变分法和休克尔分子轨道法
苯分子轨道与电子结构

西南大学化学化工学院物理化学实验报告实验名称苯分子轨道和电子结构级班姓名学号同组人指导老师实验日期年月日实验环境室温20 ℃大气压76 mmHg 仪器型号一体机实验目的( 1)掌握休克尔分子轨道法的基本内容( 2)学会用休克尔分子轨道法分析和计算苯分子Π轨道分布( 3)学会用计算的化学方法研究简单分子的电子结构实验原理基本理论离域Π键:形成Π键的电子不局限于两个原子的区域,而是在参加成键的多个原子形成的分子骨架中运动,这种由多个原子形成的Π型化学键称为离域Π键共轭效应:形成离域Π键,增加了Π电子的活动范围,使分子具有特殊的物理化学性质,这种效应称为共轭效应分子轨道法:原子组合成分子时,原来专属于某一原子的电子将在整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个分子所共有的分子轨道休克尔分子轨道法:为了讨论共轭体系的分子轨道,1 931年休克尔应用LCAO-MO(分子轨道的原子线性组合)法,采用简化处理,解释了大量有机共轭分子性质,该方法称为休克尔分子轨道法,简称HMO法。
该方法针对平面共轭体系的主要特点,能给出离域Π键体系的基本性质休克尔分子轨道法主要运用了下列基本假设 :σ-Π分离体系:对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性不同,在讨论共轭分子的结构时,可以近似的看成互相独立的,把σ电子和π电子分开处理.独立π电子近似:分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的.LCAO-MO近似:对于π体系,可将每个π分子轨道看成是由各个碳原子提供的对称性匹配的p轨道φi 进行线性组合得的.ψ=C1φ1+ C2φ2 + …+ C NφNhuckel近似:认为每个电子在每个原子核附近运动时的能量相同休克尔分子轨道法基本内容在分子中把原子核、内层电子、非键电子连同σ电子一起冻结为“分子实”,构成了由σ键相连的分子骨架,π电子在分子骨架的势场中运动。
第12讲_休克尔分子轨道

Dn(x) =
x 1 0 0 0 1
1 x 1 0 0 0
0 1 x 1 0 0
0 0 1 x 1 0
0 0 0 1 x 1
1 0 0 0 1 x
=0
复
习
(4) HMO法对分子结构和性质的讨论
(a)画出分子轨道ϕ k 相应的能级Ek图,排布π电子,画出ϕk的图形
(b)计算下列数据
(1) 电荷密度ρi — 第i个原子上出现的π电子数,即离域π 键中π电子在第 i个碳原子附近出现的几率密度
……… ………
键轨道
键轨道 能
能 非键轨道 非键轨道 量 量
………
当m为奇数时分子轨道能级图 为奇数时分子轨道能级图
成键轨道(2n+1),填满成键轨道 , 成键轨道
………
成键轨道
成键轨道
当m为 数时分子轨道能级图 为
电子2(2n 电子
1)
4n
2
分子的 子
理
例2:试用休克尔分子轨道理论分析环丙烯正离子及环丙烯负离子的性质。 :试用休克尔分子轨道理论分析环丙烯正离子及环丙烯负离子的性质。 环丙烯正离子 2 环丙烯负离子
1
x
( j = 1, 2,3,..., n ) ( j = 1, 2,3,..., n )
n指共轭原子数, k指第k条分子轨 道 ,j指第j个原 子轨道.
