高分子材料物理化学实验复习资料
高分子材料物理化学实验复习

一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有内因和外因两个方面。
内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在12、 34测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -?s ;△t-?s ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④?t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
高分子物理复习资料归纳

高物第一章习题1.测量数均分子量,不可以选择以下哪种方法:(B)。
A.气相渗透法B.光散射法C.渗透压法D.端基滴定法2.对于三大合成材料来说,要恰当选择分子量,在满足加工要求的前提下,尽量( B )分子量。
A.降低B.提高C.保持D.调节3.凝胶色谱法(GPC)分离不同分子量的样品时,最先流出的是分子量(大)的部分,是依据(体积排除)机理进行分离的。
4.测量重均分子量可以选择以下哪种方法:(D)A.粘度法B.端基滴定法C.渗透压法D.光散射法5. 下列相同分子量的聚合物,在相同条件下用稀溶液粘度法测得的特性粘数最大的为( D )(A)高支化度聚合物(B)中支化度聚合物(C)低支化度聚合物(D)线性聚合物6. 内聚能密度:定义克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。
7. 同样都是高分子材料,在具体用途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的?答:(1)塑料橡胶的分类主要是取决于使用温度和弹性大小。
塑料的使用温度要控制在玻璃化温度以下且比Tg室温低很多。
而橡胶的使用温度控制在玻璃化温度以上且Tg比室温高很多,否则的话,塑料就软化了,或者橡胶硬化变脆了,都无法正常使用。
玻璃化温度你可以理解为高分子材料由软变硬的一个临界温度。
塑料拉伸率很小,而有的橡胶可以拉伸10倍以上。
纤维是指长径比大于100以上的高分子材料,纤维常用PA(聚酰胺)等材料,这类材料有分子间和分子内氢键,结晶度大,所以模量和拉伸强度都很高,不容易拉断。
(2)结晶的高聚物常不透明,非结晶高聚物通常透明。
不同的塑料其结晶性是不同的。
加工条件不同对大分空间构型有影响,对结晶有影响,这些都能导致透明性不同。
大多数聚合物是晶区和非晶区并存的,因而是半透明的。
8. 在用凝胶渗透色谱方法测定聚合物分子量时,假如没有该聚合物的标样,但是有其它聚合物的标样,如何对所测聚合物的分子量进行普适标定?需要知道哪些参数?参考答案:可以用其它聚合物标样来标定所测聚合物的分子量。
高分子材料实验复习

高吸水树脂的吸水原理:高吸水树脂一般为含有亲水基团和交联结构的高分子电解质。
吸水前,高分子链相互靠拢缠在一起,彼此交联成网状结构,从而达到整体上的紧固。
与水接触时,因为吸水树脂上含有多个亲水基团,故首先进行水润湿,然后水分子通过毛细作用及扩散作用渗透到树脂中,链上的电离基团在水中电离。
由于链上同离子之间的静电斥力而使高分子链伸展溶胀。
由于电中性要求,反离子不能迁移到树脂外部,树脂内外部溶液间的离子浓度差形成反渗透压。
水在反渗透压的作用下进一步进入树脂中,形成水凝胶时树脂本身的交联网状结构及氢键作用,又限制了凝胶的无限膨胀。
高吸水树脂的吸水性受多种因素制约,归纳起来主要有结构因素、形态因素和外界因素三个方面。
结构因素包括亲水基的性质、数量、交联剂种类和交联密度,树脂分子主链的性质等,树脂的结构与生产原料、制备方法有关。
交联剂的影响:交联剂用量越大,树脂交联密度越大,树脂不能充分地吸水膨胀;交联剂用量太低时,树脂交联不完全,部分树脂溶解于水中而使吸水率下降。
吸水力与水解度的关系:当水解度在60~85%时,吸收量较大;水解度大于时,吸收量下降,其原因是随着水解度的增加,尽管亲水的羧酸基增多,但交联剂也发生了部分水解,使交联网络被破坏。
形态因素主要指高吸水性树脂的主品形态。
增大树脂主品的表面,有利于在较短时间内吸收较多的水,达到较高吸水率,因而将树脂制成多孔状或鳞片可保证其吸水性。
外界因素主要指吸收时间和吸收液的性质。
随着吸收时间的延长,水分由表面向树脂产品内部扩散,直至达到饱和。
