常用色谱与光谱分析方法与技术
常见的化学成分分析方法及其原理

常见的化学成分分析方法及其原理化学成分分析方法是确定样品组成及其各组成部分的方法。
该方法可以用于分析无机物、有机物、生物体、环境样品等广泛的物质。
常用的化学成分分析方法包括:重量分析、光谱分析、色谱分析和电化学分析。
一、重量分析重量分析又称量化分析,是通过物质的质量来确定其组成成分的方法,常包括:元素分析、滴定分析和荧光分析。
1. 元素分析元素分析是一种定量分析方法,它通过分析物质中某一元素的含量来确定组成成分。
常见的元素分析方法有:化学量析法、火焰光谱法和原子荧光法等。
其中,化学量析法通过元素化学配比的方法,使用一定数量的定量反应,然后通过测量反应前后质量的差异,来计算样品中元素的含量。
火焰光谱法和原子荧光法则是利用元素在高温物质中激发电子的方式,测量其发出的特定频率的光谱线来测定元素的含量。
2. 滴定分析滴定分析是一种化学计量定量分析方法,它通过一种溶液向另一种溶液滴加已知浓度的溶液的数量,来测定被滴溶液中成分含量的方法。
常见的滴定分析方法有酸碱滴定法、络合滴定法、氧化还原滴定法和复合滴定法等。
其中,酸碱滴定法是一种比较简单的滴定方法,通过酸、碱之间的中和反应来确定样品中含酸、碱程度的方法。
3. 荧光分析荧光分析是一种测定有机或生物体分子在光的激发下发出的荧光强度来计算成分含量的方法。
荧光分析法广泛应用于生物化学、医学、环境等领域中,特别是在药物组分的定量分析等方面。
二、光谱分析光谱分析又称为光谱学,包括红外光谱、紫外光谱、拉曼光谱、核磁共振光谱和质谱光谱等方法。
这些方法是以物质对电磁波不同能量的吸收、发射或偏振等为基础,通过测量荧光、吸收、发射等性质,对样品的组成成分及其结构进行分析。
1. 红外光谱红外光谱是一种能够分析有机和无机分子结构的非破坏性分析方法。
在该方法中,样品会通过过滤器或特定检测器中的红外光的特定波长,对被检测样品的振动吸收谱进行检测。
红外光谱可以用于鉴别分析、定量分析、结构分析等。
现代分析方法和技术在药物分析中的应用

现代分析方法和技术在药物分析中的应用摘要:在目前阶段,现代分析技术变得更加科学化、高效化,其在药物分析中的作用也越来越大,可以更好地帮助药物分析过程更加高效、实时以及快捷。
药品的鉴别和检测是关系到国家医药卫生事业发展和药品使用安全性的一个关键问题。
伴随着现代分析技术的持续发展,它不仅为医药分析技术的迅速发展奠定了基础,而且在药物的临床研究和中药成分的分析方面也发挥了很大的作用。
关键词:分析技术;药物分析;应用1色谱技术在药物分析中的研究与应用1.1高效液相色谱法(HPLC)在药物的研究中,HPLC是最为常用的一种,它的功能是对药物进行检测和分离。
主要内容包括:原辅料、药材、不同类型的制剂、中成药等。
其分析流程是:高压输液泵将流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将被测样品导入,流动相将样品依次带入预柱、色谱柱,在色谱柱中,被测样品分子与固定相分子之间相互作用,发生吸附、解吸附等过程,使得不同的物质在色谱柱中的移动速度不同,从而得到分离,并依次随流动相流至检测器,转化为可供检测的信号,送至工作站记录、处理和保存,完成定性定量分析。
在对现有药品进行检验时,采用《国家药典》规定的常规检验方法;在新药开发过程中,需要通过改变各种色谱条件,摸索分析方法,以获得最佳的分离效果。
1.2超高效液相色谱法(UPLC)UPLC是在HPLC的基础上开发出来的一种用于对热不稳定性、极性和大分子物质进行分离和分析的新方法。
超高效液相色谱柱的特征在于降低了柱子填充粒子的尺寸,并基于柱子的高效性,实现了高精度的高分离性和快速的分析。
特别是在对注射剂中的酸醛和醛进行分析和测量的时候,只需要一次进样,就能对两个数据进行分析。
