《数字高程模型》实验讲义[1]

《数字高程模型》实验讲义[1]
《数字高程模型》实验讲义[1]

数字高程模型 实验讲义

南阳师范学院环旅学院 地理信息系统教研室编

2011年2月

前 言

Miller于1958年提出首次提出了数字高程模型(Digital Elevation Model,DEM)的概念。经过40多年的发展,DEM的诸多基础理论问题都得到了深入的研究,基于DEM的数字地形分析理论与方法体系正在形成,DEM在许多领域的工作中得到了成功应用。DEM已成为各类GIS数据库的核心数据之一。国家测绘部门将DEM作为国家空间数据基础设施(National Spatial data Infrastructure,NSDI)的重要建设项目之一。在理论研究方面,DEM的不确定性、DEM的尺度效应、DEM的地学分析、基于DEM的数据挖掘都取得了很大的突破。在应用方面,也从一般的地形因子提取、支持三维漫游等简单应用向更多样的形式、更广泛的领域发展。可以说,DEM所代表的已经不仅仅是一种记录海拔的空间数据,更代表着一种地学处理的方法。

适应于学科发展和实践需要,各高等院校的有关专业,特别是地理信息系统、空间信息与数字工程、测绘工程等专业都纷纷将数字高程模型作为本科和研究生课程。我学院办有地理信息系统和测绘工程等专业,数字高程模型一直是此二专业的重要课程。在多年教学经验的基础上,我们编写了本实验讲义,供地理信息系统专业、测绘工程专业的本科教学使用。本实验讲义中,以验证、探索理论知识和传授技能作为基础目标,另外还注重意识和能力的培养。当代教育理论认为,如果说知识和技能是人才素质的基础,意识则决定了运用知识和技能的动机,能力则是运用知识和技能的方法。当代地学人才不仅需要具有充足的专业知识和技能,而且应该具备一系列意识和能力。虽然,高校通常设置培养意识和能力的公共课程;但是,专业课教学也应该将其作为教学目标之一。这样以来,可以根据专业课程的特点有目的地培养特定的意识和能力。本课程所涉及的意识和能力主要包括科学精神、团队意识、创新能力和统合能力等。

本讲义共7个实验,需要16个实验课时。实验类型包括基础型、综合型和设计型。每个实验都有明确的实验目的,有实验原理的详细介绍,实验过程中的必要之处作了解释和提示。实验后安排了思考题,要求学生们通过在实验中的探索来回答这些问题,有助于学生更好地理解和掌握DEM的理论和方法。

目 录

实验一 DEM的基本认识与基本操作 (1)

实验二DEM的建立和转化 (9)

实验三 基本地形因子提取 (19)

实验四 坡面复杂度因子的提取 (25)

实验五 DEM的可视化表达 (31)

实验六 制作河流网络专题图 (35)

实验七 地形特征要素提取 (44)

附录 中华人民共和国测绘成果管理条例 (51)

实验一 深入认识DEM

1. 实验目的

(1)通过操作和观察,深入认识DEM 的本质和特点,深入认识不同类型的DEM 的本质和特点;

(2)熟悉与DEM 相关的基本操作;

(3)培养细致入微的观察能力和理论联系实际的科学精神。

2. 实验原理

DEM 是地形曲面的数字化表示,是在计算机中描述、表达和模拟地形曲面的有序数据组合。从数学的角度,高程模型是高程Z 关于平面坐标X,Y 两个自变量的连续函数,数字高程模型(DEM)只是它的一个有限的离散表示。高程最常见的表达是相对于海平面的海拔高度,或某个参考平面的相对高度。高程是地理空间中的第三维坐标。由于传统的地理信息系统的数据结构都是二维的,数字高程模型的建立是一个必要的补充。DEM 通常用地表规则网格单元构成的高程矩阵表示,广义的DEM 还包括等高线、三角网等所有表达地面高程的数字表示。在地理信息系统中,DEM 是建立数字地形模型(DTM)的基础数据,其它的地形要素可由DEM 直接或间接导出,称为“派生数据”,如坡度、坡向等。按照结构,DEM

主要分为以下类型:

图1.1 规则格网DEM

(1)规则格网DEM

规则网格,通常是正方形,也可以是矩

形、三角形等规则网格。规则网格将区域空

间切分为规则的格网单元,每个格网单元对

应一个数值。数学上可以表示为一个矩阵,

在计算机实现中则是一个二维数组。每个格

网单元或数组的一个元素,对应一个高程

值,如图1.1所示。

规则格网DEM 是规则镶嵌数据模型在

地形表达上的应用,规则镶嵌数据模型分格网栅格和点栅格两种情况,所以规则格网DEM 也相应地分为这两种情况(图1.2):①格网栅格将任一格网单元的数值视为该单元内所有点的高程值,即格网单元对应的地面面积内高程是均一的高度,这种数字高程模型是一个不连续的函数;②点栅格将任一格网单元的数值视为单元中心点的高程,这样就需要用一种插值方法来计算每个点的高程,计算任何不是网格中心的数据点的高程值,需使用周围4个中心点的高程值,采用距离

加权平均、样条函数和克里金插值等方法进行计算。

图1.2 格网栅格与点栅格

规则格网是最广泛使用的DEM 形式,目前许多GIS 数据库提供的DEM 数据都是以规则格网的数据矩阵形式提供的。格网DEM 的缺点是不能准确表示地形的结构和细部。为避免这些问题,可采用附加地形特征数据,如地形特征点、山脊线、谷底线、断裂线,以描述地形结构。格网DEM 的另一个缺点是数据量过大,给数据管理带来了不方便,通常要进行压缩存储。DEM 数据的无损压缩可以采用普通的栅格数据压缩方式,如游程编码、块码等,但是由于DEM 数据反映了地形的连续起伏变化,通常比较“破碎”,普通压缩方式难以达到很好的效果;因此对于格网DEM 数据,可以采用哈夫曼编码进行无损压缩。

(2)等高线DEM

每一条等高线(Contour)对应一个已知的高程值,这样一系列等高线集合和它们的高程值一起就构成了一种地面高程模型。如图1.3所示。

图1.3 等高线DEM

等高线通常被储存为一个有序的坐标点对序列,可以认为是一条带有高程值属性的简单多边形或多边形弧段。由于等高线模型只表达了区域的部分高程值,往往需要一种插值方法来计算落在等高线之外的其它点的高程,又因为这些点是落在两条等高线包围的区域内,所以通常只使用外包的两条等高线的高程进行插值。

(3)不规则三角网模型

不规则三角网(Triangulated Irregular Network, TIN)是另外一种数字高程模型,它既减少规则格网方法带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。

TIN模型根据区域有限个点集将区域划分为相连的三角面网络,区域中任意点落在三角面的顶点、边上或三角形内。如果点不在顶点上,该点的高程值通常通过线性插值的方法得到(在边上用边的两个顶点的高程,在三角形内则用三个顶点的高程)。所以TIN是一个三维空间的分段线性模型,在整个区域内连续但不可微。

不规则三角网数字高程由连续的三角面组成,三角面的形状和大小取决于不规则分布的测点,或节点的位置和密度。不规则三角网与高程矩阵方法不同之处是随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能

够避免地形平坦时的数据冗余,又能按地形特征点如山脊、山谷线、地形变化线等表示数字高程特征。

3. 实验步骤

(1)规则格网DEM的观察与操作

【1】载入规则格网DEM:使用[Add Data]功能将D:\DEM_EXP\Data\dem_grid 添加到Arcmap。

【2】打开[Layer Properties],查看[Source]选项卡,查看[Columns and Rows],查看[Cellsize],查看[Format],查看[Spatial Reference],查看[Statistics]。

问题 此DEM有几行几列?分辨率是多少?什么格式?采用了什么大地水准面?什么投影?

图1.4 Layer Properties 对话框

【3】使用[Identify]工具进行查询(图1.5)。提示 结合[Zoom in]功能可以获得对DEM的更好理解。

图1.5 Identify

问题 1)结合操作,说出你是怎样理解“规则网格将区域空间切分为规则

的格网单元,每个格网单元对应一个数值”的;2)规则镶嵌数据模型分格网栅格和点栅格两种情况,ArcGIS中的Grid当属于格网栅格还是点栅格?