高吸水树脂多为高分子电解质。
其吸水性受吸收液性质,2特别是离子种类和浓度的制约。
在纯水中吸收能力最高;盐类物质的存在,会产生同离子效应,从而显著影响树脂的吸收能力;遇到酸性或碱性物质,吸水能力也会降低。
电解质浓度增大,树脂的吸收能力下降。
对于二盐离子如,除盐效应外,还可能在树脂的大分子之间羧基上产生交联,阻碍树脂凝胶的溶胀作用,从而影响吸水能力,因而二价金属离子对树脂吸水性的降低将更为显著。
高分子化学与物理复习

i w
i
i
i
i
i
i
i
i
2
i
i
i
i
i
i
i
i
Z均分子量
ZiMi WiMi NiMi Mi Zi WiMi NiMi
2
3
2
4
粘均分子量
WiMi NiMi Mv Wi NiMi
11
2.1 连锁聚合反应 Chain Reaction
三 个 基 元 反 应
链引发(chain initiation) 链增长(chain propagation) 链终止(chain termination)
组成
连 锁 聚 合
12
连锁聚合反应分类
活性中心(reactive center)
可以是自由基、阳离子和阴离子,它进攻单体的双键,使单 体的π键打开,与之加成,形成单体活性种,而后进一步与单体 加成,促使链增长。
1 1 [I] [S] 2kt R p [I] [S] CM CI CS 2 CM CI CS 2 [M] [M] k p [M ] [M] [M] Xn v
1
1
1
Mz > Mw > Mv > Mn,Mv略低于Mw
特性粘数[η]和分子量的关系: 分子量多分散性的表示方法:
以分子量分布指数表示 以分子量分布曲线表示 以被分离的各级分的重量分 率对平均分子量作图,得到 分子量重量分率分布曲线。
[ ] KM
Mw / Mn
重 量 分 率 平均分子量
阳离子聚合 取代基X : NO2 CN COOCH3 CH=CH2 C6H5 CH3 OR
2010-2011(2)高分子专业《物理化学》复习提纲(精)

《物理化学》复习提纲一:基本概念及公式第 1章热力学基础1. 系统与环境的概念(P1-22. 性质与状态的概念:状态函数,广度性质,强度性质(P23. 热力学平衡态:热平衡、力平衡、相平衡、化学平衡(P34. 理想气体方程式(P3公式(1-1-1 , R 的数值及单位。
5. 过程与途径(P4 :等压、等容、等温过程。
6. 可逆过程的概念(P57. 热和功的概念。
(P6-78. 热力学第一定律的表达公式(P7 公式 1-2-5 Q 和 W 符号的规定。
9. 内能的数学性质(P8-9 ,状态函数和过程函数的区别。
10. 焓的定义(P9公式 1-2-1211. 理想气体的内能和焓(P10-11,公式 1-2-20, 1-2-2312. 等容热的计算(P11-12 公式 1-3-1到 1-3-1013. 等压热的计算(P12-13 公式 1-3-11到 1-3-2014. Cp 与 Cv 的关系(P13-15 公式 1-3-22 ; 1-3-2015. 等温功的概念及计算(P15-18 公式 1-3-27、 1-3-30、 1-3-33的区别16. 绝热功、绝热指数、绝热过程 T 、 P 、 V 的关系。
(P18-2017. 功热转化过程的方向性(P21-2218. 热力学第二定律的几种不同说法(P2319. 卡诺循环、卡诺定理及热温商(P23-27,公式 1-4-17, 1-4-1920. 熵增原理及自发过程判断(P27-28 公式 1-4-23, 1-4-2421. 理想气体熵变的计算(P28-31,包括等温、等压、等容、绝热过程22. A 、 G 的定义公式(P31-32 公式 1-5-2, 1-5-523. 热力学基本方程(P33-34 ,公式 1-5-10、 11、 12、 13、 14、 15、 16、 17、18 24. 麦克斯伟关系式、倒易关系、循环关系(P3425. 热力学计算(内能的增量、焓的增量、熵的增量 (P35-37第 2章多组分多相系统热力学1. 偏摩尔量的定义(P41-42 G公式 2-1-3 2-1-52. 吉布斯 -杜亥姆公式及偏摩尔量之间的函数关系(P44 公式 2-1-93. 化学势的定义(P44-46 公式 2-1-12 、 2-1-204. 化学势与温度压力的关系(P46,公式 2-1-21、 22、 23、5. 单组分多相系统的热力学基本方程(P46-48 公式 2-1-32、 33、 34、 356. 