并能确保在分析过程中,各成分都能有较好的分析效果,其特征是:分离度高,敏感性高,分析时间短,重复性好。
1.3气相色谱法(GC)GC和HPLC在于多方面有相似之处。
工作原理是:试样气体由载气携带进入色谱柱,与填料之间发生相互作用,这种相互作用大小的差异使各组分互相分离而按先后次序从色谱柱流出,转变为电信号,进行鉴定和测量。
化学成分检测方法

化学成分检测方法首先,常见的化学成分检测方法之一是光谱分析。
光谱分析是通过物质与电磁波之间的相互作用来研究其组成、结构和性质的方法。
光谱分析包括紫外可见光谱、红外光谱、核磁共振光谱和质谱等多种技术。
紫外可见光谱能够测量物质在紫外和可见光区域的吸收和发射特性,从而确定其组成。
红外光谱则可以分析物质的分子结构,通过观察物质在红外区域的振动和吸收来确定其官能团。
核磁共振光谱则可用于研究物质的分子结构和原子核之间的相互作用。
质谱则可以通过测量物质中各个组成部分的质量/电荷比来确定其相对含量和分子量。
其次,还有常见的化学成分检测方法是色谱分析。
色谱分析是一种用于分离和鉴定混合样品中各个成分的方法。
常见的色谱分析包括气相色谱、液相色谱和离子色谱等。
气相色谱是通过样品中各组分在气相和固定相之间的分配行为来实现分离的。
液相色谱则是利用样品中各组分在液相和固定相之间的分配和吸附行为来实现分离。
离子色谱则是通过样品中各组分与载体离子之间的离子交换来实现分离。
色谱分析方法能够提供物质组分的分离和定量,从而确定样品的化学成分和含量。
此外,还有一种常见的化学成分检测方法是电化学分析。
电化学分析是利用电化学方法研究化学分析的一种技术。
常见的电化学分析包括电解、电位滴定和电化学传感器等。
电解是通过施加外加电压使物质电离或还原来进行分析的方法。
电位滴定则是通过测量电位的变化来推断物质的分析浓度。
电化学传感器则是通过检测物质与电极的电流或电位变化来实现对物质分析的定量或定性。
最后,还有一种常见的化学成分检测方法是质量分析。
质量分析是一种测量物质分子或原子的质量和相对含量的方法。
常见的质量分析方法包括质谱和质量流量分析法等。
质谱是通过测量物质分子或原子的质荷比来确定其相对质量和相对含量。
质量流量分析法则是通过测量气体或液体样品中的质量流量来推断其成分和浓度。
综上所述,化学成分检测方法具有多种多样的技术,不同的方法适用于不同的样品和分析目的。
常用色谱和光谱分析方法和技术

常用色谱和光谱分析方法和技术色谱分析、光谱分析以及两谱联用技术,构成了药物分析学科领域中最主要和最基本的研究手段和方法,应用日趋广泛,发展十分迅速,新颖方法层出不穷。
新近常用的色谱分析方法:一、胶囊色谱(Micellar Chromatography,MC)又称拟相液相色谱或假相液相色谱(Pseudophase LC),是一种新型的液相色谱技术。
特点是应用含有高于临界胶囊(或称胶束,微胞等)浓度的表面活性剂溶液作为流动相。
所谓“胶囊”就是表面活性剂溶液的浓度超过其临界胶囊浓度(Critical Micelle Concentration,CMC)时形成的分子聚合体。
通常每只胶囊由n个(一般为25~160个)表面活性剂单体分子组成,其形状为球形或椭圆球形。
在CMC值以上的一个较大浓度范围内,胶囊溶液的某些物理性质(如表面张力、电导等等)以及胶囊本身的大小是不变的。
构成胶囊的分子单体与溶液中自由的表面活性剂的分子单体之间存在着迅速的动态平衡。
通常有正相与反相两种胶囊溶液。
前者是由表面活性剂溶于极性溶剂所形成的亲水端位于外侧而亲脂端位于内部的胶囊;后者是指表面活性剂溶于非极性溶剂所形成的亲水端位于核心而亲脂基位于外面的胶囊。
被分离组分与胶囊的相互作用和被分离组分与一般溶剂的作用方式不同,并且被分离组分和两种胶囊的作用也有差别。