对于问题2)的理解,可以借助于本讲义提供的一个演示文件:D:\DEM_EXP\EXP2\Grid.lyr,可在ArcScene中打开它。其效果如图1.6所示。

图1.6 格网栅格示意图

【4】利用已学技能对此DEM重采样,改变其分辨率。

思考[Resampling Techinque]中有多种选项(Nearest、Bilinear、Cubic 等),那么,对DEM的重采样应该使用哪一选项?

【5】利用已学技能对DEM进行裁剪。

(2)等高线DEM的观察与操作

【1】载入等高线DEM:使用[Add Data]功能将D:\DEM_EXP\Data\dem_contour 添加到Arcmap。

【2】打开[Layer Properties],查看[Source]选项卡,查看[Columns and Rows],查看[Cellsize],查看[Format],查看[Spatial Reference],查看[Statistics]。

问题 此DEM是什么格式?采用了什么大地水准面?采用了什么投影?

【3】打开[Layer Properties]的[Labels]选项卡,为等高线添加标注,并为其选择合适的格式。

(3)TIN DEM的观察与操作

【1】载入TIN DEM:使用[Add Data]功能将D:\DEM_EXP\Data\dem_tin 添加到Arcmap。

【2】打开[Layer Properties],查看[Source]选项卡。

问题 此DEM是什么格式?有多少个节点?有多少个面?

【3】点击[Layer Properties] 的[Symbology]选项卡,点击[Add...]按钮,出现如图1.7所示的对话框。在Add Renderer对话框中,共有10种TIN的可视化方式,可以分别试用。

提示 若同时加载Edges with the same symbol和Nodes with the same symbol比较利于理解TIN的本质和特点。

图1.7 TIN DEM的Layer Properties对话框和Add Renderer对话框

【4】使用[Identify]工具进行查询。观察在同一三角形中的不同位置进行查询时,Elevation、Slope、Aspect是否变化。

问题 结合操作,说出你是怎样理解“三角形内任一点的高程值通过线性插值得到的;TIN是一个三维空间的分段线性模型”这句话的。

4. 思考题

(1)规则格网DEM有什么特点?

(2)点栅格与格网栅格有何区别?

(3)等高线 DEM有什么特点?

(4)TIN DEM有什么特点?

(5)结合实验,用自己的话来总结——什么是DEM?

5. 实验报告要求

课后结合实验课堂笔记将上述步骤进行练习,得到正确结果和结论后,撰写报告。尤其是,对于上文中给出的若干问题,请通过实验予以探索、解决和回答。对这些问题的回答填入到实验小结之中。

6. 课外练习

某DEM(见D:\DEM_EXP\Data\dem_grid)的高程单位为米。现因某种原因,需要将之以英尺(feet)的形式表示,请你对此DEM进行处理,请之满足此要求。

实验二 DEM的建立和转化

1. 实验目的

(1)进一步理解不同DEM建模方法的原理;

(2)掌握不同内插方法的实现方法;

(3)培养知识统合能力,将数学知识和方法灵活的应用于专业领域。

2. 实验原理

(1)整体内插法:

整体内插法是指在整个区域用一个数学函数来表达地形曲面。通常是高次多项式,地形采样点的个数大于或等于多项式的系数数目。当地形采样点的个数与多项式的系数相等时,这时能得到一个唯一的解,多项式通过所有的地形采样点,属纯二维插值;而当采样点个数多于多项式系数时,没有唯一解,这时一般采用最小二乘法求解,即要求多项式曲面与地形采样点之间差值的平方和为最小,属曲面拟合插值或趋势面插值。

对于地形特征少的简单地形,由于参考点少,选择低次多项式描述即可;但当地貌复杂时,需要增加参考点的个数。

尽管选择高次多项式能使函数面更接近实际地面,但计算量大,且函数不稳定,对于高次多项式而言,微小的测量误差扰动会造成多项式参数的很大变化,导致内插结果保凸性差。解算速度慢,不能提供局部地形特征。

优点和用途:整个区域上函数的唯一性、能得到全局光滑连续的DEM、充分反映宏观地形特征。整体插值方法通常不直接用于空间插值,而是用来检测不同于总趋势的最大偏离部分,在去除了宏观地物特征后,可用剩余残差来进行局部插值。

(2)逐点内插法

以内插点为中心,确定一个邻域范围,用落在邻域范围内的采样点计算内插点的高程值。逐点内插本质上是局部内插,但与局部分块内插有所不同,局部内插中的分块范围一经确定,在整个内插过程中其大小、形状和位置是不变的,凡

是落在该块中的内插点,都用该块的内插函数进行计算。逐点内插法的邻域范围大小、形状、位置乃至采样点个数随内插点的位置而变动,又称为移动曲面法。

逐点内插法由于内插效率较高而成为目前DEM生产常采用的方法。

逐点内插法的基本步骤为:定义内插点的邻域范围、确定落在邻域内的采样点、选定内插数学模型、通过邻域内的采样点和内插模型计算内插点的高程。

(3)TIN的建立

TIN通常是以矢量数据为基础来创建。点、线和多边形要素都可以作为创建TIN的数据源。其中,不要求所有要素都具有Z值,但有一些要素必须有Z值。同时,这些用以创建TIN的输入要素还可以包含整数属性值,并且这些属性值也将在输出的TIN要素中保留。如不同输入数据源的相对精度,或用来识别要素(如道路与湖泊等)的属性。

在ArcGIS中,可以使用一种或多种输入数据直接一步创建TIN模型,也可以分步创建,并可以通过向已有TIN模型中添加要素实现对已有模型的改进。TIN 表面模型可以从网格点、隔断线与多边形中生成。网格点用来提供高程,作为生成的三角网络中的结点。

1)点集

它是TIN的基本输入要素,决定了TIN表面的基本形状。在变化较大的地方,须使用较多的点,在较平坦的表面,则可使用较少的点。

2)隔断线

隔断线是线状要素,通常用来表示自然要素,如山脊线、溪流,或用来创建要素,如道路;它可以是具有高度的线,也可以是没有高度的线;在TIN中构成一条或多条角形的边序列,隔断线有“软”隔断线和“硬”隔断线两种。

“硬”隔断线表示表面上突然变化的特征线,如山脊线、悬崖及河道等。在创建TIN时,“硬”隔断线限制了插值计算,它使得计算只能在线的两侧各自进行,而落在中断线上的点同时参与线两侧的计算,从而改变TIN表面的形状。

“软”隔断线即添加在TIN表面上用以表示线性要素但并不改变表面形状的线,它不参与创建TIN。例如,要标出当前分析区域的边界,可以在TIN表面上用“软”隔断线表示出来,不会影响表面的形状。

3)多边形

多边形用来表示具有一定面积的表面要素,如湖泊、水体,或用来表示分离区域的边界。边界可以是群岛中单个岛屿的海岸线或某特定研究区的边界。多边形表面要素有以下四种类型。

a) 裁切多边形:定义插值的边界,处于裁切多边形之外的输入数据将不参与插值与分析操作。

b) 删除多边形:定义插值的边界,与裁切多边形的不同之处在于多边形之内的输入数据将不参与插值与分析操作。

c) 替换多边形:可对边界与内部高度设置相同值,可用来对湖泊或斜坡上底面为平面的开挖洞建模。

d) 填充多边形:它的作用是对落在填充多边形内所有的三角形赋予整数属性值,表面的高度不受影响,也不进行裁切或删除。

在TIN 表面中使用隔断线与多边形,可以更好地控制TIN 表面的形状。

(4)TIN 与GRID 的转换

TIN 到GRID 的转换的本质是局部分块内插,分块范围是三角形。在ArcGIS 中,TIN 上的内插计算,主要采用线性内插和自然邻居法。理论教材上提及的精确拟合内插、连续双5次多项式内插、磨光内插等在ArcGIS 中无法直接实现。

线性内插的原理比较简单。三角形内P点的高程z P 的计算公式为:

p p p z ax by c =++ (2-1) 该公式为一个线性平面,式中的系数由包含点的三角形三个顶点唯一决定,计算公式为:

p (2-2) 1111222333111a x y z b x y z c x y z ?????????????