过程自发性判据(P48-50 S 判据、 G 判据7. 组成的表示及标准态(P50-528. 单组分、多组分理想气体的化学势(P52-539. 压缩因子的定义(P53-55 公式 2-2-610. 非理想气体方程式(P56,公式 2-2-8、 911. 单组分及多组分非理想气体化学势的计算,逸度的概念(P56-5912. 液体和固体的化学势的计算(P59-6013. 拉乌尔定律(P60 公式 2-3-114. 理想、非理想溶液化学势的计算(P60-6215. 亨利定律(P63-64 公式 2-4-116. 理想、非理想稀溶液化学的计算(P64-6917. 理想溶液的混合性质(P69-71 公式 2-5-1、 2、 3、 418. 非理想溶液的混合性质(P71-73 公式 2-5-5、 6、 7、 819. 稀溶液的依数性的概念及计算(蒸汽压下降、凝固点降低、沸点上升、渗透压, P73-78, 公式 2-5-9、 10、 11、 12、 13 。
高分子物理习题集及复习资料

第一章高分子链的结构一.解释名词、概念1.高分子的构型:高分子中由化学键固定了的原子或原子团在空间的排列方式2.全同立构高分子:由一种旋光异构单元键接形成的高分子3.间同立构高分子:由两种旋光异构单元键接形成的高分子4.等规度:聚合物中全同异构和间同异构的高分子占高分子总数的百分数5.高分子的构象:由于单键内旋转而产生的分子在空间的不同形态6.高分子的柔顺性:高分子能够呈现不同程度卷曲构象状态的性质7.链段:高分子中能做相对独立运动的段落8.静态柔顺性:由反式微构象和旁氏微构象构象能之差决定的柔顺性,是热力学平衡条件下的柔顺性9.动态柔顺性:高分子由一种平衡构象状态转变成另一种平衡构象状态所需时间长短决定的柔顺性10.等效自由连接链:在一般条件下,高分子链中只有部分单键可以内旋转,相邻的两个可以内旋转的单键间的一段链称为链段,这样可以把高分子链看作是由链段连接而成的,链段之间的链不受键角的限制,链段可以自由取向,这种高分子链的均方末段距以及末端距分布函数的表达式与自由连接链相同,只是把链数n转换成链段数n,把键长l换成链段长l,这种链称为等效自由链接链11.高斯链:末端距分布服从高斯分布的链12.高分子末端距分布函数:表征高分子呈现某种末端距占所有可能呈现末端剧的比例二.线型聚异戊二烯可能有哪些构型?答:1.4-加成有三种几何异构,1.2加成有三种旋光异构,3.4加成有三种旋光异构三.聚合物有哪些层次的结构?哪些属于化学结构?哪些属于物理结构?四.为什么说柔顺性是高分子材料独具的特性?答:这是由高分子的结构决定的,高分子分子量大,具有可以内旋转的单键多,可呈现的构象也多,一般高分子长径比很大,呈链状结构,可以在很大程度内改变其卷曲构想状态。
对于小分子,分子量小,可内旋转的单键少,可呈现的构象数也不多,且小分子一般呈球形对称,故不可能在很大的幅度范围内改变其构象状态五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。
高分子物理实验必备复习材料

高分子物理实验必备复习材料一、浊点滴定法测定聚合物的溶解度参数1、测定聚合物溶解度参数的实验方法有:黏度法、交联后的溶胀平衡法、反相色谱法和浊点滴定法等,实验用浊点滴定法2、溶解度参数是表示物体混合能与相互溶解的关系:2/1)(VE ?=δ,单位3/cm J ,根据溶解度参数的定义,溶解度参数δ应为“内聚能密度”的平方根原理:浊点滴定法是在两元互溶体系中,如果聚合物的溶解度参数p δ在两个互溶的溶剂s δ值的范围内,就可调节这两个互溶混合溶剂的溶解度参数sm δ,使sm δ与p δ很接近。
只要把两个互溶的溶剂按照一定的百分比配成混合溶剂,该混合溶剂的溶解度参数sm δ可以近似地表示成:2211δ?δ?δ+=sm3、混合溶剂的溶解度参数sm δ:2211δ?δ?δ+=sm,1?,2?分别是混合溶剂中组分1和组分2的体积分数。
1δ、2δ为混合溶剂中组分1和组分2的溶解度参数。
4、聚合物的溶解度参数p δ:2mlmh p δδδ+=,式中,mh δ为高溶解度参数的沉淀剂滴定聚合物溶液在混浊点时混合溶剂的溶解度参数;ml δ为低溶解度参数的沉淀剂滴定聚合物的混浊点时混合溶剂的溶解度参数。