改变胶囊的类型、浓度、电荷性质等对被分离组分的色谱行为、淋洗次序以及分离效果均有较大影响。
胶囊色谱就是充分运用了被分离组分和胶囊之间存在的静电作用、疏水作用、增溶作用和空间位阻作用以及其综合性的协同作用可获得一般液相色谱所不能达到的分离效果。
适用于化学结构类似、性质差别细微的组分的分离和分析,是一种安全、无毒、经济的优越技术。
(一)原理:胶囊溶液是一种微型非均相体系(Microheterogenous system)。
在胶囊色谱中,分离组分在固定相与水之间、胶囊与水相之间以及固定相与胶囊之间存在着分配平衡。
色谱法概论PPT课件

能。
色谱法与其他技术的联用
色谱-质谱联用(GC-MS, LC-MS)
通过将色谱的分离能力与质谱的高灵敏度检测相结合,可实现对复杂样品中目标化合物 的定性和定量分析,广泛应用于药物代谢、环境监测等领域。
色谱-光谱联用(GC-IR, LC-UV/Vis)
色谱与光谱技术的联用可以提供更丰富的化合物结构和组成信息,有助于深入了解化合 物的性质和行为。
实验材料
确保色谱柱、试剂、溶 剂等材料的质量和纯度,
以满足实验要求。
实验设备
检查色谱仪、检测器、 注射器等设备的运行状 况,确保实验过程中设
备正常工作。
实验设计
根据实验目的和要求, 设计合理的色谱条件和
实验方案。
实验安全
注意实验过程中的安全 问题,如使用有毒有害
试剂时的防护措施。
实验操作步骤
色谱柱安装与条件设置
数据整理
整理实验过程中记录的数据,包括 色谱图、峰面积等。
结果分析
对实验结果进行深入分析,探究可 能的原因和影响因素。
03
02
结果判断
根据实验目的和要求,判断实验结 果是否符合预期。
结论总结
总结实验结果,得出结论,并提出 进一步改进和完善的建议。
04
04 色谱法在分析化学中的应 用
在食品分析中的应用
食品成分分析
色谱法用于分离和检测食品中的营养 成分,如脂肪、蛋白质、碳水化合物、 维生素和矿物质等,以确保食品质量 和安全。
食品添加剂分析
食品污染物分析
色谱法用于检测食品中的有害物质, 如农药残留、重金属、霉菌毒素等, 以防止食品污染和保障食品安全。
色谱法用于检测食品中添加的防腐剂、 色素、香料等成分,以控制食品添加 剂的使用量,保障消费者健康。
油色谱分析及光声光谱分析的对比研究

油色谱分析及光声光谱分析的对比研究摘要:在维护变压器的过程中,会使用各种的分析方法来判断变压器中潜在的故障。
光声光谱分析就是一种新兴的检测技术。
本文简述了油色谱分析方法与光声光谱分析方法,并进行了一些对比,希望可以给变压器的检修工作提供一些依据。
关键词:油色谱分析;光声光谱分析;对比1 油色谱分析技术1.1油色谱分析技术的应用情况在检修变压器的时候,使用油色谱分析技术可以及时的发现变压器设施中存在的故障隐患,从而给之后的检修工作提供根据。
而油色谱分析技术还有一些不足之处,第一,密闭取样、检测曲线人工修改的工作存在着一定的误差;第二,使用这种分析方法过程是比较复杂的,资金方面的投入比较高,这就使得技术与经济是不能满足供电系统的发展;第三,变压器等设施的检查周期比较长,并不能及时的检测变压器设施,也不能预测到变压器设施的故障隐患。
油色谱分析技术具有稳定性比较强,检测数据比较统一等的特点,使用油色谱分析技术来检测变压器设备,就可以确保设备可以正常的运营,有效的减少变压器设施出现故障的机率,提高检修工作的速度,因而油色谱分析技术在检修设施的过程中应用是比较广泛的。
图一油色谱分析仪1.2油色谱分析技术的原理与结构1.2.1油色谱分析技术的工作原理油色谱分析技术主要包含了油气分析与气体含量检测两个方面。
油色谱在线检测技术就是利用脱气法将绝缘油中溶解的气体分离出来,在经过色谱柱之后,分离各个单组的分气体,之后进入装有传感器的气敏检测部件。
