反应烯烃的脱氢反应是通过在适当的条件下去除烃分子中的氢原子而合成烯烃。
一种常见的脱氢反应是烷烃的脱氢反应,它可以通过加热烷烃和催化剂的作用而将烷烃转化为相应的烯烃。
例如,丙烷经过脱氢反应可合成丙烯:CH3-CH2-CH3 → CH2=CH-CH31.2 烯烃的卤代烷基化合物消去反应烯烃的卤代烷基化合物消去反应是通过用碱金属或溴在碱中的作用而合成烯烃。
这种反应是通过将卤代烷基化合物中的卤素原子取代为碱金属或溴离子,从而消去卤素原子,并使烷基团脱离分子结构,生成烯烃。
例如,溴乙烷可以通过和氢氧化钠反应生成乙烯:CH3-CH2-Br + NaOH → CH2=CH2 + NaBr + H2O1.3 烯烃的重排反应烯烃的重排反应是由于分子内部原子的重新排列而形成烯烃的化学反应。
这种重排反应常常能够产生简单烯烃和稳定的烯烃之间的异构体。
例如,对丁烯进行重排反应可以得到丙烯和正丁烯的异构体。
烯烃的性质也是有机化学研究中的重要方面。
烯烃具有以下几个重要的性质:2.1 烯烃的化学反应性烯烃的化学反应性主要表现在其双键上,双键可以进行加成反应、氧化反应、还原反应和聚合反应等。
在加成反应中,烯烃的双键会与其他化合物中的亲电性物质发生反应,形成加成产物。
氧化反应中,烯烃的双键可以与氧气或其他氧化剂发生反应,形成氧化产物。
还原反应中,烯烃的双键可以与还原剂发生反应,将双键还原为单键。
聚合反应中,烯烃的双键可以通过开环反应与其他烯烃或烯烃类化合物反应,形成高分子化合物。
有机化学3--- 烯烃和炔烃

3.4 烯烃和炔烃的化学性质
◇ 反应机理和烯烃与卤素的加成相似: 第一步:
第二步:
H X 慢 C C H X
C C
H
X
快
C C
H X
不同的是: 第一步进攻的是H+, 且不生成鎓离子; 第二步X- 的进攻也不一定是反式加成。 ◇ 烯、炔与HX等的加成反应以用于工业生产:
CH2 CH2 HCl AlCl3 130~250℃ CH3CH2Cl
C
Br
速度控制步骤
溴鎓离子
C Br
C
Br
快 Br
Br C C
反式加成产物
3.4 烯烃和炔烃的化学性质
◇ 反应经历溴鎓离子、反式加成。
Br
H C CH 3 C CH3 H Br 2 H3 C H C
+ -
Br H CH 3 H Br
-
H 3C C C
H
C Br
CH 3 CH 3 H C Br C
Br
H2
H
H
C2 H4
H
H
CH2=CH2
H-CH2-CH2-H
3.4 烯烃和炔烃的化学性质
R-C C-R' H2 Pd
R C C
R'
H2 Pd
H
H
RCH2CH2R'
常用催化剂:Pt , Pd , Ni,一般难控制在烯烃阶段。 林德拉(Lindlar)催化剂,一种部分毒化的Pd催化剂,能降 低活性,选择性氢化炔键而不影响烯键,且得顺式烯烃。
同碳数烯烃顺反异构体,因几何形状(结构)不同,物理 性质不同。
CH3 C
H
CH3
H C C
H
烯烃与炔烃的知识点总结图
烯烃与炔烃的知识点总结图一、烯烃与炔烃的化学结构1. 烯烃的化学结构烯烃是一类含有双键结构的碳氢化合物,其通式为CnH2n。
其中的双键结构可以是一个或多个,由于双键结构的存在,烯烃具有较高的反应活性。
2. 炔烃的化学结构炔烃是一类含有三键结构的碳氢化合物,其通式为CnH2n-2。
炔烃中的三键结构使得其具有比烯烃更高的反应活性和独特的化学性质。
二、烯烃与炔烃的物理性质1. 烯烃的物理性质烯烃具有较低的沸点和熔点,且大多数烯烃为无色透明的液态化合物,但也存在一部分为气态或固态的烯烃。