=?????? ????????????

通过线性内插获取的DEM 与TIN 具有类似的特征,即连续而不光滑。

自然邻居内插又称Sibson内插 或Area-stealing内插。如图2.1所示,星状符号代表目标点,其余点为已知高程的点。为计算目标点的高程,需要先构建

图2.1 Natural Neighborhood法示意图

出已知点的泰森多边形(Voronoi polygons,也即Thiessen polygons),然后建立目标点与各已知点的连线,再做这些连线的垂直平分线。垂直平分线将泰森多边形的分割出一部分,则分割出的部分点原泰森多边形的比例就是插值比重。

3. 实验步骤

(1)整体内插

利用ArcGIS的[Trend]工具可以实现整体内插。

【1】添加散点数据,打开[ArcToolBox],选择[Spatial Analyst Tools],选择[Interpolation],ArcGIS提供了多种内插方法,这里的[Trend]即可实现整体内插,双击[Trend]。

【2】在弹出的窗口(图 2.2)中,[Input point features]中输入需要被计算的散点数据;[Z value field]中输入需要内插的属性(提示无疑,这里应指定为高程);[Output raster]中输入内插计算结果数据的名称和路径;[Output cell size(optional)]中输入内插得到的DEM的分辨率,该值根据采样点的密度确定,这里填50;[Polynomial ordr]是多项式阶数(提示请联系原理思考:此参数的大小对结果有什么影响)。

【3】单击[OK],软件即可开始内插计算生成DEM。

探索与思考

自行设计实验证明“高次多项式能使函数面更接近实际地面,但计算量大,且函数不稳定;对于高次多项式而言,微小的测量误差扰动会造成多项式参数的很大变化”,并解释为什么会这样。

图2.2 Trend对话框

(2)逐点内插

利用ArcGIS的[Trend]工具可以实现整体内插。

【1】添加散点数据,打开[ArcToolBox],选择[Spatial Analyst Tools],选择[Interpolation],ArcGIS提供了多种内插方法,这里的[Trend]即可实现整体内插,双击[Trend]。

【2】在弹出的窗口中,[Input point features]中输入需要被计算的散点数据;[Z value field]中输入需要内插的属性,这里选择高程ELVE;[Output raster]中输入内插计算结果数据的名称和路径;[Output cell size(optional)]中输入内插得到的DEM的分辨率,该值根据采样点的密度确定,这里填5;[Power (optional)]是权重,表示采样点对内插点的贡献程度,距离越近,权值越大,

反之越小,通常选2;[Search radius(optional)]为内插的搜索半径,可以选择固定值(fixed),也可以选择变化值(variable),这里选择的是variable;[Search Radius Settings]是设置搜索半径和搜多采样点的值,这里在[Number of points]中输入12,表示对每一个内插点都要在其邻域范围内搜索12个点参与内插计算;因为前面搜索半径选择了variable,所以[Maximum distance](最大搜索距离)不填;[Input barrier polyline features(optional)]是指输入内插的边界图层,如果没有就不填,软件会根据数据自动确定(图2.3)。

【3】单击[OK],软件即可开始内插计算生成DEM。

基于规则格网分布采样点数据建立DEM的过程与上述步骤是一样的,但其在内插过程中对搜索半径的处理是不同的,详见《数字高程模型教程》(第二版)4.4.2节。

图2.3 IDW内插

(3)建立TIN

【1】打开[AreToolBox],选择[3D Anylyst Tools],选择[TIN Creation],双击[Create TIN]。

【2】在弹出的窗口中,[Output TIN]中输入新建TIN的名称及保存路径;[Spatial Reference(optional)]输入TIN的空间坐标,没有则不填(图2.4)。

图2.4 建立TIN

【3】单击[OK],即建立好了一个新的TIN,不过这仅仅是一个没有任何有效数据的框架。

【4】添加等高线数据和特征点数据。向TIN中添加数据,打开[ArcToolBox],选择[3D Analyst Tools],选择[TIN Creation],双击[Edit TIN]。

【5】在弹出的窗口中,[Input TIN]输入刚才新建立的TIN的完整路径;[Input Feature Class]输入构建TIN的矢量数据层,这里选择了等高线(Contour)和特征点(fea_points)两个数据层,在其属性栏选择中,height_field属性都选择高程,Contour的SF_type属性选择软断线(softline),fea_Points的SF_type属性选择masspoints,其他都为缺省值(图2.5)。

图2.5 TIN的生成

【6】单击[OK],即由等高线和特征点数据生成了TIN(图2.6)。

图2.6 生成的TIN(局部)

(4)TIN与GRID的转换

【1】添加TIN数据,打开[ArcToolBox],选择[3D Analyst Tools],选择[Conversion],选择[From TIN]双击[TIN to Raster]。

【2】在弹出的窗口中,[Input TIN]中输入需要被转换的TIN数据;[Output Raster]中输入计算结果数据的名称和路径;[Output Data Type(optional)]选择转换得到栅格数据的高程数据属性,有浮点型(FLOAT)和整型(INT)两种可选;[Method(optional)]选择内插方法,有线性内插(LINEAR)和邻域内插(NATURAL_NEIGHBORS)两种可选;[Sampling Distance(optional)]输入栅格的分辨率;[Z Factor(optional)]输入垂直放大因子,通常选1,表示维持原始地形。[Sampling Distance(optional)]中若选OBSERVATIONS,则其后面的数值代表了后面生成结果的列数。

【3】单击[OK],即可实现TIN到Raster的转换。

【4】添加DEM数据,打开[ArcToolBox],选择[3D Analyst Tools],选择[Conversion],选择From Raster],双击[Raster to TIN]。

【5】在弹出的窗口中,[Input Raster]中输入需要被转换的DEM数据;

[Output TIN]中输入计算结果数据的名称和路径;[Z Tolerance(optional)]为可选值;[Z Factor(optional)]输入垂直放大因子,通常选1,表示维持原始地形(图2-11)。

【6】单击[OK],即可实现Raster到TIN的转换。

提示 (1)注意观察新生成的TIN的NODE的位置,是不是原来的Raster 单元的中心?(2)改变Z Tolerance,观察这一参数对结果的影响。

4. 结果分析

分别利用[TIN to Raster]的自然邻居内插和线性内插法进行基于TIN的插值,之后就某一局部,基于原理进行手动计算,看自动与手动计算的结果是否一致。

5. 实验报告要求

课后结合实验课堂笔记将上述步骤进行练习,得到正确结果和结论后,撰写报告。尤其是,对于上文中给出的若干问题,请通过实验予以探索、解决和回答。对这些问题的回答填入到实验小结之中。

6. 课外练习

(1)对于从TIN建立栅格DEM的问题,本实验中已涉及了两种算法,分别为线性内插法和自然邻居法。另外还有一种重要的算法——局域二次曲面拟合法。此法共需6个系数,要有6个已知点才能唯一确定,因此需要考虑待插值点所在三角形的三个顶点以及三个相邻三角形的三个顶点。由于已知点个数与未知点个数相等,方程有唯一解,曲面严格通过这个6个点,因此此法也称精确曲面拟合。教师已就这一问题制作的演示性的数据(Twopower_trend.lyr),请同学们课下在ArcScene打开这一数据,进行操作和观察,获得对这一算法的直观认识。在ArcScene中可以看到如图2.7 中所示的三维图像。

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

《仪器分析》实验讲义,

《仪器分析》实验讲义 中国矿业大学环境与测绘学院环境科学系 2010年9月

前言 仪器分析实验课是化学类各专业本科生的基础课之一,也是非化学类各专业本科生的选修课之一。仪器分析实验课教学应该使学生尽量涉及较新和较多的仪器分析方法、尽量有效地利用每个实验单元的时间和尽量做一些设计性实验。教学过程中不仅要巩固和提高学生仪器分析方法的理论知识水平和实验操作技能,而且要着重培养学生分析问题和解决问题的能力。通过仪器分析实验课的教学,应基本达到: (1)巩固和加深对各类常用仪器分析方法基本原理的理解 (2)了解各类常用仪器的基本结构、测试原理与重要部件的功能 (3)学会各类常用仪器使用方法和定性、定量测试方法 (4)掌握与各类常用仪器分析方法相关联的实验操作技术 (5)了解各类常用仪器分析方法的分析对象、应用与检测范围 (6)培养对实验中所产生的各种误差的分析与判断能力 (7)掌握实验数据的正确处理方法与各类图谱的解析方法。