HMO 系数
jπ E j = α + 2β cos n +1 2 kjπ ckJ = sin n +1 n +1
4 二肽,Π 3
第三章 分子的量子力学处理
C.缺电子离域π键(n >m) .缺电子离域π
休克尔分子轨道法ppt课件

在环境化学领域,休克尔分子轨道法可用于评估污染物的电子结构和性质,从而预测其在环境中的行为和归趋。
04
休克尔分子轨道法的局限性
和挑战
计算复杂度问题
计算资源需求高
由于休克尔分子轨道法涉及大量的矩 阵运算和迭代求解,因此需要高性能 的计算资源,如高性能计算机和大内 存。
计算时间长
并行化难度大
通过基组校正和基组完备性的研究, 可以进一步提高基组的描述能力,从 而得到更准确的结果。
06
结论
休克尔分子轨道法的价值和意义
理论价值
休克尔分子轨道法是量子化学中的重要理论工具,它为理解分子结构和性质提供了基础框 架。通过该方法,我们可以深入探究分子的电子结构和化学键的本质。
实际应用
休克尔分子轨道法在化学、材料科学、生物学等领域有着广泛的应用。它为新材料的合成 、药物设计、环境化学等领域提供了理论支持,有助于我们更好地理解物质性质和行为。
适用于具有共轭结构的分子,如烯烃、炔烃、芳香烃等, 可以用于预测分子的稳定性、反应活性以及电子光谱等性 质。
02
休克尔分子轨道法的基本原
理
分子轨道和电子云
分子轨道
描述分子中电子运动的波函数。
电子云
描述电子在分子中的概率分布。
分子中的电子排布
根据泡利不相容原理,每个分子 轨道最多只能填充两个自旋方向
促进科学发展
休克尔分子轨道法的发展推动了相关学科的进步,促进了化学与其他学科的交叉融合,为 科学技术的整体发展做出了贡献。
对未来研究和应用的建议
深入研究
技术革新
进一步深化对休克尔分子轨道法理论的研 究,探索其在更广泛领域的应用,如生物 大分子的结构和性质研究。
休克尔分子轨道理论

0.447
0.838
0.894
H2C 0.894 CH
CH
CH2
1.00
1.00
1.00 分子图
1.00
三、电荷密度、键级、自由价 、分子图
1、电荷密度 :第r个原子上出现的电子数, r 等于离域电子 在第r个碳原子附近出现的几率:
r n j C jr 2
j
2、键级Prs :原子 i和 j 间 键的强度:
Prs n j c j对大小: 原子的总成键度: N r 自由价 F r:
同除以并令x
E , 得久期行列式
3 2 4
x 1 0 0
1 x 1 0
2
0 1 x 1
0 0 0 1 x
展开得,x( x 2x) ( x 1) x 3x 1 0 解得,x 0.618 , 1.618 由E x 得
x1 1.618, x 2 0.618, x3 0.618, x 4 1.618,
-
-
2 . 丁二烯的HMO
法处理
(1) HMO 法确定轨道及能量 丁二烯( H2C CH CH CH2 电子的分子轨道为 c11 c22 c33 c44
c1、c2、c3、c4 满足久期方程:
E 0 0 E 0 0 0 E 0 0 E
可得相应的 4套组合系数
4个碳原子的p轨道线性组合成4个分子轨道:
1 0.372 1 0.602 2 0.602 3 0.372 4
2 0.602 1 0.372 2 0.372 3 0.602 4
3 0.602 1 0.372 2 0.372 3 0.602 4 4 0.372 1 0.602 2 0.602 3 0.372 4
苯分子轨道与电子结构剖析

西南大学化学化工学院物理化学实验报告实验名称苯分子轨道和电子结构级班姓名学号同组人指导老师实验日期年月日实验环境室温20 ℃大气压76 mmHg 仪器型号一体机实验目的( 1)掌握休克尔分子轨道法的基本内容( 2)学会用休克尔分子轨道法分析和计算苯分子Π轨道分布( 3)学会用计算的化学方法研究简单分子的电子结构实验原理基本理论离域Π键:形成Π键的电子不局限于两个原子的区域,而是在参加成键的多个原子形成的分子骨架中运动,这种由多个原子形成的Π型化学键称为离域Π键共轭效应:形成离域Π键,增加了Π电子的活动范围,使分子具有特殊的物理化学性质,这种效应称为共轭效应分子轨道法:原子组合成分子时,原来专属于某一原子的电子将在整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个分子所共有的分子轨道休克尔分子轨道法:为了讨论共轭体系的分子轨道,1 931年休克尔应用LCAO-MO(分子轨道的原子线性组合)法,采用简化处理,解释了大量有机共轭分子性质,该方法称为休克尔分子轨道法,简称HMO法。
