大学有机化学第三章烯烃综述
合集下载
华中科技大学有机化学第三篇烯烃

双键的两个碳原子中任何一个碳原子上带有两个相同的原子或 取代基时,都没有顺反异构体。
二、烯烃的命名
简单的烯经可以用普通命名法命名。复杂的烯烃用系统命名法命名。 1. 构造异构体 烯烃的构造异构体的系统命名法的要点为: (1)选择含碳碳双键的最长碳链作为主链,并按主链上碳原子的数目称 为某烯。碳原子数在十以上用汉字数字表示,称为某碳烯,如十二碳烯。 (2)从主链上靠近双键的一端开始编号,使双键碳原子的编号最小。 (பைடு நூலகம்)在烯烃名称之前,用阿拉伯数字标出双键的位置。取代基的名称和 位置的表示方法与烷烃相同。例如:
乙烯分子中的碳原子轨道为sp2杂化,碳上的3个sp2轨道处于 同一平面,角度120。碳原子上还有一个和该平面垂直的P轨道。
H
H
H
H
碳碳双键是由一个σ键和一个键组成。 σ键的轨道呈轴对称, 而 键的轨道呈平面对称。
碳原子的二个sp2分别与两个氢原子的1s轨道生成两个σ键,一
个sp2与另一个碳的sp2 轨道生成一个σ键; 所有σ键都在同一平面 上, 键角120。两个pz轨道互相平行从侧面重叠生成键。碳碳双键 和单键不同,它不能旋转,因为旋转就要破坏p轨道与p轨道的重叠, 也就破坏了键。
卤化氢与不对称烯烃加成时理论上可以生成两种加成产物:
卤化氢与不对称烯烃加成所生成的主要产物是氢原子加在含氢较 多的双键碳原子上。这一区域选择性规律被称为马科夫尼可夫规律。
卤化氢与烯烃的加成反应是分步进行的离子型反应。卤化氢分子中带 部分正电荷(δ+)的氢原子接近烯键的电子云时,H-X发生异裂,同时质子 接受一对电子( 键破裂)生成碳正离子(carbocation),这是整个反应的 速度决定步骤(rate-determining step)。
二、烯烃的命名
简单的烯经可以用普通命名法命名。复杂的烯烃用系统命名法命名。 1. 构造异构体 烯烃的构造异构体的系统命名法的要点为: (1)选择含碳碳双键的最长碳链作为主链,并按主链上碳原子的数目称 为某烯。碳原子数在十以上用汉字数字表示,称为某碳烯,如十二碳烯。 (2)从主链上靠近双键的一端开始编号,使双键碳原子的编号最小。 (பைடு நூலகம்)在烯烃名称之前,用阿拉伯数字标出双键的位置。取代基的名称和 位置的表示方法与烷烃相同。例如:
乙烯分子中的碳原子轨道为sp2杂化,碳上的3个sp2轨道处于 同一平面,角度120。碳原子上还有一个和该平面垂直的P轨道。
H
H
H
H
碳碳双键是由一个σ键和一个键组成。 σ键的轨道呈轴对称, 而 键的轨道呈平面对称。
碳原子的二个sp2分别与两个氢原子的1s轨道生成两个σ键,一
个sp2与另一个碳的sp2 轨道生成一个σ键; 所有σ键都在同一平面 上, 键角120。两个pz轨道互相平行从侧面重叠生成键。碳碳双键 和单键不同,它不能旋转,因为旋转就要破坏p轨道与p轨道的重叠, 也就破坏了键。
卤化氢与不对称烯烃加成时理论上可以生成两种加成产物:
卤化氢与不对称烯烃加成所生成的主要产物是氢原子加在含氢较 多的双键碳原子上。这一区域选择性规律被称为马科夫尼可夫规律。
卤化氢与烯烃的加成反应是分步进行的离子型反应。卤化氢分子中带 部分正电荷(δ+)的氢原子接近烯键的电子云时,H-X发生异裂,同时质子 接受一对电子( 键破裂)生成碳正离子(carbocation),这是整个反应的 速度决定步骤(rate-determining step)。
有机化学 key note ch03 第三章 烯烃

(2) H2C C(Cl)CH3
H3CH2C
H H (3) H3C C C CH2I
解:(1)、(2)无顺反异构,(3)有顺反异构,其表示方法和命名如下: H3C H H3C CH2I
H
H
H