检测部件可以把这些分气体根据气体的化学性质、物理性质等转变为电信号,在实际工作中常用的检测部件就是氢火焰离子化检测器与热导池检测器。
传感器输出的电信号,在经过转变之后传输到计算机当中,再把这些数据传输到主控计算机,并使用相关的软件来显示这些数据。
1.2.2油色谱分析技术设备的结构整个油色谱在线检测系统是由油气分离模块、组分分离模块和检测模块、数据处理、状态诊断模块这几个模块组成的。
常见的几种色谱分析方法

由于环境分析的对象广泛、内容多样、样品易变、一般含量极微且分析要求十分严格,所以分析化学中各种先进的方法和技术,在环境分析中都得到了广泛的应用。
但从环境分析的实际应用来看,下面一些方法是更为常用的。
1、化学分析法这是一种以化学反应为基础的分析方法。
它的特点是具有很高的准确度,但灵敏度较低,因此只适于分析环境样品中的常量组分。
目前在测定化学耗氧量、生物耗氧量、溶解氧等例行监测项目中,仍很重要。
2、色谱分析法色谱分析法是一种重要的分离、分析技术,它是将待分析样品的各种组分一一加以分离,然后依次鉴定或测定各个组分。
色谱分析法按所用流动相的不同,主要分为气相色谱法与液相色谱法(包括离子色谱法)。
在环境分析中,他们承担着不多数有机污染物的分析任务,也是对未知污染物作结构分析和形态分析的强而有力的工具。
气相色谱法直到今天仍然是分析环境有机污染物的主要方法,它也是美国环保局于1979年底公布的水中114中污染物分析方法的基础。
但它仅适于分析易挥发性组分,对于70%以上低挥发性、大分子量、热不稳定或离子型化合物,如果不进行适当的衍生化就不能直接测定。
在这方面,液相色谱法恰好可以弥补其不液相色谱法的流动相是液体,它的粘度和密度都比气体大得多,为了使流动相有较快的流速,必须使用高压泵来加速流动相的输送,所以通常又将这类液相色谱法称为高效液相色谱法。
它对于相对分子质量为300-2000的化合物、热不稳定化合物或离子型化合物都能进行分析,因此它的分析对象范围要宽得多。
用它进行环境样品的常规分析,完成一次测定仪需一分钟,其柱后检测器的灵敏度可达皮克级,因此是目前迅速发展的一个领域。
色层分析法是一种经典的分离、分析方法,包括柱层析法和纸层析法,以及在两者基础上发展起来的薄层层析法,它们在环境分析中都有应用,而尤以后者应用更多。
光学分析法包括许多具体的分析方法,它们都是建立在物质发射的电磁辐射或电磁辐射与物质相互作用的基础之上。
药物分析中的光谱学与色谱学方法

药物分析中的光谱学与色谱学方法药物的分析是药学领域中至关重要的一部分,它能够帮助人们了解药物的成分、结构、纯度以及其它相关的特性。
在药物分析中,光谱学与色谱学方法是常用的技术手段。
本文将介绍药物分析中光谱学与色谱学方法的原理、应用和进展。
一、光谱学方法在药物分析中的应用光谱学是通过对物质与电磁辐射相互作用产生的吸收、发射或散射光来分析物质的一种方法。
在药物分析中,光谱学方法包括紫外-可见吸收光谱、红外光谱和核磁共振等。
紫外-可见吸收光谱是一种常用的分析方法,它利用药物分子在紫外-可见光谱范围内吸收特定波长的光来确定药物的浓度或结构。
这种方法广泛应用于药物成分分析、药物纯度检验和质量控制等领域。
红外光谱是通过测量物质吸收红外光谱范围内的特定波长来推断物质的结构和成分。
在药物分析中,红外光谱常用于药物鉴定、含量测定和纯度分析等方面,尤其对于药物中存在的官能团或化学键的识别具有较高灵敏度。
核磁共振是一种通过核自旋共振来分析物质结构的方法,在药物分析中可用于药物标志物的鉴定以及测量药物样品中特定核的相对丰度。
这种方法在鉴定药物结构和确定药物纯度方面具有独特优势。
二、色谱学方法在药物分析中的应用色谱学是通过物质在固定相与移动相之间分配系数的差异来分离并分析物质的一种方法,主要包括气相色谱和液相色谱两种。