实验一水中氟化物的测定(氟离子选择电极法) 一、实验目的 (1)掌握电位法的基本原理。 (2)学会使用离子选择电极的测量方法和数据处理方法 一、原理 将氟离子选择电极和参比电极(如甘汞电极)浸入预测含氟溶液,构成原电池。该原电池的电动势与氟离子活度的对数呈线形关系,故通过测量电极与已知氟离子浓度溶液组成的原电池电动势和电极与待测氟离子浓度溶液组成的原电池电动势,即可计算出待测水样中氟离子浓度。常用定量方法是标准曲线法和标准加入法。 对于污染严重的生活污水和工业废水,以及含氟硼酸盐的水样均要进行预蒸馏。 三、仪器 1. 氟离子选择性电极。 2. 饱和甘汞电极或银—氯化银电极。 3. 离子活度计或pH计,精确到0.1mV。 4. 磁力搅拌器、聚乙烯或聚四氟乙烯包裹的搅拌子。 5. 聚乙烯杯:100 mL,150 mL。 6. 其他通常用的实验室设备。 四、试剂 所用水为去离子水或无氟蒸馏水。 1. 氟化物标准储备液:称取0.2210g标准氟化钠(NaF)(预先于105—110℃烘干2h,或者于500—650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100μg。 2. 氟化物标准溶液:用无分度吸管吸取氯化钠标准储备液10.00mL,注入1000mL容量瓶中,稀释至标线,摇匀。此溶液每毫升含氟离子10μg。 3. 乙酸钠溶液:称取15g乙酸钠(CH3COONa)溶于水,并稀释至100mL。 4. 总离子强度调节缓冲溶液(TISAB):称取58.8g二水合柠檬酸钠和85g硝酸

综合实验讲义

综合实验讲义 编写:李雅丽王香爱郭佰凯 祝保林李吉锋 化学与材料学院 二零一六年六月

目录 综合实验一四氧化三铅组成的测定 综合实验二锌钡白的制备 综合实验三己二酸的绿色合成及表征 综合实验四乙酰二茂铁的合成及分离 综合实验五富平合儿柿饼中铁、锌含量的测定综合实验六煤中全硫的测定方法(工业分析)综合实验七表面活性剂特征参数的测定 综合实验八几种农作物秸秆热值的测定

综合实验一四氧化三铅组成的测定 一实验目的 1练习称量、加热、溶解、过滤等基本操作; 2练习碘量法操作、练习EDTA测定溶液中的金属离子; 3掌握一种测定Pb3O4的组成的方法。 二实验原理 Pb3O4为红色粉末状固体,俗称铅丹或红丹。该物质为混合价态氧化物,其化学式可以写成2PbO﹒PbO2,即式中氧化数为+2的Pb占2/3,而氧化数为+4的Pb占1/3。但根据其结构,Pb3O4应为铅酸盐Pb2PbO4。 Pb3O4与HNO3反应时,由于PbO2的生成,固体的颜色很快从红色变为棕黑色: Pb3O4+4HNO3=PbO2+2Pb(NO3)2+2H2O 很多金属离子均能与多齿配体EDTA以1:1的比例生成稳定的螯合物,以+2价金属离子M2+为例,其反应如下: M2++EDTA4-=MEDTA2- 因此,只要控制溶液的PH,选用适当的指示剂,就可以用EDTA标准溶液,对溶液中的特定金属子进行定量测定。本实验中Pb3O4经HNO3作用分解后生成的Pb2+,可用六亚甲基四胺控制溶液的pH为5~6,以二甲酚橙为指示剂,用EDTA标准液进行测定。 PbO2是种很强的氧化剂,在酸性溶液中,它能定量的氧化溶液中的I- PbO2+4I-+4HAc=PbI2+I2+2H2O+4Ac- 从而可用碘量法来测定所生成的PbO2. 三实验用品 仪器:分析天平、台秤、称量瓶、干燥器、量筒(10mL,100mL)、烧杯(50mL)、锥形瓶(250mL)、漏斗、酸式滴定管(50mL)、碱式滴定管(50mL)、洗瓶、滤纸、PH试纸 试剂:四氧化三铅(A.R.)、碘化钾(A.R.)、HNO3(6molL·L-1)、EDTA 标准溶液(0.02mol·L-1)Na2S2O3标准溶液(0.02mol·L-1)、NaAc-HAc(1:1)混合液、NH3·H2O(1:1)六亚甲基四胺(20%)、淀粉(2%), 四实验步骤 1 Pb3O4的分解 用差量法准确称取干燥的Pb3O4 0.5g,置于50ml的小烧杯中同时加入 2mL6mol·L-1HNO3溶液,用玻璃棒搅拌,使之充分反应,可以看到红色的Pb3O4

信号与系统实验报告一

1. 实验原理 2. 设描述连续时间系统的微分方程为: ) ()()()()()()()(01) 1(1) (01)1(1)(t f b t f b t f b t f b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++---- 则可用向量a 和b 表示该系统,即 ],,,,[011a a a a a n n -= ],,,,[011b b b b b m m -= 注意,向量a 和b 的元素一定要以微分方程时间求导的降幂次序排列,且缺项要用0补齐。 如微分方程 )()()(2)(3)(t f t f t y t y t y +''=+'+'' 表示该系统的向量为 ]2 3 1[=a ]1 0 1[=b (1)求解冲激响应:impulse()函数 impulse()函数有以下四种调用格式: ① impulse(b,a) 该调用格式以默认方式绘制由向量a 和b 定义的连续时间系统的冲激响应的时域波形。 ② impulse(b,a,t) 该调用格式绘制由向量a 和b 定义的连续时间系统在t ~0时间范围内的冲激响应的时域波形。 ③ impulse(b,a, t1:p:t2) 该调用格式绘制由向量a 和b 定义的连续时间系统在21~t t 时间范围内,且以时间间隔 p 均匀抽样的冲激响应的时域波形。 ④ y=impulse(b,a,t1:p:t2) 该调用格式并不绘制系统冲激响应的波形,而是求出由向量a 和b 定义的连续时间系统在21~t t 时间范围内以时间间隔p 均匀抽样的系统冲激响应的数值解。 (2)求解阶跃响应:step()函数 step()函数也有四种调用格式: ① step(b,a) ② step(b,a,t) ③ step(b,a, t1:p:t2) ④ y=step(b,a,t1:p:t2) 上述调用格式的功能与impulse()函数完全相同。 (3)求解零状态响应:lsim()函数 lsim()函数有以下二种调用格式:

仪器分析实验整理讲义

仪器分析实验讲义 2016年3月

实验目录 实验一、核磁共振氢谱确定有机物结构 实验二、X射线衍射的物相分析 实验三、电感耦合等离子体发射光谱法测定茶叶中的金属元素火焰原子吸收法测定自来水中的钙、镁硬度 实验四、常规样品的红外光谱分析 实验五、苯丙氨酸和酪氨酸的紫外可见光谱分析 实验六、苯丙氨酸和酪氨酸的分子荧光光谱分析 实验七、内标法测定奶茶中的香兰素含量 实验八、毛细管电泳仪分离测定雪碧、芬达中的苯甲酸钠 实验九、液相色谱仪分离测定奶茶、可乐中的咖啡因 实验十、循环伏安法观察Fe(CN)6及抗坏血酸的电极反应过程实验十一、氟离子选择性电极法测定湖水中F-含量 实验十二、差热与热重分析研究Cu2SO4.5H2O脱水过程