由于双键结构的存在,烯烃具有一定的极性,导致其在水中的溶解性较好。
2. 炔烃的物理性质炔烃同样具有较低的沸点和熔点,但由于三键结构的存在,炔烃通常比相应的烯烃具有更高的反应活性和化学稳定性。
炔烃中的三键结构也导致其分子极性较大,因此炔烃在水中的溶解度通常较烯烃低一些。
三、烯烃与炔烃的化学性质1. 烯烃的化学性质烯烃通过双键上的加成反应、环化反应、氧化反应等,可以产生一系列的衍生物。
烯烃中较活泼的烯基碳原子也容易发生亲电性或自由基反应,在各种化合物的合成中具有广泛的应用。
2. 炔烃的化学性质炔烃由于其较高的反应活性,可以很容易地进行加成、氧化、取代、聚合等一系列有机反应,因此在化工生产和有机合成领域得到了广泛的应用。
炔烃分子中的炔基碳原子也常参与电子云密度的调控,从而影响相关的化学反应。
四、烯烃与炔烃的用途1. 烯烃的用途烯烃广泛应用于合成橡胶、合成树脂、合成塑料等领域,也作为有机合成中的重要中间体,在医药、农药、染料等行业得到了广泛应用。
2. 炔烃的用途炔烃广泛应用于乙炔气焰的制取、合成材料的生产、有机合成反应的催化剂等方面,在化工工业和有机化学领域发挥了重要的作用。
通过以上对烯烃与炔烃的知识点进行总结,我们可以得出如下几点结论:1. 烯烃与炔烃是重要的有机化合物,它们都具有较高的反应活性和广泛的应用前景。
2. 烯烃通过双键结构的存在,具有较好的极性和反应活性,广泛用于橡胶、树脂、塑料等大宗化工产品的生产。
大学有机化学第三章 烯烃和炔烃
CH3 → CH=CH2 + HX
CH3CH—CH3 X
马代规则是 不对称试剂与双键发生亲电性加成时, 试剂中正电性部分主要加到能形成较稳定正碳离子 的那个双键碳原子上。 + CH3CHCH3 δ+ δ-
CH3—CH=CH2 + H+
HX分子中的氢以H+ 质子形式发生反应,因此称为亲电试剂
CH3CH2CH2
CH3
顺反异构命名与Z .E命名规则不相同,不能混为一 谈,两者之间没有固定的关系
例如:
Cl Cl C=C CH3 H (Z)-1 , 2-二氯丙烯 顺-1 , 2-二氯丙烯 H C H ‖ C H H 大 Br
Cl
C=C
CH3
Cl 大
Cl C COOH ‖ C Br Cl
(E)-1 , 2-二氯-1-溴丙烯 顺--1 , 2-二氯-1-溴丙烯 CH3 C H ‖ C H H
次产物
因此 1.1.1-三氟-3-氯丙烷是主要产物
2. 加硫酸
R-CH=CH2 + HOSO2OH H3PO4 300℃ 7Mpa R-CHCH3 H2O RCH-CH3 OSO2OH OH (间接水化法制备醇) CH3CH2OH
CH2=CH2 + H2O
3. 加卤素
CH2 = CH2 + X2
CH2 = CH2 + Br2/CCl4 Br2/H2O CH2—CH2 X X CH2-CH2 Br Br
如遇到含多个双键化合物而主链编号有选择时,则编号应从 顺型双键的一端开始 4 1 如 3 2 CH3 H 6 5 CH2 C=C 7 C=C H H H CH3 顺· 反-2.5-庚二烯
四、物理性质 五. 化学性质
烯烃与炔烃的知识点总结
烯烃与炔烃的知识点总结一、结构1. 烯烃的结构烯烃是一类碳氢化合物,其分子中含有碳-碳双键,通式为CnH2n。
烯烃的分子式可以表示为CnH2n,其中n为分子中碳原子的个数。
烯烃的普遍结构式为RCH=CHR',其中R和R'分别是烃基。
烯烃分为直链烯烃和支链烯烃两种,其结构式分别为RCH=CHR'和RR'C=CHR'。