5、试剂:三氯甲烷,正戊烷(ml δ),甲醇(mh δ),聚苯乙烯(PMMA ,溶于三氯甲烷)6、注意事项:(1)溶解PMMA 时,PMMA 与CHCl3要充分混匀,防止滴定时容易出现浑浊;(2)所用试剂为有机溶剂,故滴定管塞口不能涂凡士林,以免污染试剂;(3)读数时视线要与凹液面相平;(4)判定终点时,要将试剂对着阳光,以便判定终点;(5)CHCl3有挥发性,故在配制试样和移取过程中要准确迅速,防止其挥发,造成浓度变化,且其有剧毒,用完应回收,不可随意倾倒。
7、浊点滴定法测定聚合物溶解度参数时候,根据什么原则选择溶剂和沉淀剂?溶剂与聚合物的溶解度参数相近,能否保证二者相溶?为什么?答:对非极性溶剂,根据相似相溶原理,对极性溶剂,根据溶剂比原则来选择溶剂和沉淀剂。
(完整版)高分子物理详细重点总结

名词解释:1. 时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间2. 松弛时间τ :橡皮由ΔX(t)恢复到ΔX(0)的 1/e 时所需的时间3. 松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。
4. 时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。
5. 模量:材料受力时,应力与应变的比值6. 玻璃化温度:为模量下降最大处的温度。
7. 自由体积:任何分子的转变都需要有一个自由活动的空间 ,高分子链活动的空间8. 自由体积分数(f):自由体积与总体积之比。
9. 自由体积理论:当自由体积分数为 2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。
10. 物理老化:聚合物的某些性质随时间而变化的现象11. 化学老化:聚合物由于光、热等作用下发生的老化12. 外增塑:添加某些低分子组分使聚合物 T g 下降的现象13. 次级转变或多重转变: Tg 以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动14. 结晶速率:物品结晶过程进行到一半所需要时间的倒数15. 结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用16. 熔融:物质从结晶态转变为液态的过程17. 熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围18. 熔融熵S m :熔融前后分子混乱程度的变化19. 橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料20. 应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时 ,它的几何形状和尺寸将发生变化21. 附加应力:可以抵抗外力的力22. 泊松比:拉伸实验中材料横向应变与纵向应变比值的负数23. 热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能塑化成型24. 力学松弛:聚合物的各种性能表现出对时间的依赖性25. 蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而增大的现象26. 应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加而逐渐衰减的现象27. 滞后:聚合物在交变应力作用下形变落后于应力变化的现象28. 力学损耗或者内耗:单位体积橡胶经过一个拉伸 ~ 回缩循环后所消耗的功29. 储存模量 E’:同相位的应力与应变的比值30. 损耗模量 E”:相差 90 度相位的应力振幅与应变振幅的比值31. Boltzmann 叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的线性加和32. 应变软化:随应变增大,应力不再增加反而有所下降33. 银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑性变形,在材料表面或内部垂直于应力方向上形成的长 100 、宽 10 、厚为 1 微米左右的微细凹槽或裂纹的现象34. 裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有因和外因两个方面。
因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的径与长度等因素。