CH2I
Z-1-碘-2-丁烯
E-1-碘-2-丁烯
提示:顺反异构是构型不同的异构体,其构造是相同的。烯烃顺反异构的形成除了双键 不能自由旋转外,还必须是双键所连的两个取代基是不同的,否则不会产生顺反异构。例 1 中的(1)(2)两题都是双键连有两个相同的取代基,因而无顺反异构。 [例题 2] 解释下列排序
H3C 3 (+ I) δ+ δHC CH2 1 2 + HX H H3C C CH3 X
由于供电子基的存在,是电子云向 1 号碳上偏移,使得 1 号碳上的电子云密度大些,H+ 就易于与 1 号碳结合。而对下例反应来说情况正好相反:
F3C 3 (- I) δ+ δHC CH2 1 2 + HX H2 F3C C CH2 X
b
X-
a 反应过程生成仲 C+正离子,b 反应过程生成伯 C+正离子。中间体的稳定性决定了反 应的主要取向。由于仲 C+的稳定性大于伯 C+,因而反应以 a 路线为主要。
3.3 例题分析
[例题 1] 下列烯烃中哪个有顺反异构?写出其顺反异构体,并以 Z、E 标记法命名。
H3C
(1)
C2H5 C2H5
R
H2SO4
R
HBr 过氧化物
R
马尔考夫尼考夫(V. V. Markovnikov)规则(简称马氏规则) :当不对称烯烃和亲电试剂 加成时,不对称试剂中负电荷一端总是和含氢较少的双键碳相连,正电荷一端(一般是 H+) 主要和含氢较多的双键碳相连。 (2) 氧化反应 R H KMnO4 C C R 冷,稀,中性 ROHOH
H3CH2C
H H (3) H3C C C CH2I
解:(1)、(2)无顺反异构,(3)有顺反异构,其表示方法和命名如下: H3C H H3C CH2I
H
H
H
CH2I
Z-1-碘-2-丁烯
E-1-碘-2-丁烯
提示:顺反异构是构型不同的异构体,其构造是相同的。烯烃顺反异构的形成除了双键 不能自由旋转外,还必须是双键所连的两个取代基是不同的,否则不会产生顺反异构。例 1 中的(1)(2)两题都是双键连有两个相同的取代基,因而无顺反异构。 [例题 2] 解释下列排序
H3C 3 (+ I) δ+ δHC CH2 1 2 + HX H H3C C CH3 X
由于供电子基的存在,是电子云向 1 号碳上偏移,使得 1 号碳上的电子云密度大些,H+ 就易于与 1 号碳结合。而对下例反应来说情况正好相反:
F3C 3 (- I) δ+ δHC CH2 1 2 + HX H2 F3C C CH2 X
b
X-
a 反应过程生成仲 C+正离子,b 反应过程生成伯 C+正离子。中间体的稳定性决定了反 应的主要取向。由于仲 C+的稳定性大于伯 C+,因而反应以 a 路线为主要。
3.3 例题分析
[例题 1] 下列烯烃中哪个有顺反异构?写出其顺反异构体,并以 Z、E 标记法命名。
H3C
(1)
C2H5 C2H5
R
H2SO4
R
HBr 过氧化物
R
马尔考夫尼考夫(V. V. Markovnikov)规则(简称马氏规则) :当不对称烯烃和亲电试剂 加成时,不对称试剂中负电荷一端总是和含氢较少的双键碳相连,正电荷一端(一般是 H+) 主要和含氢较多的双键碳相连。 (2) 氧化反应 R H KMnO4 C C R 冷,稀,中性 ROHOH
有机化学 第三章 烯烃全

KOH
Br
C2H5OH
+ HBr
17
3-4 烯烃的物理性质
物质状态 C2~C4 气体,C5~C18液体 ,C19~固体
沸点、熔点和相对密度 均随相对分子量的增加而上升;直链烯烃的沸 点略高于支链烯烃;末端烯烃(α-烯烃)的沸点 略低于双键位于碳链中间的异构体。
溶解性 不溶于水,易溶于有机溶剂。
HCl CF3CH2CH2 Cl
Cl
CF3CH2CH2
(主)
HCl CF3CHCH3
Cl
Cl
CF3CHCH3
35