直链烯烃和支链烯烃的碳原子排列不同,因而其物理性质和化学性质也有所区别。
2. 炔烃的结构炔烃是一类碳氢化合物,其分子中含有碳-碳三键,通式为CnH2n-2。
炔烃的分子式可以表示为CnH2n-2,其中n为分子中碳原子的个数。
炔烃的分子结构式为RC≡CR',其中R 和R'分别是烃基。
炔烃分为直链炔烃和支链炔烃两种,其结构式分别为RC≡CR'和RRC≡CR'。
和烯烃一样,直链炔烃和支链炔烃的物理性质和化学性质也有所区别。
二、物理性质1. 烯烃的物理性质烯烃通常是无色、有味或挥发性液体。
烯烃的沸点较烷烃高,密度小于水。
烯烃在一定温度下能燃烧,产生碳 dioxide、水和热。
烯烃对氧化质子有较高的活性,容易与氢气或卤素发生加成反应。
由于其含有双键,烯烃通常会发生立体异构现象。
此外,烯烃还可以与酸、醇、醛或酮等发生加成反应,生成醚、醇、胺等不同的功能团。
2. 炔烃的物理性质炔烃通常是无色、易燃的气体或液体,密度小于水。
炔烃的火焰温度较高,燃烧后会产生大量的光和热。
炔烃容易与氢气和卤素发生加成反应,生成炔烃的立体异构。
由于其含有三键,炔烃在化学反应中具有较高的活性,可以与酸、醇、醛或酮发生加成反应,生成多种功能团。
三、化学性质1. 烯烃的化学性质烯烃是一类具有较高反应活性的有机化合物。
烯烃在加成反应中容易发生立体异构,生成不同的加成产物。
烯烃可以在氧化剂的作用下发生氧化反应,生成醇或醛。
此外,烯烃还可以与卤素发生卤代反应,生成卤代烃。
第2章 烯烃和炔烃
HX + +HX + HX CH CH3 3 CH3
X XX CH CH3 3 CH3
(ⅰ)诱导效应对马氏规则的解释
在多原子分子中,当两个直接相连的原子的电负性不同 时,两原子间的共用电子对偏向于电负性较大的原子,使之带 有部分负电荷(用δ-),另一原子带有部分正电荷(用δ+ )。 沿着分子链诱导传递,使分子中成键电子云向某一方向偏移, 这种效应称为诱导效应,用符号I表示。 氯丙烷分子中: CH3
(2)亲电加成反应
亲电加成试剂:卤素(Br2, Cl2)、卤化氢、硫酸及水等。
①与卤素加成
CH3
CH=CH2 + Br2
CCl4
CH3 _ CH Br
CH2 Br
——实验室中,常利用这个反应来检验烯烃的存在 卤素的活性顺序:氟>氯>溴>碘
例:乙烯和溴的加成反应 实验事实1:当把干燥的乙烯通入溴的无水四氯化碳溶液中 (置于玻璃容器中)时,不易发生反应,若置于涂有 石蜡的玻璃容器中时,则更难反应。但当加入一点水 时,就容易发生反应,溴水的颜色褪去。 原因:乙烯双键受极性物质的影响,使π电子云发生极化; Br2在接近双键时,在π电子的影响下也发会生极化:
CH3
CH2CH3 C=C H H
顺- 2 -戊烯 (Z)- 2 -戊烯
CH3 CH3 C=C CH2CH3 H
顺-3-甲基-2 -戊烯 (E)-3-甲基-2 -戊烯
三、物理性质
1.在常温常压下,2—4个碳原子的烯烃为气体,5—18个碳 原子的为液体,高级烯烃为固体。 2.熔点、沸点和相对密度都随分子量的增加而升高。
第一步,由于π电子的排斥,使Br—Br键发生极化, 离π键近的溴原子带部分正电荷(Brδ+) ,另一溴原子
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 烯烃 (二、烯烃的异构)
1. 产生顺反异构的条件
(1) 分子中存在着限制碳原子自由 旋转的因素, 如双键或环(如脂环);
(2) 不能自由旋转的原子上各连接 2个不相同的原子或基团。
a C b C