实验1 根据1HNMR推出有机化合物C9H10O2的分子结构式 一、实验目的 (1)了解核磁共振谱的发展过程,仪器特点和流程。 (2)了解核磁共振波谱法的基本原理及脉冲傅里叶变换核磁共振谱仪的工作原理。 (3)掌握A V300MHz核磁共振谱仪的操作技术。 (4)熟练掌握液体脉冲傅里叶变换核磁共振谱仪的制样技术。 (5) 学会用1HNMR谱图鉴定有机化合物的结构。 二、实验原理 1HNMR的基本原理遵循的是核磁共振波谱法的基本原理。化学位移是核磁共振波谱法直接获取的首要信息。由于受到诱导效应、磁各向异性效应、共轭效应、范德华效应、浓度、温度以及溶剂效应等影响,化合物分子中各种基团都有各自的化学位移值的范围,因此可以根据化学位移值粗略判断谱峰所属的基团。1HNMR中各峰的面积比与所含的氢的原子个数成正比,因此可以推断各基团所对应氢原子的相对数目,还可以作为核磁共振定量分析的依据。偶合常数与峰形也是核磁共振波谱法可以直接得到的另外两个重要的信息。它们可以提供分子内各基团之间的位置和相互连接的信息。根据以上的信息和已知的化合物分子式就可推出化合物的分子结。图1是1H-NMR所用的脉冲序列。 图1:zg脉冲序列 三、仪器与试剂 1. 仪器 瑞士bruker公司生产的A V ANCE300NMR谱仪;?5mm的标准样品管1支。滴管1个。 2. 试剂 TMS(内标);CDCL3(氘代氯)仿;未知样品:C9H10O2。 四、操作步骤 1. 样品的配制 取2mg的:C9H10O2)放入? 5mm核磁共振标准样品管中,再将0.5ml氘代氯仿也加入此样品管中(溶液高度最好在3.5—4.0cm之间),轻轻摇匀,等完全溶解后,方可测试。若样品无法完全溶解,也可适当加热或用微波震荡等致其完全溶解。 2. 测谱 (1)样品管外部用天然真丝布擦拭干净后再插入转子中,放在深度规中量好高度。 严格按照操作规程(此处操作失误有可能摔碎样品管损害探头!)。按下“Lift on/off”键,

综合实验讲义[1]

从红辣椒中分离红色素 一、实验目的 1、学习用薄层层析和柱层析分离提取红色素。 2、掌握用薄层层析鉴定红色素、记录红色素的红外和紫外光谱。 二、实验原理 红辣椒中含有几种色素,因其极性不同,可用薄层层析和柱层析分离出来。 三、仪器与试剂 1、仪器 硅胶G薄层广口瓶层析柱 2、试剂 碾细的红辣椒1g,300ml二氯甲烷, 10g硅胶 四、实验步骤 1、在25ml圆底烧瓶中加入1g红辣椒和几粒沸石,加入10m二氯甲烷,装 上回流管回流20分钟,将烧瓶冷至室温,过滤除去固体,得粗色素溶液。 2、用广口瓶作为层析槽,以二氯甲烷作为展开剂,在硅胶G薄板上点样后, 在层析槽中进行层析。观察每一点的颜色,计算Rf值,用柱层析分离 Rf=0.6的主要红色素。 3、在层析柱的底部垫一团脱脂棉花并压紧它,加入洗脱剂二氯甲烷至层析 柱的3/4高度,打开活塞,放出少许溶剂,用玻璃压脱脂棉中的气泡,再 将30ml二氯甲烷与7.5g硅胶调成糊状加入层析柱中,使吸咐剂装填致密,然后在吸附剂上层覆盖一层石英砂。 4、打开活塞,使二氯甲烷洗脱剂液面降至覆盖硅胶的滤纸上表面,关闭活 塞。将色素的粗混合物溶液(约2ml)小心的转移至层析柱面上(用滴管 转移)。再打开活塞,待红色素溶液液面与滤纸齐平时,缓缓注入二氯甲 烷至高出石英砂2cm即可,以保持层析柱中的固定相不干,当再加入洗 脱剂不再带有色素颜色时,可将洗脱剂加至层析柱最上端。在层析柱下 端用试管分段收集各种颜色的馏分,当红色素洗脱后停止层析。 5、蒸除收集到的红色素馏分中的二氯甲烷,得红色素纯品。 五、实验结果与处理 用紫外光谱鉴别红色素,记录λmax。

信号与系统实验三

信号与系统实验实验三:信号的卷积 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1. 理解卷积的物理意义; 2. 掌握运用计算机进行卷积运算的原理和方法; 3. 熟悉卷积运算函数conv的应用; 二、预习内容 1. 卷积的定义及物理意义; 2. 卷积计算的图解法; 3. 卷积的应用 三、实验原理说明 1.卷积的定义 连续时间和离散时间卷积的定义分别如下所示: 2.卷积的计算 由于计算机技术的发展,通过编程的方法来计算卷积积分和卷积和已经不再是冗繁的工作,并可以获得足够的精度,因此信号的时域卷积分析法在系统分析中得到了广泛的应用。 卷积积分的数值运算可以应用信号的分段求和来实现,即: 数值运算只求当时的信号值,则由上式可以得到: 上式中实际上就是连续信号等间隔均匀抽样的离散序列的卷积和,当足够小的时候就是信号卷积积分的数值近似。因此,在利用计算机计算两信号卷积积分时,实质上是先将其转化为离散序列,再利用离散卷积和计算原理来计算。 3.卷积的应用 3.1 求解系统响应 卷积是信号与系统时域分析的基本手段,主要应用于求解系统响应,已知一LTI系统的单位冲激响应和系统激励信号则系统响应为激励与单位冲激响应的卷积。 需要注意的是利用卷积分析方法求得的系统响应为零状态响应。 3.2 相关性分析 相关函数是描述两个信号相似程度的量。两信号之间的相关函数一般称之为互相关函数或者互关函数,定义如下: 若是同一信号,此时相关函数称为自相关函数或者自关函数: 对于相关函数与卷积运算有着密切的联系,由卷积公式与相关函数比较得: 可见,由第二个信号反转再与第一个信号卷积即得到两信号的相关函数。 4.涉及的Matlab函数 4.1 conv函数 格式w = conv(u,v),可以实现两个有限长输入序列u,v的卷积运算,得到有限冲激响应系统的输出序列。输出序列长度为两个输入序列长度和减一。 四、实验内容 给定如下因果线性时不变系统: y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3=0.9x[n]-0.45x[n-1]+0.35x[n-2]+0.002x[n-3] (1)不用impz函数,使用filter命令,求出以上系统的单位冲激响应h[n]的前20个样本; clc; N = 0:19;

仪器分析实验讲义

1. 阳极溶出伏安法测定水中微量镉 1.1 实验目的 1. 了解阳极溶出伏安法的基本原理。 2. 掌握汞膜电极的制备方法。 3. 学习阳极溶出伏安法测定镉的实验技术。 1.2 基本原理 溶出伏安法是一种灵敏度高的电化学分析方法,一般可达10-8~10-9 mol/L,有时可达10-12mol/L,因此在痕量成分分析中相当重要。 溶出伏安法的操作分两步。第一步是预电解过程,第二步是溶出过程。预电解是在恒电位和溶液搅拌的条件下进行,其目的是富集痕量组分。富集后,让溶液静止30s 或1min,再用各种极谱分析方法(如单扫描极谱法) 溶出。 阳极溶出伏安法,通常用小体积悬汞电极或汞膜电极作为工作电极,使能生成汞齐的被测金属离子电解还原,富集在电极汞中,然后将电压从负电位扫描到较正的电位,使汞齐中的金属重新氧化溶出,产生比富集时的还原电流大得多的氧化峰电流。 本实验采用镀一薄层汞的玻碳电极作汞膜电极,由于电极面积大而体积小,有利于富集。先在-1.0 V (vs.SCE) 电解富集镉,然后使电极电位由-1.0 V 线性地扫描至-0.2 V,当电位达到镉的氧化电位时,镉氧化溶出,产生氧化电流,电流迅速增加。当电位继续正移时,由于富集在电极上的镉已大部分溶出,汞齐浓度迅速降低,电流减小,因此得到尖峰形的溶出曲线。 此峰电流与溶液中金属离子的浓度、电解富集时间、富集时的搅拌速度、电极的面积和扫描速度等因素有关。当其它条件一定时,峰电流i p只与溶液中金属离子的浓度c 成正比: i p=Kc 用标准曲线法或标准加入法均可进行定量测定。标准加入法的计算公式为: 式中c x、Vx、h 分别为试液中被测组分的浓度、试液的体积和溶出峰的峰高;c s、Vs 为加入标准溶液的浓度和体积;H 为试液中加入标准溶液后溶出峰