气相色谱是利用气体载气和液体固定相之间的相互作用来分离药物成分的方法。
它广泛应用于药物官能团分析、杂质检测以及对药物活性成分的分离等方面。
气相色谱具有高分辨率、高效能和样品预处理简便等优势。
液相色谱是将液体移动相与固定相相互作用来分离药物成分的方法。
在药物分析中,液相色谱常用于对药物中活性成分的检测、纯度分析以及药物代谢产物的研究等领域。
液相色谱具有适用范围广、分离效果好和对样品的提取要求不高等特点。
三、光谱学与色谱学方法的结合与发展近年来,光谱学与色谱学方法的结合得到了广泛的应用和研究,它们相互补充,为药物分析提供了更精确、快速和可靠的手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用色谱和光谱分析方法和技术色谱分析、光谱分析以及两谱联用技术,构成了药物分析学科领域中最主要和最基本的研究手段和方法,应用日趋广泛,发展十分迅速,新颖方法层出不穷。
新近常用的色谱分析方法:一、胶囊色谱(Micellar Chromatography,MC)又称拟相液相色谱或假相液相色谱(Pseudophase LC),是一种新型的液相色谱技术。
特点是应用含有高于临界胶囊(或称胶束,微胞等)浓度的表面活性剂溶液作为流动相。
所谓“胶囊”就是表面活性剂溶液的浓度超过其临界胶囊浓度(Critical Micelle Concentration,CMC)时形成的分子聚合体。
通常每只胶囊由n个(一般为25~160个)表面活性剂单体分子组成,其形状为球形或椭圆球形。
在CMC值以上的一个较大浓度范围内,胶囊溶液的某些物理性质(如表面张力、电导等等)以及胶囊本身的大小是不变的。
构成胶囊的分子单体与溶液中自由的表面活性剂的分子单体之间存在着迅速的动态平衡。
通常有正相与反相两种胶囊溶液。
前者是由表面活性剂溶于极性溶剂所形成的亲水端位于外侧而亲脂端位于内部的胶囊;后者是指表面活性剂溶于非极性溶剂所形成的亲水端位于核心而亲脂基位于外面的胶囊。
被分离组分与胶囊的相互作用和被分离组分与一般溶剂的作用方式不同,并且被分离组分和两种胶囊的作用也有差别。
改变胶囊的类型、浓度、电荷性质等对被分离组分的色谱行为、淋洗次序以及分离效果均有较大影响。
胶囊色谱就是充分运用了被分离组分和胶囊之间存在的静电作用、疏水作用、增溶作用和空间位阻作用以及其综合性的协同作用可获得一般液相色谱所不能达到的分离效果。
适用于化学结构类似、性质差别细微的组分的分离和分析,是一种安全、无毒、经济的优越技术。
(一)原理:胶囊溶液是一种微型非均相体系(Microheterogenous system)。
在胶囊色谱中,分离组分在固定相与水之间、胶囊与水相之间以及固定相与胶囊之间存在着分配平衡。
组分的洗脱得为取决于三相之间分配系数的综合作用;同时定量地指出分离组分的容量因子k'的倒数值与胶囊浓度成正比,一般增加胶囊浓度即可获得较佳的分离效果。
(二)方法特点:与传统液相色谱的最大区别在于胶囊色谱流动相是由胶囊及其周围溶剂介质组成的一种微型的非均相体系,而常规流动相是一种均相体系。
特点:1、高度的选择性:因分离组分与胶囊之间存在着静电、疏水以及空间效应的综合作用,只要通过流动相中胶囊浓度的改变,就可使分离选择性获得改善和提高。
此外,通过适当固定相以及表面活性剂的选择也可提高分离选择性。
2、便于梯度洗脱:由于表面活性剂的浓度高于CMC后再增大浓度时,溶液中仅胶囊的浓度发生改变,而表面活性剂单体分子的浓度不变,不影响流动相与固定相的平衡过程,因而比传统的梯度洗脱技术大大缩短了分析时间,并减少了流动相的消耗,适用于常规。
3、提高检测灵敏度:胶囊流动相可增加某些化合物的荧光强度,从而提高检测灵敏度。
还可稳定某些化合物在室温条件下发生的液体磷光。