d e
只有a≠b 和 d ≠ e 时,才有顺反 异构。任何一个双键碳上若连接 两个相同的原子或基团, 则无顺 反异构。
(CH3)2C=CH2 + HCl
(CH3)2CCl—CH3
(100%)
CH3CH2CH=CH2 + HBr
CH3CH2-CHBr-CH3 (80%)
CH2=CH(CH2)3CH3 + HI
CH3-CH(CH2)3CH3 (95%) I
Markovnikov规则的理论解释:
分子中原子相互影响的实质,一般可用电子效 应(electric effect)和立体效应(stereo effect)来描述。 电子效应——指分子中电子密度分布的改变对性质 产生的影响。它又可分为诱导效应 (Inductive effect) 和 共轭效应 (Conjugative effect)两类。 立体效应——指分子的空间结构对性质所产生的影 响。
2. 加卤化氢 (HX)
C C + HX
X C C H
烯烃与卤化氢同样发生分步的、亲电性加成反应 不同的是: (1) 第一步进攻的是H+ ; (2) 不生成鎓离子,而是生成碳正离子中间体; (3) 第二步X-的进攻也不一定是反式加成。
X C C +H 慢 C C H
X
快
C
C H
HX对烯烃加成的相对活性:HI > HBr > HCl (与极化度有关) 不对称烯烃 (如丙烯 )与不对称试剂 (卤化氢 ) 发 生加成反应时:
第三章 烯烃和炔烃
第一节 烯烃 (三、烯烃的性质)
1. 加卤素
C C + X2 C X C X
邻二卤代烃 卤素的活泼性次序:F2>Cl2>Br2>>I2 (不反应) Note: 烯烃与氟加成太剧烈,往往使反应物完 全分解,与碘则难发生加成反: 在反应体系中存在 Cl-、Br+、Br- 三种离子, 是哪一种离子首先进攻? Br+首先进攻
C H3C HC H 3 C H3C H C H2 + HC l Cl C H3C H2C H2C l (Ⅰ) (Ⅱ)
实验证明主要产物是(Ⅰ)。 马尔可夫尼可夫(Markovnikov)总结了其中的规律: 不对称烯烃与卤化氢等极性试剂加成时,氢原子总 是加到含氢较多的双键碳原子上。这就是马尔可夫 尼可夫最初提出的规则,简称马氏规则。
比较标准
+I 效应
电负性 X >H >Y
特点:
1. 通过σ 碳链传递,3个碳原子后基本消失;传导过程中电性不 变;传导过程中电子云的转移方向相同。 2. 由于原子电负性不同引起的——静电诱导作用,永久效应。 3. 常见-I (吸电子)基团:
-NO2 -Br -S H -S O3H -I -C N -O Ar -C O O H -C O O R -O R -F -C l -C O R -C H=C H2
顺反异构的标记
1. 顺-反(cis-/trans-)标记法
相同基团在同侧 相同基团在异侧 cis- 或 顺trans- 或 反-
2. Z-E构型标记法
用cis或trans来命名顺反异构体时,有时难以确 定。例如:
Br H C C Cl F H3C H C C CH2CH3 CH2CH2CH3
为此提出了Z-E构型命名法。
第一节 烯 烃
一、烯烃的结构——sp2杂化 (以乙烯为例来说明)
z
1s22(sp2)12(sp2)12(sp2)12pz1
轨道杂化后电子排布
x
y
sp2杂化
2s
2px
2py
2pz
激发态: 2s 1 + 2px1 + 2py1 + 2pz1
3个sp2杂化轨道取平面正 三角形分布,与未杂化的 p 轨道垂直。sp2 杂化轨 道之间的夹角为 120o.