信号与系统实验DOC

信号与系统实验讲义 雷明东编 重庆文理学院 电子电气学院 2014年10月

实验注意事项 1、不准迟到早退,开始做实验前需要签字; 2、在离开实验室前,要整理好实验设备、桌椅、收拾好垃圾后,待老师检查完毕,方可离开实验室; 3、做实验期间不准大声喧哗,如有问题需举手示意; 4、不准在无老师授权的情况下随意拆卸实验设备; 5、在每次做新实验前,需交前个实验的实验报告。

实验一 常用信号的分类和观察 一 实验目的: 1、观察和了解常见信号的波形和特点。 2、理解相关信号参数的作用和意义。 3、掌握信号的FFT 变换。 3、熟练掌握示波器的使用。 二 实验原理: 描述信号的基本方法是写出它的数学表达式,此表达式是时间的函数,绘出函数的图像称为信号的波形。 对于各种信号,可以从不同的角度分类。如分成确定性信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号等。 常见信号除了包括正弦波)sin()(0φω+=t A t x 、指数函数信号t Ke t x α=)(、抽样函数信号t t A t x /)(sin )(=、高斯函数信号τ/)(t Ke t x -=、方波、三角波、锯齿波,还包括一些直流信号。 三 预习练习: 1、预习有关信号的分类和描述。 2、理解信号的函数表达式和相关参数的意义。 四 实验内容及步骤: 1、 根据实验箱上函数信号发生器模块的提示选择相应的信号波形代码。 01:正弦波 02:方波 03:锯齿波 04:三角波

05:阶梯波 06:衰减指数信号 07:高斯函数信号 08:抽样函数信号 09:抽样脉冲 10:调幅信号 11:扫频信号 2、用示波器测量信号,读取信号的幅度和频率,并用坐标纸记录信号波形; 在信号与系统实验箱上的电源模块用电压表(或万用表)与示波器来观 测电源信号的特点,并测量电源的幅度。 3、在示波器上观测扫频信号的波形特征,大致画出扫频信号的波形。 4、利用示波器中的FFT函数,来观看信号的FFT变换形式。 5、用频谱分析仪观测各个信号的频谱(选做)。 五实验仪器: 1、信号系统实验箱(函数信号发生器模块) 2、双踪示波器 六实验报告内容: 1、根据实验测量所得数据,绘制各个信号的波形图。 2、绘制各个波形的FFT变换波形。 3、写出相应的函数表达式与频域变换表达式。 4、用示波器直流档观测函数信号的波形特点,并说明原因(提示:本函数发生器所产生的信号均由单片机AT89C51产生)。

(精)仪器分析实验讲义

实验一722 型分光光度计的性能检测 一、目的 1、学会使用分光光度计 2、掌握分光光度计的性能检验方法 二、提要 1、分光光度计的性能好坏,直接影响到测定结果的准确性,因此新购仪器及使用一定时间后,均需进行检验调整。 2、利用KMnO4溶液的最大吸收峰值来检验波长的精度。 3、用同种厚度的比色皿,由于材料及工艺等原因,往往造成透光率的不一致,从而影响测定 结果,故在使用时须加以选择配对。 三、仪器与试剂 1、722 型分光光度计; 2、小烧杯; 3、坐标纸; 4、滴管; 5、擦镜纸; 6、KMnO4溶液; 四、操作步骤 1、吸收池透光率的检查(测定透光率) 吸收池透光面玻璃应无色透明,并应无水、干燥。 检查方法如下:以空气的透光率为100%,则比色皿的透光率应不低于84%,同时在450nm、650nm 处测其透光率,各透吸收池透光率差值应小于5%。 2、吸收池的配对性(测定透光率) 同种厚度的吸收池之间,透光率误差应小于0.5%。 检查方法如下:将蒸馏水分别注入厚度相同的几个吸收池中。以其中任一个比色皿的溶液做空白,在440nm 波长处分别测定其它各比色皿中溶液的透光率,然后选择相差小于0.5% 的吸收池使用。 3、重现性(光度重复性)(测定透光率) 仪器在同一工作条件下,用同种溶液连续测定7 次,其透光率最大读数与最小读数之差(极差)应小于0.5%。 检查方法如下:以蒸馏水的透光率为100%,用同一KMnO4溶液连续测定7 次,求出极差,如小于0.5%,则符合要求。 4、波长精度的检查(测定A) 为了检查分光系统的质量,可用KMnO4溶液的最大吸收波长525nm 为标准,在待检查仪器上测绘KMnO4溶液的吸收曲线。 检查方法如下:取3.0×10-5mol/L 的KMnO4溶液,以蒸馏水为空白,在460nm~580nm 范围内,分别测定460、480、500、510、520、522、524、525、526、528、530、540、550、560、570、580nm 波长处的吸光度,在坐标纸上绘出吸收曲线。若测得的最大吸收波长在525±10nm 以内,说明该仪器符合要求。

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

仪器分析实验内容(一)-推荐下载

邻二氮菲分光光度法测定试样中的微量铁 一、实验目的 1.掌握邻二氮菲分光光度法测定微量铁的方法原理2.熟悉绘制吸收曲线的方法,正确选择测定波长3.学会制作标准曲线的方法 4.通过邻二氮菲分光光度法测定微量铁,掌握721型分光光度计的正确使用方法,并了解此仪器的主要构造。 二、实验原理 邻二氮菲(phen )和Fe 2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen) ,其lg K =21.3,ε508=1.1×104 L·mol -1·cm -1,铁含量在0.1~6μg·mL -1范围内遵守比尔定律。显色前需用盐酸羟胺或抗坏血酸将Fe 3+全部还原为Fe 2+,然后再加入邻二氮菲,并调节溶 液酸度至适宜的显色酸度范围。有关反应如下: ==== ↑+ 2H 2O + 4H + + 2Cl -HCl OH NH 2Fe 223?++22N Fe 2++N N Fe 2+ + 3 Fe 3 2+ 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度A ,以溶液的浓度C 为横坐标,相应的吸光度A 为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度Ax ,根据测得吸光度值Ax 从标准曲线上查出相应的浓度值Cx ,即可计算试样中被测物质的质量浓度。 三、仪器和试剂 1.仪器 721型分光光度计,1 cm 比色皿。2.试剂 (1)100 μg·mL -1铁标准储备溶液。 (2)100 g·L -1盐酸羟胺水溶液。用时现配。 (3)0.1% 邻二氮菲水溶液。避光保存,溶液颜色变暗时即不能使用。(4)pH=5.0的乙酸-乙酸钠溶液。四、实验步骤 1.显色标准溶液的配制 在序号为1~6的6只50 mL 容量瓶中,用吸量管分别加入0,0.4,0.8,1.2,1.6,2.0 mL 铁标准使用液(含铁约100μg·mL -1),分别加入1.00 mL 100 g·L -1盐酸羟胺溶液,摇匀后放置2 min ,再各加入5.0 mL 乙酸-乙酸钠溶液,3.00 mL 0.1% 邻二氮菲溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制 在分光光度计上,用1 cm 吸收池,以试剂空白溶液(1号)为参比,在480~540 nm 之间进行扫描,测定待测溶液(如5号)的吸光度A ,得到以波长为横坐标,吸光度为纵坐标的吸收曲线,从而选择测定铁的最大吸收波长λmax。 3.标准曲线的测绘 以步骤1中试剂空白溶液(1号)为参比,用1 cm 吸收池,在 严等问题,合理调试工作并且保护装置调试技