该方法针对平面共轭体系的主要特点,能给出离域Π键体系的基本性质休克尔分子轨道法主要运用了下列基本假设 :σ-Π分离体系:对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性不同,在讨论共轭分子的结构时,可以近似的看成互相独立的,把σ电子和π电子分开处理.独立π电子近似:分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的.LCAO-MO近似:对于π体系,可将每个π分子轨道看成是由各个碳原子提供的对称性匹配的p轨道φi 进行线性组合得的.ψ=C1φ1+ C2φ2 + …+ C NφNhuckel近似:认为每个电子在每个原子核附近运动时的能量相同休克尔分子轨道法基本内容在分子中把原子核、内层电子、非键电子连同σ电子一起冻结为“分子实”,构成了由σ键相连的分子骨架,π电子在分子骨架的势场中运动。
结构化学基础总结

结构化学基础总结第一章:量子力学基础知识一、3个实验1、黑体辐射实验:(1)黑体:被认为是可以吸收全部外来辐射的物体,是理想的辐射体。
理想黑体可以吸收所有照射到它表面的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该黑体的温度有关,与黑体的材质无关。
可见光:400-700nm(2)假设:黑体吸收或发射辐射的能量是不连续的,而是分子一份一份的,即,量子化的。
E=hμ2、光电效应实验和Einstein光子学说:光量子化和光的波粒二象性本质。
(1)Einstein提出来了光量子(光子)。
波的性质:衍射、干涉。
E=hμ粒子的性质:反射、折射。
P=h/λ光子的动能与入射光的频率成正比,与光的强度无关。
(2)Heisenberg不确定度关系:Δq∙Δp≥ℏΔq坐标不确定量;Δp动量不确定量;q广义坐标单缝衍射:某粒子坐标确定得愈精确,其相应动量就愈不确定。
h可作为区分宏、微观粒子的标准:宏观h=0,微观h不能看作0。
3、氢原子光谱与Born氢原子模型:(1)氢原子光谱:指的是氢原子内之电子在不同能级跃迁时所发射或吸收不同波长、能量之光子而得到的光谱。
氢原子光谱为不连续的线光谱,自无线电波、微波、红外光、可见光、到紫外光区段都有可能有其谱线。
根据电子跃迁的后所处的能阶,可将光谱分为不同的线系。
(2)在卢瑟福模型的基础上,玻尔提出了电子在核外的量子化轨道,解决了原子结构的稳定性问题,描绘出了完整而令人信服的原子结构学说。
定态假设:原子的核外电子在轨道上运行时,只能够稳定地存在于具有分立的、固定能量的状态中,这些状态称为定态(能级),即处于定态的原子能量是量子化的。
此时,原子并不辐射能量,是稳定的。
激发态:原子受到辐射、加热或通电时,获得能量后电子可以跃迁到离核较远的轨道上去,即电子被激发到高能量的轨道上,这时原子处于激发态。
处于激发态的电子不稳定,可以跃迁到离核较近的轨道上,同时释放出光子。
二、量子力学基本假设1、假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。
5.3 休克尔分子轨道理论与共轭分子-精选文档

这里得到的久期方程为:
ES H 11 11 H ES 21 21 ES n 1 n 1 H H ES 12 12 H ES 22 22 H ES n 2 n 2 H ES c 1 n 1 n 1 H ES c 2 n 2 n 2 0 H ES c nn nn n
附:用HMO法求乙烯键的键能和分子轨道