烯烃的亲电加成反应
HX反应活性 HI > HBr > HCl > HF
H2C CH2
HBr HAc
CH2 Br
CH2 H
HCl H2C CH2 AlCl3
H2C CH3 Cl
36
与硫酸的加成 ——间接水合
H3C C
H
CH3 C
H
H C
H3C
CH3 C
H
顺式
反式
7
3-2 烯烃的异构和命名
系统命名法
选主链:选择含双键的最长碳链作主链, 称 “某烯”, 若碳原子数大于10, 则称为“某碳 烯”;
编号:从靠近双键的一端开始编号,确定双键 (两双键碳原子中编号小的数字)及其它取代 基的位次;
其它同烷烃的命名。
18
顺 反 异 构 体 的 差 异
极性较大, b.p. 较高 极性较小, b.p. 较低
对称性较差,m.p. 较低
对称性较好,m.p. 较高19
3-5 烯烃的化学性质(重点)
• 反应:加成、氧化、卤代
α HCCC
有机化学-第三章不饱和烃:烯烃和炔烃

a
18
分子的结构包括分子的构造、构型和构象。
同分异构
构造异构
碳架异构 官能团位次异构 官能团异构
互变异构
立体异构
构型异构
顺反异构 对映异构
构象异构
a
19
当两个双键碳原子均连接不同的原子或基团时,即产 生顺反异构现象。如下列三种形式的烯烃都有顺反异构 体,而其它形式的烯烃则没有顺反异构体。
a
20
3.3 烯烃和炔烃的命名
构 型 异 构 体 : ( I) 和 ( Ⅱ ) 是 由 于 构 型 不 同 而 产 生 的 异 构 体 , 称 为 构 型 异 构 体 (configurational isomers)。构型异构体具有不同的物理性质。
a
17
顺反异构体:像(I)和(Ⅱ)这种构型异构体通常用顺、反 来区别,称为顺反异构体(cis and trans ismers),也称几 何异构体(geometric ismers)。
对于碳原子数相同的烯烃顺反异构体,顺式异构 体的沸点比反式异构体略高,而熔点则是反式异构体 比顺式异构体略高。
a
44
与烷烃相似,折射率也可用于液态烯烃和炔烃的鉴 定和纯度的检验。在分子体系中,由于电子越容易极化, 折射率越高,因此,烯烃和炔烃的折射率一般比烷烃大。
a
45
3.5 烯烃和炔烃的化学性质
不饱和链烃分子中同时含有碳碳双键和三键的化合物 称为烯炔。在系统命名法中,选择含有双键和三键在内的 最长碳链作为主链,一般称为“某烯炔”(“烯”在前、 “炔”在后),碳链的编号遵循“最低系列”原则,使双 键、三键具有尽可能低的位次号,其它与烯烃和炔烃命名 法相似。
a
37
但主链编号若双键、三键处于相同的位次供选择时,优 先给双键以最低编号。例如:
有机化学之烯烃

烯烃的分类
根据双键数量分类:单烯烃和多烯烃。
根据结构分类:链状烯烃、环状烯烃 和芳香烯烃。
烯烃的结构
单烯烃的结构:C=C。 双烯烃的结构:C=C=C。
共轭烯烃的结构:C=C-C=C。
02
CHAPTER
烯烃的合成与反应
烯烃的合成
1 2
烷烃的裂化
在加热条件下,烷烃中的C-C键会发生断裂,形 成烯烃和氢气。
对烯烃生产过程中产生的副产物和废弃物进行回收利用,提高资 源利用率,降低环境污染。
06
CHAPTER
有机化学中的烯烃研究展望
烯烃的结构与性质关系的研究
总结词
烯烃的结构对其性质具有决定性影响,研究结构与性质的关系有助于深入理解烯烃的化学行为。
详细描述
烯烃的碳碳双键是其最显著的结构特征,这个双键的电子云分布、键长、键角等结构参数对其化学反应活性、反 应类型和产物具有决定性影响。研究烯烃的结构与性质关系有助于预测烯烃的反应行为,为有机合成提供理论支 持。
化学性质和反应行为。
04
CHAPTER
烯烃在日常生活中的应用
塑料工业
塑料袋
乙烯是生产塑料袋的主 要原料,乙烯聚合后形 成的聚乙烯是塑料袋的 主要成分,广泛用于购 物、包装等。