综合化学实验讲义

宁夏理工学院综合化学实验(试用版) 罗桂林陈兵兵陈丽等主编 文理学院化工系 2014年10月

目录 实验一过氧化钙的合成及含量分析.............................. 错误!未定义书签。实验二三草酸合铁(Ⅲ)酸钾的制备及组成测定.................. 错误!未定义书签。实验三食盐中碘含量的测定(分光光度法)..................... 错误!未定义书签。实验四乙酸正丁酯的制备...................................... 错误!未定义书签。实验五水果中总酸度及维生素C含量的测定...................... 错误!未定义书签。实验六查尔酮的全合成........................................ 错误!未定义书签。

实验一过氧化钙的合成及含量分析 一、实验目的 1. 掌握制备过氧化钙的原理及方法。 2. 掌握过氧化钙含量的分析方法。 3. 巩固无机制备及化学分析的基本操作。 二、实验原理 在元素周期表中,第一主族和第二主族以及银与锌等均可形成化学稳定性各异的简单过氧化物;它们是氧化剂,对生态环境是有好的,生产过程中一般不排放污染物,可以实现污染的零排放。 CaO 2·8H 2 O是白色或微黄色粉末,无臭无味,在潮湿空气中可以长期缓慢释 放出氧气,50℃转化为CaO 2·2H 2 O,110℃-150℃可以脱水,转化为CaO 2, 室温下 较为稳定,加热到270℃时分解为CaO和O 2。 2CaO 2 =2CaO + O 2 △ r H m = mol CaO 2难溶于水,不溶于乙醇和丙酮,它与稀酸反应生成H 2 O 2 ,若放入微量的 碘化钾作催化剂,可作为应急氧气源;CaO 2 广泛用作杀菌剂、防腐剂、解酸剂和 油类漂白剂,CaO 2 也是种子及谷物的消毒剂,如将其用于稻谷种子拌种,不易发生秧苗烂根。 制备的原料可以是CaCl 2·6H 2 O、H 2 O 2 、NH 3 ·H 2 O,也可以是Ca(OH) 2 和NH 4 Cl, 在较低的温度下,通过原料物质之间的反应,在水溶液生成CaO 2·8H 2 O,在110℃ 条件下真空干燥,得到白色或微黄色粉末CaO 2 。有关反应式如下: CaCl 2 + 2 NH 3 ·H 2 O = 2NH 4 Cl + Ca(OH) 2 Ca(OH) 2 + H 2 O 2 + 6 H 2 O = CaO 2 ·8H 2 O 连解得: CaCl 2 + H 2 O 2 + 2 NH 3 ·H 2 O + 6 H 2 O ══ CaO 2 ·8H 2 O + 2NH 4 Cl 过氧化钙含量的测定,可以利用在酸性条件下,过氧化钙与稀酸反应生成过氧化氢,用标准高锰酸钾滴定来确定其含量。为加快反应,可加入微量的硫酸锰。 5CaO 2 + 2MnO 4 - + 16H+ = 5Ca2+ + 2Mn2+ + 5O 2 ↑+ 8H 2 O CaO 2的质量分数为:W(CaO 2 )= *C *V *M /m

北京理工大学信号与系统实验实验报告

实验1 信号的时域描述与运算 一、实验目的 1. 掌握信号的MATLAB表示及其可视化方法。 2. 掌握信号基本时域运算的MA TLAB实现方法。 3. 利用MA TLAB分析常用信号,加深对信号时域特性的理解。 二、实验原理与方法 1. 连续时间信号的MATLAB表示 连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。 从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。例如一个正弦信号可以表示如下: >> t=0:0.01:10; >> x=sin(t); 利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。 如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。例如对于上述正弦信号,可以用符号对象表示如下: >> x=sin(t); >> ezplot(X); 利用ezplot(x)命令可以绘制上述信号的时域波形 Time(seconds) 图1 利用向量表示连续时间信号

t 图 2 利用符号对象表示连续时间信号 sin(t) 2.连续时间信号的时域运算 对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。 1)相加和相乘 信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。 2)微分和积分 对于向量表示法表示的连续时间信号,可以通过数值计算的方法计算信号的微分和积分。这里微分使用差分来近似求取的,由时间向量[N t t t ,,,21?]和采样值向量[N x x x ,,,21?]表示的连续时间信号,其微分可以通过下式求得 1,,2,1,|)('1-?=?-≈ +=N k t x x t x k k t t k 其中t ?表示采样间隔。MA TLAB 中用diff 函数来计算差分 k k x x -+1。 连续时间信号的定积分可以由MATLAB 的qud 函数实现,调用格式为 quad ('function_name',a,b) 其中,function_name 为被积函数名,a 、b 为积分区间。

仪器分析实验目录和讲义(2015)

实验讲义 实验65火焰原子吸收光谱法测定钙 实验目的 掌握原子吸收分光光度法的基本原理,了解原子吸收分光光度计的基本结构;了解原子吸收分光光度法实验条件的优化方法,了解与火焰性质有关的一些条件参数及其对钙测定灵敏度的影响;掌握火焰原子吸收光谱分析的基本操作;加深对灵敏度、准确度、空白等概念的认识。 实验原理 原子吸收光谱法是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的方法。每种元素有不同的核外电子能级,因而有不同的特征吸收波长,其中吸收强度最大的一般为共振线,如Ca的共振线位于422.7 nm。溶液中的钙离子在火焰温度下变成钙原子,由空心阴极灯辐射出的钙原子光谱锐线在通过钙原子蒸汽时被强烈吸收,其吸收的程度与火焰中钙原子蒸汽浓度符合郎伯-比耳定律,即:A=log(1/T)=KNL(其中:A—吸光度,T —透光度,L—钙原子蒸汽的厚度,K—吸光系数,N—单位体积钙原子蒸汽中吸收辐射共振线的基态原子数)。在一定条件下,基态原子数N与待测溶液中钙离子的浓度成正比,通过测定一系列不同钙离子含量标准溶液的A值,可获得标准曲线,再根据未知溶液的吸光度值,即可求出未知液中钙离子的含量。 原子化效率是指原子化器中被测元素的基态原子数目与被测元素所有可能存在状态的原子总数之比,它直接影响到原子化器中被测元素的基态原子数目,进而对吸光度产生影响。测定条件的变化(如燃助比、测光高度或者称燃烧器高度)和基体干扰等因素都会严重影响钙在火焰中的原子化效率,从而影响钙测定灵敏度。因此在测定样品之前都应对测定条件进行优化,基体干扰则通常采用标准加入法来消除。 仪器和试剂 AA-300型原子吸收分光光度计(美国PE公司);比色管(10 mL 6支);比色管(25 mL 1支);容量瓶(100 mL 1个);移液管(5 mL 2支)。 钙标准溶液(100 μg·mL-1);镧溶液:(10 mg·mL-1)。 本实验以乙炔气为燃气,空气为助燃气。 实验内容 1. 测试溶液的制备 (1)条件试验溶液的配制:将100 μg·mL-1的Ca2+标液稀释成浓度约为2-3 μg·mL-1的Ca2+试液100 mL,摇匀。此溶液用于分析条件选择实验。