解:分子轨道由两个pz原子轨道线性组合而成:
c c 1 1 2 2
利用变分法得到久期方程为:
E
令: x
E
E
0
久期行列式为:
x 1 1 x 0
得: x 1 x 1 1 2
E E 1 2
1
+ -
+ - - +
相应的波函数为:
1 2
(
1
2) 2)
+
2
1 2
(
1
-
E2 = - 其分子轨道能级图为: E1= +
E=2(+ )=2+2
②电荷密度
i nk c
k
2
ki
第i个原子上出现的π电子 数
i--第i个原子;k--π分子轨道编号;nk--π分子 轨道(Ψ)上的电子数;cki--π分子轨道(Ψ)上第i个原子 轨道的系数。 例如: ρ3 = 2×(0.6015)2 + 2×(-0.3717)2=1.0000 ψ2 = 0.6015φ1 + 0.3717φ2 - 0.3717φ3 - 0.6015φ4 ψ1 = 0.3717φ1 + 0.6015φ2+ 0.6015φ3 + 0.3717φ4
变分法

18
方法II 使用第二种试探波函数
( x ) Ae
x2
1. 对第二种试探波函数确定归一化系数:
1 ( x )* ( x )dx | A |
| A|
2
2
2
e
2
x2
dx | A |
2
2
2.求能量平均值
H( ) | A | | A |
2
ˆ * H dx
e e
x2
ˆ x 2 dx He [
2 d2 2 dx 2
2
x2
1 2
x ]e
2 2
x2
dx
2 1 2 1 2 8
19
3.变分求极值
dH ( ) 2 1 2 2 0 d 2 8
0 j j
I c* y* k k
k
ˆ G G c y d
j
ˆ = c* y* c j G G0 y j d k k
= c* c j G j G0 k
k j
j
y y d
* k j
= c* c j G j G0 kj k
1 2
1
2
代入上式得基态能量近似值为:
2 1 1 1 2 2 H 2 2 8 2
这正是精确的一维谐振子基态能量。这是因为若将 代入试探波函数,得:
( x ) Ae
x
2
1 2
9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备系,即
9
y y Hˆ |
y y
资料仅供参考,不当之处,请联系改正。
n En | n n0,1,2,L | n n |1
n
ym |yn mn
设|y>是任一归一化的波函数,在此态中体系能量平均
值:
yy E H |H ˆ | H 则 必 有 E E 0
i i
i
即 y c iy i i 0 i 1
亦若变分函数 y 为本征函数集除去 y 0 的其它的本征函数 的线性展开。 故 y 的期望值为
ci 2Gi
Gi0 ci 2 G1
6
7
i0
ci 2Gi Gi0 ci 2 G1
i0
资料仅供参考,不当之处,请联系改正。
6
y 的线性展开的波函数集合所对应本征集最小值为G1。 G1是 Gˆ 的次低本征值。因而,泛函 G 的极小值,即为G1的 近似值, y 即为相应的近似本征函数。
* G ˆ d G 0
1
若是未经归一化的函数
*G ˆd
*d G 0
2
3
证明:
资料仅供参考,不当之处,请联系改正。
令 I * G ˆG0d
I * G ˆ d G 0 * d * G ˆ d G 0 3
设已归一化,现变为证明 I 0
若yk和 Gk分别是 Gˆ 的本征函数及本征值,则
若|y>未归一化,则
y| Hˆ |y H y|y E0
10
资料仅供参考,不当之处,请联系改正。
基于上述基本原理,我们可以选取很多波函数;
|y> →| y(1)>, |y(2)>,......, |y(k)>,......称为试探波函数,来
计算
H H1 , H2 , L L Hk
Min [H1, H2, L L Hk ] E0
显然,这不是谐振子的本征函数,但是它是合理的。
1.因为谐振子势是关于 x = 0 点对称的,我们的 试探波函数也是关于 x = 0 点对称的;
12