塑料瓶
烯烃也是塑料瓶的主要 成分,如聚丙烯(PP) 和聚对苯二甲酸乙二醇 酯(PET),用于盛装 饮料和水。
家居用品
许多家居用品如餐具、 厨具、家具等也由烯烃 制成的塑料制成。
烯烃的亲电加成反应
烯烃的亲电加成反应是一种重要的有机 化学反应,其中烯烃与亲电试剂(如卤 素、硫酸、质子酸等)发生加成反应。
加成反应过程中,亲电试剂首先与烯烃 的π电子云发生相互作用,形成碳正离 子或碳负离子中间体,然后与试剂发生 进一步反应,生成新的有机化合物。
有机化学之烯烃详解

诱导效应对酸性的影响
Ka: 羧酸在水溶液中解离平衡常数,较大的Ka
值(或较少的pKa值)代表较强的酸
归纳酸性变化的规律
•酸中的氢被卤原子取代,酸性增强;被烷基取代,酸性变弱。 •在烃基的同一位置引入的卤原子数多,酸性增加的多;引入烷基 多,酸性变弱的多。 •引进的卤原子离羧基近,酸性大。 •引进卤原子形成的碳卤键极性大,酸性增加。
(3)诱导效应强弱变化规律:
A.同一族的元素随着原子层的增加而吸电子诱导效应降低。 如: —F > —Cl > —Br > —I —OR > —SR —NR2 > —PR2 B.同一周期的元素从左到右吸电子诱导效应增加。如: —F > —OR > —NR2 > —CR3
C.不同杂化状态的碳原子以s轨道成分多者吸电子 能力强。(sp>sp2>sp3)
H3C CH2 CH 2 C H C
Cl Br
H3C H
C
C
CH2 CH2 CH3 CH3
(E)-1-氯-1-溴-1-戊烯
(Z)-3-甲基-2-己烯
H3C
C C
CH2CH3 CH CH3 CH3
H3C
CH3CH2
C C
CH3 Cl
CH3CH2
(Z)-3-甲基-2-氯-2-戊烯 (Z)-2,4-二甲基-3-乙基-3-己烯
若双键两碳原子所连接 CH3 的四个原子不相同时,就 H 无法用顺反来命名
顺、反异构命名——Z、E命名法:
1.依次对双键碳原子上所连接基团排序。 2.序数大的基团在同侧为Z, 在不同侧为E 。
a C b C b (Z)-构型 c a d C b (E)-构型 C c
有机化学 第三章 烯烃

在次卤酸中,氧原子的电负性(3.5) 较氯原子(3.0)和溴 原子(2.8)强,使分子极化成HO X。加成仍符合马氏规律。 在实际生产过程中,通常用氯和水代替次卤酸,结果生成 氯乙醇和,1,2-二氯乙烷。
CH2=CH2
Cl2/H2O
δ- δ+
CH2CH2 + CH 2CH2 Cl OH Cl Cl
– 反应机理
– 顺反异构体的命名
• 顺/反标记法 相同基团在双键同侧为“顺(cis)” ,反之,为“反(trans)”。 • Z/E标记法 依照“次序规则”,比较双键碳上连接的两个基团, 较优基团在双键同侧为“Z” ,反之,为“E”。
CH3 H C C CH3 CH3 H
H
C
C
CH3 CH2CH3
CH3CH2 H
有 机 化 学 ORGANIC CHEMISTRY
第三章 烯烃
CHAPTER 3 ALKENES
第三章 烯 烃 3 ALKENES
分类
开链烯烃 如:(CH3)2C=CH2
按碳的连 接方式分
环烯烃
如:
单烯烃 按双键 数目分 多烯烃
如:H2C=CH2
如:
第一节 烯烃的结构、异构和命名 3.1 Structure,Isomerism and nomenclature
• 加卤化氢 如:
一卤代烷
AlCl3 130~ 250℃
CH2=CH2 + HCl
CH3CH2Cl
分子不对称的烯烃加HX时,可得两种加成产物:
CH3CH=CH2 + HX CH 3CH2CH2X + CH 3CHCH3 X
马氏(Markovnikov)规律:不对称烯烃发生亲电加成时, 酸中带正电荷的质子H+总是加到含氢较多的双键碳原子 上,而负性基团加到含氢较少的双键碳原子上。如:
有机化学 理论篇 第五版 第3章 烯烃

H
H
CH3 H
C=C
H CH3
(I) 顺-2-丁烯
(II) 反-2-丁烯
(沸点3.7 ℃)
(沸点0.9 ℃)
两个相同基团(如I 和 II中的两个甲基或两个氢原子)在双键 同一侧的称为顺式,在异侧的称为反式。这种由于分子中的原子 或基团在空间排布方式不同而产生的同分异构现象,称为顺反异 构,也称几何异构。分子中原子或基团在空间的排布方式称为构 型。因此顺反异构也是构型异构,它是立体异构中的一种。
9
第3章 烯烃
有机化学(理论篇)
需要指出的是,顺反异构现象普遍存在于烯烃、环烃等有 机化合物分子中,但并不是所有的烯烃、环烃都有顺反异构 现象。产生顺反异构的条件是除了σ键的旋转受阻(如π键、 碳环等)外,还要求两个双键碳原子上分别连接有不同的原子 或基团。也就是说,当双键的任何一个碳原子上连接的两个 原子或基团相同时,就不存在顺反异构现象了。例如,下列 化合物就没有顺反异构体。
有机化学(理论篇)
第3章 烯烃
第3章 烯烃
有机化学(理论篇)
【课程思政】 绿色生态与可持续发展—烯烃的聚合反应
烯烃类化合物由于其容易获得且价格便宜,并能进行各种 转化,不断被应用到工业生产中,为一些功能材料、农药、化 妆品和药物等提供关键合成中间体。
烯烃聚合反应与人类生活息息相关,高分子材料聚乙烯、 聚丙烯、聚苯乙烯、聚氯乙烯、聚四氟乙烯等被广泛用于日常 生活用品、建筑材料、有机光电材料、人造器官等实用性物质 中。由美国杜邦公司研制的聚四氟乙烯具有耐高温、耐腐蚀、 质地致密光滑的特异性能,被誉为“塑料王”。2008 年北京 奥运会标志性建筑物之一“水立方”是世界上最大的膜结构工 程,采用最先进的新型环保节能膜材料乙烯-聚四氟乙烯共聚 物(ETFE),该材料耐腐蚀性、保温性极强,抗压性好,自清洁 能力强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
¸
¸¸¸ ¸¸¸p¸ ì ¸ 2 ¸ 3¸ ¸sp ¸¸¸ ì ¸¸¸ ±
C
C
C
C
H C H C
H H
H C H C
H H
故乙烯中C=C键,一条代表σ键,另一条代表π键 σ键碳原子的sp2杂化轨道头碰头重叠形成, σ键
电子云分布在两个碳原子之间; π键由碳原子的p
轨道肩并肩侧面重叠而成, π键电子云分布在分子
(4)其他与烷烃相同
3.2 烯烃的结构
3.2.1 乙烯的结构 实验事实:仪器测得乙烯中六个原子共平面:
H ¡ £ 116.6 H £ 121.7 ¡ C
0.1330nm
H C H
0.1076nm
(1)杂化轨道理论的描述
C2H4中,C采取sp2杂化,形成三个等同的sp2杂化轨道:
激发
杂化
杂化
3 个 sp 2
存在顺反异构体
无顺反异构体
(3)顺反命名法
两个双键碳上相同的原子或原子团在双键的同一侧者, 称为顺式,反之称为反式。例:
CH3 C H
Ⅰ
CH3 C H
CH3 C H
Ⅱ
H C CH3
Ⅰ——顺式,两个甲基位于双键的同侧; Ⅱ ——反式,两个甲基位于双键的异侧。
问题:
H3C H C=C CH3 H H3C H H C=C CH3 Br H3C C=C ? Cl H Br H3C C=C ? H Cl
Cl C H H O Cl O C H O
又例如:
Cl
>
C C
>
C C
C
(3)含有双键和叁健基团,可认为连有二个或三个 相同原子
H HC CH2 C 1 H 2 C H (C) H 1 2 C CH3 CH3 C1 (C,C,H) C2 (H,H,H)
(C)
C1 (C,C,H) C2 (C,H,H)
顺-2-丁烯
反-2-丁烯
后两个的化合物的构型如何命名?