仪器分析实验内容

1 邻二氮菲分光光度法测定试样中的微量铁 一、实验目的 1.掌握邻二氮菲分光光度法测定微量铁的方法原理 2.熟悉绘制吸收曲线的方法,正确选择测定波长 3.学会制作标准曲线的方法 4.通过邻二氮菲分光光度法测定微量铁,掌握721型分光光度计的正确使用方法,并了解此仪器的主要构造。 二、实验原理 邻二氮菲(phen )和Fe 2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen)2+3 ,其lg K =21.3,κ508=1.1×104 L ·mol -1·cm -1,铁含量在0.1~6μg ·mL -1 范围内遵守比尔定律。 显色前需用盐酸羟胺或抗坏血酸将Fe 3+全部还原为Fe 2+,然后再加入邻二氮菲,并调节溶液 酸度至适宜的显色酸度范围。有关反应如下: HCl OH NH 2Fe 223?++ ==== 22N Fe 2++↑+ 2H 2O + 4H + + 2Cl - N N Fe 2++ 3 N N Fe 3 2+ 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度A ,以溶液的浓度C 为横坐标,相应的吸光度A 为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度Ax ,根据测得吸光度值Ax 从标准曲线上查出相应的浓度值Cx ,即可计算试样中被测物质的质量浓度。 三、仪器和试剂 1.仪器 721型分光光度计,1 cm 比色皿。 2.试剂 (1)100 μg·mL -1铁标准储备溶液,10 μg·mL -1铁标准使用液。 (2)100 g ·L -1盐酸羟胺水溶液。用时现配。 (3)0.1% 邻二氮菲水溶液。避光保存,溶液颜色变暗时即不能使用。 (4)1.0 mol ·L -1乙酸钠溶液。 四、实验步骤 1.显色标准溶液的配制 在序号为1~6的6只50 mL 容量瓶中,用吸量管分别加入0, 2.0,4.0,6.0,8.0,10.0 mL 铁标准使用液(含铁10μg·mL -1),分别加入1.00 mL 100 g ·L -1盐酸羟胺溶液,摇匀后放置2 min ,再各加入5.0 mL 1.0 mol ·L -1乙酸钠溶液,3.00 mL 0.1% 邻二氮菲溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制 在分光光度计上,用1 cm 吸收池,以试剂空白溶液(1号)为参比,在460~560 nm 之间进行扫描,测定待测溶液(5号)的吸光度A ,得到以波长为横坐标,吸光度为纵坐标的吸收曲线,从而选择测定铁的最大吸收波长λmax 。 3.标准曲线的测绘 以步骤1中试剂空白溶液(1号)为参比,用1 cm 吸收池,在选 定波长下测定2~6号各显色标准溶液的吸光度。以铁的浓度(μg.mL -1)为横坐标,相应的吸

信号与系统实验报告

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

大一仪器分析实验讲义(2014修订)

实验65火焰原子吸收光谱法测定钙 实验目的 掌握原子吸收分光光度法的基本原理,了解原子吸收分光光度计的基本结构;了解原子吸收分光光度法实验条件的优化方法,了解与火焰性质有关的一些条件参数及其对钙测定灵敏度的影响;掌握火焰原子吸收光谱分析的基本操作;加深对灵敏度、准确度、空白等概念的认识。 实验原理 原子吸收光谱法是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的方法。每种元素有不同的核外电子能级,因而有不同的特征吸收波长,其中吸收强度最大的一般为共振线,如Ca的共振线位于422.7 nm。溶液中的钙离子在火焰温度下变成钙原子,由空心阴极灯辐射出的钙原子光谱锐线在通过钙原子蒸汽时被强烈吸收,其吸收的程度与火焰中钙原子蒸汽浓度符合郎伯-比耳定律,即:A=log(1/T)=KNL(其中:A—吸光度,T —透光度,L—钙原子蒸汽的厚度,K—吸光系数,N—单位体积钙原子蒸汽中吸收辐射共振线的基态原子数)。在一定条件下,基态原子数N与待测溶液中钙离子的浓度成正比,通过测定一系列不同钙离子含量标准溶液的A值,可获得标准曲线,再根据未知溶液的吸光度值,即可求出未知液中钙离子的含量。 原子化效率是指原子化器中被测元素的基态原子数目与被测元素所有可能存在状态的原子总数之比,它直接影响到原子化器中被测元素的基态原子数目,进而对吸光度产生影响。测定条件的变化(如燃助比、测光高度或者称燃烧器高度)和基体干扰等因素都会严重影响钙在火焰中的原子化效率,从而影响钙测定灵敏度。因此在测定样品之前都应对测定条件进行优化,基体干扰则通常采用标准加入法来消除。 仪器和试剂 AA-300型原子吸收分光光度计(美国PE公司);比色管(10 mL 6支);比色管(25 mL 1支);容量瓶(100 mL 1个);移液管(5 mL 2支)。 钙标准溶液(100 μg·mL-1);镧溶液:(10 mg·mL-1)。 本实验以乙炔气为燃气,空气为助燃气。 实验内容 1. 测试溶液的制备 (1)条件试验溶液的配制:将100 μg·mL-1的Ca2+标液稀释成浓度约为2-3 μg·mL-1的Ca2+试液100 mL,摇匀。此溶液用于分析条件选择实验。 (2)标准溶液的配制:用分度吸量管取一定体积的100 μg·mL-1 Ca2+标液于25 mL比色管中,用去离子水稀释至25 mL刻度处(若去离子水的水质不好,会影响钙的测定灵敏度和校

综合与实验讲义

基础化学实验教程(V) ------- 综合与设计性实验讲义 吉林化工学院基础化学教学与实验中心 目录 实验七葡萄糖酸锌的制备和分析(综合性化学实验)?????????????????????????????????? 实验八1,2, 4-三唑的制备(设计性化学实验)?????????????????????????????????????? 实验十香豆素-3-羧酸的制备

实验七补锌口服液葡萄糖酸锌的综合实验(综合性实验) 一、实验目的 葡萄糖酸锌是近年来开发的的一种补锌四品添加剂。人体缺锌会造成生长停滞、自发性味觉减退或创伤愈合不良等现象,从而发生各种疾病。以往常用硫酸锌作添加剂,但它对人体的肠胃道有一定的刺激作用,而且吸收率也比较低。葡萄糖酸锌则有吸收率高、副作用少、使用方便等特点,是20世纪80年代中期发展起来的一种补锌添加剂,特别是作为儿童食品、糖果的添加剂,应用日趋广泛。 合成葡萄糖酸锌的方法很多,可分为直接合成法和间接合成法两大类。葡萄糖酸锌的纯度分析可采用络合滴定法。 通过本实验要求达到如下目的: (1)学习和掌握合成简单药物的基本方法。 (2)学习并掌握葡萄糖酸锌的合成。 (3)进一步巩固络合滴定分析法。 (4)了解锌的生物意义。 二、实验原理 葡萄糖酸锌为白色或接近白色的结晶性粉末,无臭略有不适味,溶于水,易溶于沸水,15C时饱和溶液的质量分数为25%,不溶于无水乙醇、氯仿和乙醚。 葡萄糖酸锌是以葡萄糖酸钙和硫酸锌(或硝酸锌)等为原料直接合成。其反应为: Ca(C6H ii O7)2+ ZnSCH = Zn( C6H"O7)2 + CaSC4 这类方法的缺点是产率低、产品纯度差。 在pH?10的溶液中,铬黑T (EBT)与Zn+形成比较稳定的酒红色螯合物(Zn-EBT),而EDTA与Zn+能形成更为稳定的无色螯合物。因此滴定至终点时,铬黑T便被EDTA从Zn-EBT中置换出来,游离的铬黑T在pH 值在8?11之间的溶液中呈纯蓝色。 Zn-EBT + EDTA = Zn-EDTA + EBT 酒红色纯蓝色 葡萄糖酸锌溶液中游离的锌离子也可与EDTA形成稳定的络合物,因此EDTA滴定法能确定葡萄糖酸锌的含量。 三、实验用品 1 .仪器 台秤,蒸发皿,布氏漏斗,吸滤瓶,电子天平,滴定管(50mL),移液管(25mL),烧杯,容量瓶。 2.试剂 葡萄糖酸钙,ZnSO4.7H2O,硫酸(1mol/L),乙醇(95%), NH3.H2O- NH4CI缓冲溶液(pH~ 10),活性炭,乙二胺四乙酸二钠盐(简称EDTA,AR),Zn 粒,氨水(1 : 1),HCl (6mol/L),铬黑T (s,1%)。 四、实验步骤 1.葡萄糖酸锌的合成。称取葡萄糖酸钙4.5g,放入50mL烧杯中,加入12mL蒸馏水。另称取Zn- SO4.7H2O3.Og,用12mL蒸馏水使之溶解,在不断搅拌下,把ZnSO4溶液逐滴加入葡萄糖酸钙溶液中,加完后在90°C水浴中保温约20min,抽滤除去CaSO4沉淀,溶液转入烧杯,加热近沸,加入少量活性炭脱色,趁热抽滤。滤液冷却至室温,加10mL95%乙醇(降低葡萄糖酸锌的溶解度),并不断搅拌,此时有胶状葡萄糖酸锌析出,充分搅拌后,用倾析法去除乙醇液,得葡萄糖酸锌粗品。

相关文档
最新文档