例一:维一简维谐简振谐子振Ha子m试ilt探on波量资函料:仅供数参考,不当之处,请联系H 改ˆ正。2h2 ddx22 1 22x2
其本征函数是:
y n(x)N ne2x2/2H n( x)
下面我们根据上面所述原则构造试探波函数。 方法 I: 试探波函数可写成: y(x) c(2x2)
0
|x| |x|
(1)根据体系Hamilton量的形式和对称性推测合理 的试探波函数;
(2)试探波函数要满足问题的边界条件;
(3)为了有选择的灵活性,试探波函数应包含一个或 多个待定的参数,这些参数称为变分参数;
(4)若体系 Hamilton 量可以分成两部分: H = H0 + H1,
H0的本征函数已知有解析解,则该解析解可作为体 系的试探波函数。
此法可推广于求第j个本征值及本征函数的近似值或近似 波函数。只要使变分函数与前(j-1)本征函数正交即可。
8
二、变分法的基本思路 资料仅供参考,不当之处,请联系改正。
(一) 能量的平均值
设体系的 Hamilton 量 H ˆ 的本征值由小到大顺序排列为:
E0 < E1 < E2 < ......< En < ...... |ψ0 > |ψ1 > |ψ2> .........| ψn >...... 上式第二行是与本征值相应的本征函数,其中 E0 、 |ψ0> 分别为基态能量和基态波函数。
量子力学中可精确求解的Shrödinger方程不多。对于多电 子体系的原子,分子的Shrödinger方程都需要利用近似求解。 变分法就是一种重要的近似解法。
一、 变分法原理
变分法是求解泛函极值问题的方法
1. 定理
设是一个单值连续有限和归一化的函数,G0是Hermite算符
Gˆ 的最小本征值,则泛函(一个关于函数的函数)
6
2. 推论
资料仅供参考,不当之处,请联系改正。
近似求解 Gˆ 的其他本征函数。
若变分函数 y ,它同最低本征函数 y 0 正交。
y y 0 d 0
4
若将 y 向本征函数 y i 展开
y c iy i i
5
将(5)式代入(4)式,得
y 0 c iy i d c i y 0 y id c i i0 c 0 0
资料仅供参考,不当之处,请联系改正。
变分法与Hückel分子轨道法
➢变分法 ➢线性变分法LCAO ➢HMO的基本原理 ➢差分方程法 ➢s体系的处理
1
§2.1 变分法 资料仅供参考,不当之处,请联系改正。
➢变分法原理 ➢变分方法的基本思路 ➢实例
2
§2.1 变分法 资料仅供参考,不当之处,请联系改正。
= c* kck GkG0
k
= ck 2 GkG0 k
因为G0为最小本征值,故 Gk G0 ,而 c k 2 0
故 I0
得证
5
函数 为变分函数,积资料分仅供参考,不当*G之ˆ处,d请联系为改正。泛函;函数的函数。
选择变分函数以使泛函为极小值,其值必为最低本征值 的近似值,且为上界。变分法就是选择变分函数,通过 对其系数或某一参数进行变分,来求其近似值的方法。
Gˆyk Gkyk
由于Hermite算符的本征函数构成正交归一化的完备函数集,
故可将用yk展开
ckyk k
其含义:若是体系的一个状态,那么它就可以由某一Hermite算符 Gˆ 的
本征函数的集合线性展开得到。如sp3杂化轨道,即不是原子的本征函数。 定域MO不是Hamilton的本征函数,而是离域MO的某种线性组合。
其中最小的一个就最接近基态能量 E0,即
如果选取的试探波函数越接近基态波函数,则 H 的 平均值就越接近基态能量 E0 。这就为我们提供了一 个计算基态能量本征值近似值的方法。
如何寻找试探波函数。
11
资料仅供参考,不当之处,请联系改正。
(二) 如何选取试探波函数
试探波函数的好坏直接关系到计算结果,但是如何选取 试探波函数却没有一个固定可循的法则,通常是根据物 理上的直觉去猜测。
4
ckyk k
资料仅供参考,不当之处,请联系改正。
将其代入(3)式 I*
k
j
= c*ky*k cj Gˆ G0yjd
k
j
= c* kcj G jG 0 y * ky jd kj
= c* kcj GjG 0 kj kj