4、因分离组分不易分出,故缺点是柱效低且不适于制备分离。
(三)常用表面活性剂:常用的阳离子表面活性剂主要有:溴化或氯化十六烷基三甲铵(Cetyl trimethyl ammonium bromide or chloride,CTMAD或CTMAC);阴离子表面活性剂有十二烷基硫酸钠(SDS);非离子表面活性剂有Brij-35即(聚氧乙烯)35-十二烷基醚。
二、手性分离色谱(Chiral Separation Chromatography,CSC)是采用色谱技术(TLC、GC和HPLC)分离测定光学异构体药物的有效方法。
由于许多药物的对映体(Enantiomer)之间在药理、毒理乃至临床性质方面存在着较大差异,有必要对某些手性药物进行对映体的纯度检查。
(一)原理和方法:对映体化合物之间除了对偏振光的偏转方向恰好相反外,其理化性质是完全相同的,因而难以分离。
传统方法(分步结晶法、酶消化法等)有很大局限性,特别是难以进行微量分离和测定。
60年代前后,TLC、GC法逐渐用于对映体化合物的拆分。
但这两种方法只能拆分不多的化合物,且需要较复杂的样品处理步骤,制备分离也难以进行。
80年代初HPLC法迅速成为药物对映体分离和测定最为广泛应用的方法。
HPLC用于手性分离概括起来可分为两大途径:间接(CDR)和直接(CMPA、CSP)方法。
间接方法主要基于外消旋体混合物经柱前衍生化形成一对非对映异构体(Diastereoisomers)。
此法又称为非对映体拆分法或柱前手性衍生化法。
由于d-型和l-型对映体的物理性质完全相同,只能在手性固定相上才能获得拆分;如果利用对映体分子中的反应基团与某一光学纯试剂反应形成了非对映光学异构体混合物,其物理性质就有较大的差异,因而可在普通固定相(非手性固定相)上实现分离。
本法需高光学纯度的手性衍生化试剂(Chiral Derivatization Reagent,CDR),衍生化反应往往比较繁琐费时;各对映体衍生化反应的速率有时也不相同。
由于可采用价格便宜、柱效较高的非手性柱和通过适当的衍生化反应可提高检测的灵敏度,以及衍生化过程中可伴随样品的纯化等优点,柱前手性衍生化的方法仍然是当前手性药物拆分、尤其是生物样品中药物对映体分离和测定的常用方法。
直接方法主要采用手性流动相添加剂(Chiral Mobile Phase Additives,CMPA)法和手性固定相(CSP)法。
CMPA法又可称为手性流动相(CMP)拆分法或手性洗脱法。
它不必事先将样品制备成衍生物,而只须将手性剂加入流动相中。
手性添加剂与样品所形成的各种手性络合物虽然不及CDR法所形成的衍生物那样牢固,但它所依据的手性识别作用和络合物的非对映异构体性质却基本相同。
常用的CMPA有:环糊精(Cyclodextrins)类(主要是α-、β-和γ-环糊精及其衍生物);手性离子对配合剂(Chiral Ion Pair Complex,CIPC),如(+)-10-樟脑磺酸、奎宁和奎尼丁等;以及配位体交换型手性流动相添加剂(Chiral Ligand-exchange Complexes,CLEC),其中手性配位体多为光活性氨基酸或其衍生物,再与二价金属离子形成螯合的配位化合物,以适当的浓度分布于流动相中,遇有药物消旋体时即可形成相应的非对映体配位化合物对,然后在正相柱或反相柱上完成拆分。
近年来CSP法发展迅猛,应用日益广泛。
它是不经转变成非对映体而直接拆分的方法,优点是:适用于不含活泼反应基团的化合物;除非必须衍生化,否则无需高光学纯度试剂;样品处理步骤简单。
但迄今为止,CSP柱商品已有40多种,价格大多昂贵,尚未有一种具有类似ODS柱的普遍适用性。
根据分子结构选择合适的CSP柱是非常重要的。