a
b
d e
第三章 烯烃和炔烃
第一节 烯烃 (二、烯烃的异构)
当分子中双键数目增加时,顺反异构体的数目也增加
H C C H CH2 C C H3C H H H H CH3 H C C CH2 C C CH3 H H H CH3 H3C C C CH2 C C CH3 H H
顺,顺-2,5-庚二烯 顺,反-2,5-庚二烯 反,反-2,5-庚二烯
甲 乙
C
C
丁 丙
Z型
E型
Br H
C
C
Cl F
H3C H
C
C
CH2CH3 CH2CH2CH3
Z-1-氟-1-氯-2-溴乙烯
E-3-乙基-2-己烯
Note:Z型并非一定是顺式,E型并非一定是反式。
Br F C C F H F Br C C F Cl
顺反异构体在性质上的差异
(一) 物理性质 熔点,沸点, 溶解度等都存在差异. (二) 化学性质 顺反异构体在化学性质上也存在某些差异,如 顺-丁烯二酸在140℃可失去水生成酸酐。
第一节 烯烃 (二、烯烃的命名)
2. 烯烃的系统命名与烷烃相似, 只是在选主链和编号时 要注意C=C为官能团,主链的选择必须包含官能团,编 号时官能团位次为低。烯烃英文名称的词尾为“-ene” 1 2 3 。 例1 CH3-CH=C-CH2CH2CH2CH3
CH2 CH2
7
CH3-CH-CH3
6
6-甲基-3-丁基- 2-庚烯 3-butyl-6-methyl-2-heptene
第三章 烯烃和炔烃
第一节 烯烃 (三、烯烃的性质)
三、烯烃的性质
与烷烃相似, 常温下4 碳以下的烯烃是气体, 5~18 碳的烯烃是液体, 高级烯烃是固体。
直链烯烃比带有支链的同系物沸点高。 顺式异构体的沸点比反式异构体略高。 反式异构体的熔点比顺式异构体高。
烯烃都不溶于水, 而溶于有机溶剂。
第三章 烯烃和炔烃
第一节 烯烃 (一、烯烃的结构)
头碰头重叠形成C—Cσ 键
肩并肩重叠形 成键,重叠 程度较小, 键 较不牢固,不 能自由旋转。
键: 284 kJ/mole
键键能 357kJ/mole
第三章 烯烃和炔烃
第一节 烯烃 (二、烯烃的异构)
二、烯烃的异构现象和命名 (一) 烯烃的异构现象
相对密度都小于1。
第三章 烯烃和炔烃
第一节 烯烃 (三、烯烃的性质)
亲电加成和氧化 -H的卤代 (Cl或Br) H C C π σ C
第三章 烯烃和炔烃
第一节 烯烃 (三、烯烃的性质)
(一) 亲电加成反应(electrophilic addition reaction)
加成反应就是将双键中的π 键打开,双键的两 个碳原子上各加一个原子或基团,形成两个新的σ 键,使不饱和的烯烃变成饱和的化合物。
C C
+A B
C C A B
碳原子sp3 杂化 四面体型结构
碳原子sp2 杂化 平面型结构
第三章 烯烃和炔烃
第一节 烯烃 (三、烯烃的性质)
δ X
+
δ X
-
X RCHCH 2X X RCHCH3 RCHCH3 H2O RCHCH 3 OH OSO3H H+ RCHCH3 OH
H X δ+ RCH CH + - 2 δ H OSO3H H OH
第三章 烯烃和炔烃
第一节 烯烃 (二、烯烃的命名)
(二) 烯烃的命名
1. 简单的烯烃常用普通命名法
CH3 CH3-C=CH2
CH2=CH2 CH3CH=CH 2
CH3 CH2=CH-C=CH 2
乙烯 ethylene
丙烯 propylene
异丁烯 isobutylene
异戊二烯 isoprene
第三章 烯烃和炔烃
H C C H COOH H COOH
140℃
H C C C C
O O O
反-丁烯二酸在同样温度下不反应,只有在温度增加至275℃ 时,才有部分丁烯二酸酐生成。
(三) 生理活性
顺反异构体生理活性也不相同。例如,合成的代 用品己烯雌酚,反式异构体生理活性较大,顺式则 很低;维生素 A 的结构中具有 4 个双键,全部是反式 构型,如果其中出现顺式构型,则生理活性大大降 低;具有降血脂作用的亚油酸和花生四烯酸则全部 为顺式构型。
CH3CH2-CH=CH2 CH3CH=CH-CH3
(官能团) 位置异构
CH3 CH3C=CH2
顺反 异构 碳链异构
H CH3 H3C H C C CH3 H
H3C H
C
C
反 -2丁烯 顺-2丁烯
顺 -2丁烯 反 -2-丁烯
mp. -106℃, bp. 1℃
mp. -139℃, bp. 4℃
第三章 烯烃和炔烃
CH2 C
异丙烯基
第三章 烯烃和炔烃
第一节 烯烃 (二、烯烃的异构)
课堂练习: 命名
Br C H Cl C CH3
(Z)-2-氯-1-溴-1-丙烯
(Z)-1-Bromo-2-chloropropene
H3C C H C
CH2 CH2
CH3 CH2
(E)-3-乙基-2-己烯
CH3 (E)-3-Ethyl-2-hexene
第三章 烯烃和炔烃
第一节 烯烃 (二、烯烃的命名)
例2
CH3(CH2)15CH=CH2
1-十八 碳 烯 (octadecene)
例3