3.3
3.3.1
Z-E标记法—次序规则
Z-E标记法
(1)依次对双键碳原子上所连接基团排序。
(2)双键碳C1与C2上序数大的基团在同侧为Z,在不同
侧为E 。
a C b C
c b (Z)-构型
a
d C C c
a>b c>d
b (E)-构型
Zusammen (共同)
(H,H,C)C,(H,H,C)C C(C,C,C)
CH3CH2 CH3
(H,H,H)C
C=C
CH(CH3)2 CH2CH2CH3
C(C,H,H)
CH3CH2CH2 CH3CH2
(H,H,H)C,(H,H,C)C
C CH C=C CH=CH2
C(C,C,H)
Z-3-¸ ׸ ù -4-¸ ì ± ¸¸ ù -3-¸ ¸¸
根据以上规则,常见基团优先次序如下所示:
-I > -Br > -Cl > -SO3H > -F > -OCOR > -OR……
举例:
H3C CH2 CH 2 C H C Cl
H3C H C C CH2 CH2 CH3 CH3
Br (E)-1-氯-1-溴-1-戊烯
(H,H,C)C C(C,C,H)
(Z)-3-甲基-2-己烯
¸
³ -2-¶ Ë ¡ Ï ©
I)¸m.p -105 C (I ´ -2-¶ · ¡ Ï ©
¸
(1)顺反异构体构造相同,原子或基团在空间排布方 式(构型)不同,属于构型异构或立体异构。 (2)每个双键碳原子连接两个不同的原子或基团才有 顺反异构
a C b C b b a a C C d b a a C C d a c a C C b a
Entgegen(相反)
3.3.2 次序规则 (1)将双键碳原子所连接的原子或基团按其原子序数的大
小排列,把大的排在前面,小的排在后面,同位素则按
原子量大小次序排列。 I, Br, Cl,, S, P, O, N, C, D, H
(2)如果与双键碳原子连接的基团第一个原子相 同而无法确定次序时,则应看基团的第二个 原子的原子序数,依次类推。按照次序规则 (Sequence rule)先后排列。 例如:-CH(CH3)3 > -CH2CH3 > -CH3
Z-
注意:
Cl H
C=C
Cl Br
顺-1,2-二氯-1-溴乙烯 E-1,2-二氯-1-溴乙烯
∴ Z,E-命名法不能同顺反命名法混淆。
3.4 烯烃的来源和制法(自学) 3.5 烯烃的物理性质(自学) 3.6 烯烃的化学性质
烯烃的双键中π键易断裂,导致烯烃易发生加成、氧 化、聚合反应。 加成反应:烯烃的双键中π键断裂,双键的二个碳 原子与其它原子(或原子团)结合,形成两个σ键。
3.2.2 烯烃的顺反异构现象 σ键是轴对称,而π键是面对称,当转动碳碳 键时,π键被破坏,需要的能量至少为π键 键能,约需500℃的高温。因此,当双键碳 上连有不同基团时,就会产生顺、反异构。
2-¶ ¡ Ï © :
H3C H
C=C
CH3 H
H3C H
H C=C CH3
m.p -132 C (I)¸
平面的上下方。
其他烯烃分子:碳碳双键与乙烯一样,其余部分与 烷烃一样。
π键的特性:
①π键不能自由旋转。 ②π键键能小,不如σ键牢固。 碳碳双键键能为 611KJ/mol, 碳碳单键键能为 347JK/mol, ∴π键键能为611-347=264K/mol ③π键电子云流动性大,受核束缚小,易极化。 ∴π键易断裂、起化学反应。
3.1.1 烯烃的构造异构:
(1)碳链(碳干)异构 (2)官能团位置异构
3.1.2 烯烃的命名(系统命名)
(1)选择一个含双键的最长的碳链为主链。
(2)从最靠近双键的一端起,把主链碳原子依次编号
(3)双键的位次必须标明出来,只写双键两个碳
原子中位次较小的一个,放在烯烃名称的前面。
2,4-二甲基-2-己烯
第三章 烯烃
3.1 烯烃的构造异构和命名 3.2 烯烃的结构 3.3 E/标记法—次序规则 3.4 烯烃的来源和制备 3.5 烯烃的物理性质 3.6 烯烃的化学性质 3.7 重要的烯烃
3.1 烯烃的构造异构和命名
分子中含碳碳双键或碳碳叁键的烃叫不饱和烃。 含一个碳碳双键的开链烃叫单烯烃,简称烯烃。 通式为CnH2n 官能团为C=C键
sp2杂化轨道的形状与sp3杂化轨道大致相同,只是sp2 杂化轨道的s成份更大些:
sp 2
sp 3
为了减少轨道间的相互斥力,使轨道在空间相距最远,要求平 面构型(三个sp2轨道在同一平面)并取最大键角为120°:
120
£ ¸ ì ¸
¸× ¸¸ ó ¸ ü ¸¸120