为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在10min 从毛细管中压出的熔体克数少,样品的分子量大,如果平均分子量相同,粘度小,则表示物料流动性好,分子量分布较宽。
1、 测烯烃类。
2、聚酯(比如涤纶)不能测。
3、只能区别同种物质。
聚丙烯的熔点为165℃,聚酯的熔点为265℃。
熔融加工温度在熔点上30~50考:简述实验步骤:① 选择适当的温度、压强和合适的毛细管。
(聚丙烯230℃) ② 装上毛细管,预热2~3min 。
③ 加原料,“少加压实”。
平衡5min ,使其充分熔融。
④ 加砝码,剪掉一段料头。
1min 后,剪下一段。
⑤ 称量⑥ 重复10次,取平均值。
⑦ 关闭,清洁仪器。
思考题:1、影响熔融指数的外部因素是什么?(4个)2、 熔融指数单位:g/10min3、测定热塑性高聚物熔融指数有何意义?参考答案:热塑性高聚物制品大多在熔融状态加工成形,其熔体流动性对加工过程及成品性能有较大影响,为此必须了解热塑性高聚物熔体的流变性能,以确定最佳工艺条件。
熔融指数是用来表征熔体在低剪切速率下流变性能的一种相对指标。
4、聚合物的熔融指数与其分子量有什么关系?为什么熔融指数值不能在结构不同的聚合物之间进行比较? 答:见前文。
二、声速法测定纤维的取向度和模量测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -μs ;△t-μs ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④∆t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
背思考题。
)测定聚合物等温结晶速率的方法:比容、红外光谱、X 射线衍射、广谱核磁共振、双折射法等。
本实验采用光学解偏振法,它具有制样简便、操作容易、结晶温度平衡快、实验重复性好等优点。
实验原理:由实验测定等温结晶的解偏振光强-时间曲线,从曲线可以看出,在达到样品的热平衡时间后,首先是结晶速度很慢的诱导期,在此期间没有透过光的解偏振发生,而随着结晶开始,解偏振光强的增强越来越快,并以指数函数形式增大到某一数值后又逐渐减小,直到趋近于一个平衡值。
对于聚合物而言,因链段松弛时间围很宽,结晶终止往往需要很长时间,为了实验测量的方便,通常采用211t 作为表征聚合物结晶速度的参数,21t 为半结晶期。
即为图2中210=--∞∞I I I I t 时所对应的时间。
聚合物结晶过程可用下面的方程式描述:nKt eC -=-1 。
式中:C 为t 时刻的结晶度;K 为与成核及核成长有关的结晶速度常数;n 为Avrami 指数,为整数,它与成核机理和生长方式有关。
t n k I I I I t lg lg ln lg 0+=⎪⎪⎭⎫⎝⎛---∞∞ 若将上式左边对lg t 作图得一条直线,其斜率为Awami 指数n ,截距就是lg K 。
本实验以等规聚丙烯粒料为试样,采用结晶速度仪测定其结晶速率。
思考题:1、聚合物的结晶速度与哪些因素有关?答:分子主链结构,取代基侧链,分子量;温度,压力,应力、添加剂等。
2、根据实验图分析结晶温度对结晶速度的影响。
四、差示扫描量热法测定聚合物等温结晶速率实验原理:采用DSC 法测定聚合物的等温结晶速率时,首先将样品装入样品池,加热到熔点以上某温度保温一段时间,消除热历史,然后迅速降到并保持某一低于熔点的温度,记录结晶热随时间的变化,如图1(a )。
可以看到随结晶过程的进行,DSC 谱图上出现一个结晶放热峰。
当曲线回到基线时,表明结晶过程已完成。
记放热峰总面积为A0,从结晶起始时刻(t 0)到任一时刻t 的放热峰面积A t 与A 0之2I I +∞0I ∞I iτ0t 21t ∞解偏振光强时间图2 等温结晶的解偏振光强—时间曲线结晶在Tg 和Tm 之间。
靠近Tg ,链段难运动;靠近Tm ,晶核难生比记为结晶分数X(t):()0A A t X t=以结晶分数X(t)对时间作图,可得到图1(b体放射性生长,形成球晶的阶段,称为一次结晶;曲线斜率再次减小即进入第三阶段,到此阶段大多数球晶发生碰撞,结晶只能在球晶的缝隙间进行,生成附加晶片,称为二次结晶。
聚合物等温结晶过程可以用Avrami 方程进行描述:()nKt X -=-ex p 1式中,X 为结晶分数,K 为总结晶速率常数,n 为Avrami 指数,与成核机理和晶粒生长的方式有关。