常用的CSP有:手性电荷迁移配位体固定相,如 Pirkle型HPLC-CSP;蛋白亲和配体固定相,如 Enantiopac(LKB);内部配位化合固定相,如环糊精(Cydobond)和纤维素酯(Chiracel)等;以及配基交换固定相,如L-脯氨酸-Cu2+共价键合于聚苯乙烯等基质上。
CSP拆分对映体的理论概念:在HPLC的CSP柱上拆分对映体是利用药物对映体和特制的、在硅胶上键合的对映体固定相(CSP)之间所形成的非对映体复合物。
由于非对映体复合物稳定性差异,可使两个对映体的保留时间不一致,与CSP形成稳定性较差的非对映体的药物对映体可先洗脱,因之实现了拆分。
CSP设计是基于Dalgliesh在1952年提出的“三点手性识别模式”(Three-point chiral recognition model),认为要实现手性识别,在手性化合物分子与CSP之间至少同时要有三个相互作用部位,其中之一必受空间影响,或是相互吸引或是相互排斥。
生成的非对映体的相对强度,决定了两个对映体的分离度和洗脱次序。
(二)三类手性分离方法的比较:CDR法的优点是应用条件相对简易,只需采用普通HPLC的固定相和流动相即可而且通过衍生化有利于增加检测(紫外或荧光)灵敏度;缺点是样品中相关化合物须预先分离、衍生化手性试剂的光学纯度的高要求以及异体对的衍生化反应速率不一。
CMPA法的优点是不必作柱前手性衍生化;对固定相也无特殊要求;样品的非对映异构化络合具有可逆性而且利于制备。
主要缺点是可拆分的化合物范围有限;某些添加剂不够稳定而且往往会干扰检测。
CSP法的优点较多,能广泛适用于各类化合物,适于常规及生物样品的分析测定,制备分离方便,定量分析的可靠性较高,采用此法研究考察的化合物已达数千种之多。
缺点是样品有时也须作柱前衍生(但不一定是手性衍生化试剂),对样品结构有一定限制,其适用性尚不及普通HPLC固定相(包括正相和反相)那样广泛。
三、离子色谱(Ion Chromatography,IC)是由经典的离子交换色谱发展开创而成的新的液相色谱分析技术,具有快速、灵敏、选择性好、且可同时测定多组分的优点;还能测定无机的或亲水性的有机阴离子。
IC已广泛用于其他多个领域,但在医药研究中的应用尚处起始阶段。
它不仅可用于药品的常规质量同时分析,也可有效地用于生产过程的质量控制和体内药物分析,具有美好的应用前景。
(二)类型特点与原理:阳离子交换柱用于分离样品阳离子;阴离子交换柱用作分离样品阴离子。
洗脱液为含有阳离子和阴离子的一种稀溶液,经泵输送入色谱柱后,其阳离子或阴离子最终将色谱柱中所有可交换的离子置换出来,同时由检测器转换为恒定的信号——基线。
然后,进样少量样品,样品离子即被树脂柱所接受,并与等同数量的洗脱液离子交换。
如果样品中所有离子的浓度大于洗脱液的离子浓度,那么在柱顶端的总离子浓度就将增加,这就产生了一个脉动,当它沿着柱移动并通过电导检测器时即得到一个正峰;反之,则获得负峰。
进样后,洗脱液离子继续不断地经泵输入色谱柱,对树脂的可交换部位与样品离子进行竞争,并且使样品离子沿着柱子移动。
由于样品离子对交换树脂有不同的亲和能力,因而不同的样品离子沿柱以不同的速度移动,最后完成了分离。
现代离子色谱的过程有所不同,主要有以下两种:1、抑制型离子色谱法(Suppressed IC):由于离子交换分离的洗脱液几乎都是强电解质,其电导一般要较待测离子高二个数量级,簇会完全覆盖了待测离子的信号。
为提高检测灵敏度,采用在分离柱后串联抑制柱的办法,可使洗脱液转变成低电导组分,以降低来自洗脱液的背景电导。
另外可将样品离子转变成相应的酸或碱,以增加其电导。
抑制装置有柱型和离子交换膜管型两种。
抑制柱内填充与分离柱填料相反电荷的离子交换树脂。
当分析阴离子时,要用苯乙烯系列的强酸型(H+)树脂装柱;而分析阳离子时,则用苯乙烯系列的强碱型(OH-)树脂装柱。