对Avrami 方程取两次对数: ()[]t n K X lg lg 1lnlg +=--以lg[-ln(1-X)]对lgt 作图得一直线,其斜率为Avrami 指数,其截距为lgK 。
实验容:样品的质量取8~10mg ,保护气为N 2。
注意:定要掌握三图的含义。
五、粘度法测定高聚物分子量1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。
2、马克(Mark)公式:[]αηKM =。
该式实用性很广,式中K 、α值主要依赖于大分子在溶液中的形态。
无规线团形状的大分子,α为0.5~0.8;在良溶剂中,大分子溶剂化,α为0.8~l ;硬棒状分子,α>1。
求某一高聚物溶剂系的K 、α值的具体测量,可取对数得: []M K lg lg lg αη+=3、几个粘度的关系(问答题):sp η为增比粘度,1-=τηηsp;τη为相对粘度,)()(0s s 溶剂粘度溶液粘度==ηηητ。
当C →0时, []CCc spc τηηη0limlim →→==4、特性粘度[η]的求得:(1)、稀释法(外推法)[][]C K CHuggins H sp 2ηηη+=式:[][]C K CKramer K 2ln ηηητ+=式:外推至C →0,两直线相交于一点此截距即为[η]。
两条直线的斜率分别代表常数K H 和K K 。
(2)一点法5、换算前提:极稀溶液。
所以 00t t==ηηητ图2 的关系图C CC C sp 对和对τηln当选择的乌氏粘度计t 0<100s 时,需要动能校正。
6、该实验使用PV A (聚乙烯醇),溶剂为去离子水。
思考题1、讨论影晌分子量测定的主要因素。
答:毛细管粘度计的选择(选溶剂的流经时间>100s ),溶液浓度,测试温度。
2、什么情况下需要做动能校正?为什么?六、加聚反应动力学——膨胀计法测反应速度1、膨胀计是测定聚合速度的一种方法。
它的依据是单体密度小,聚合物密度大,此时随着聚合反应的进行,体积会发生收缩。
当一定量单体聚合时,体积的变化与转化率成正比。
如果将这种体积的变化放在一根直径很窄的毛细管中观察,其灵敏度将大为提高,这种方法就是膨胀计法。
2、几种方法测反应速度:直接法和间接法。
间接法有膨胀计法、测比重、测折射率、测比容等。
3、[][][]M I k dtM d v p 21=-=。
此式表示聚合反应速度v p 与引发剂浓度[I ]的平方根成正比,与单体浓度[M ]成正比。
如果转化率低(<16%),可假定引发剂浓度保持恒定,则反应速率只与本体浓度有关。
若对[]⎪⎪⎭⎫⎝⎛M M In 0作图,其斜率即为k 。
由于单体聚合物的密度不同,在单体聚合时必然发生体积变化,故可求得不同时间的单体浓度,进而可求得反应速度常数。
思考题:1、 膨胀计放入恒温糟中,为什么先膨胀后收缩?答:将膨胀计迅速放入预先已恒温的超级恒温水浴中,此时膨胀计液面因液体受热膨胀而上升。
当达到平衡时,液面停止上升。
加聚反应开始后,使体积收缩。
2、实验结果的误差分析。
答:①空气②引发剂没完全溶解③毛细管标定时误差④读数方法误差⑤计时误差七、聚己二酰己二胺的制备1、等摩尔的己二酸和己二胺合成聚己二胺的主要化学反应为:n H 2N(CH 2)6NH 2+n HOOCH(CH 2)4COOHH [ HN(CH2)6NHCO(CH 2)4CO ]n OH+(2n -1)H 2O2、缩聚反应往往具有可逆平衡的性质。
欲提高产物的聚合度,必须使平衡向右移动,这样就得不断地排除反应中所析出的小分子。
反应体系入惰性气体或采用真空设施都是为了这个目的。
3、通常,控制分子量的可靠方法有两种。
(1)、控制原料单体的摩尔比:加己二酸 (2)、加入单官能团的化合物:加月桂酸4、气体钢瓶颜色:黑色——N 2,灰色——H 2,蓝——O 2,绿——Cl 2,黄——SO 2。
思考题:1、在反应过程中为什么要通入氮气?答:氮气的作用是:开始时检验装置是否漏气,并排除空气,反应时排除产生的大量水分,最后起搅拌作用。
2、为什么在尼龙66盐熔融后会产生大量水分?而随着反应进行水分反而消失?答:尼龙66盐在200℃熔融以及发生缩聚反应,在水的脱出的同时伴随着酰胺键的生成,形成线型高分子,因此反应开始水分大量生成,产生水的速度比水蒸发的速度慢所以逐渐减少。
八、丝朊-聚丙烯腈系接枝共聚物的制备接枝共聚物一般借骨架高聚物的大分子接上支链而成。
接枝共聚反应亦单体和骨架高聚物所处的状态可分为均相接枝共聚物和非均相接枝共聚物反应。
后者又可以分为气一固相及液一固相介质共聚反应。