七年级数学下册期末复习(四) 二元一次方程组(含答案)

合集下载

专题04 二元一次方程组(解析版)-2020-2021学年七年级数学期末复习特训

专题04 二元一次方程组(解析版)-2020-2021学年七年级数学期末复习特训

专题04 二元一次方程组一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列方程中,为二元一次方程的是()A.2a+1=0B.3x+y=2z C.xy=9D.3x﹣2y=5【解答】解:A.是一元一次方程,不是二元一次方程,故本选项不符合题意;B.是三元一次方程,不是二元一次方程,故本选项不符合题意;C.是二元二次方程,不是二元一次方程,故本选项不符合题意;D.是二元一次方程,故本选项符合题意;故选:D.2.(3分)如果3x3m﹣2n﹣4y n﹣m+12=0是关于x、y的二元一次方程,那么m、n的值分别为()A.m=2,n=3B.m=2,n=1C.m=﹣1,n=2D.m=3,n=4【解答】解:∵3x3m﹣2n﹣4y n﹣m+12=0是关于x、y的二元一次方程,∴,解得:,故选:D.3.(3分)若是二元一次方程mx﹣y=3的解,则m为()A.7B.6C.D.0【解答】解:把代入方程得:m﹣3=3,解得:m=6,故选:B.4.(3分)下列方程组中,不是二元一次方程组的是()A.B.C.D.【解答】解:由二元一次方程组的定义可知,方程组中不是二元一次方程组的是,因为方程xy=0中未知数的次数是2次,故选:B.5.(3分)如果方程组的解为,那么“□”和“△”所表示的数分别是()A.14,4B.11,1C.9,﹣1D.6,﹣4【解答】解:设“□”为a,“△”为b,则方程组为的解是,代入②得:5﹣2b=3,解得:b=1,方程组的解是,代入①得:10+1=a,解得:a=11,即“□”为11,“△”为1,故选:B.6.(3分)已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x+y=﹣1C.x+y=9D.x+y=﹣9【解答】解:由方程组,有y﹣5=m∴将上式代入x+m=4,得到x+(y﹣5)=4,∴x+y=9.故选:C.7.(3分)关于x,y的方程组的解是整数,则整数a的个数为()A.4个B.3个C.2个D.1个【解答】解:①×2﹣②得:(﹣2a﹣1)y=5,y=﹣,把y=﹣代入②得:4x﹣=7,解得:x=,∵方程组的解为整数,∴x、y都是整数,∴要使y为整数,a为整数,必须1+2a=﹣1或1+2a=5或1+2a=1或1+2a=﹣5,解得:a=﹣1或2或0或﹣3,当a=﹣1时,x==,不是整数,舍去;当a=2时,x==2,是整数,符合;当a=0时,x==3,是整数,符合;当a=﹣3时,x==,不是整数,舍去;故选:C.8.(3分)若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2B.m=4,n=1C.m=4,n=2D.m=2,n=3【解答】解:由题意,得,解得.故选:C.9.(3分)天虹商场现销售某品牌运动套装,上衣和裤子一套售价500元.若将上衣价格下调5%,将裤子价格上调8%,则这样一套运动套装的售价提高0.2%.设上衣和裤子在调价前单价分别为x元和y元,则可列方程组为()A.B.C.D.【解答】解:根据题意可列方程组为,故选:C.10.(3分)方程组消去字母c后,得到的方程一定不是()A.a+b=1B.a﹣b=1C.4a+b=10D.7a+b=19【解答】解:,②﹣①得:3a+3b=3,即a+b=1,③﹣①得:24a+6b=60,即4a+b=10,③﹣②得:21a+3b=57,即7a+b=19,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)对于方程3x+y=5,用含x的式子表示y=﹣3x+5.【解答】解:方程3x+y=5,解得:y=﹣3x+5.故答案为:﹣3x+5.12.(3分)一种运算:x*y=ax+by(a,b为常数),若3*4=2,5*(﹣1)=11,则2*6=﹣2.【解答】解:∵3*4=2,5*(﹣1)=11,,解得:a=2,b=﹣1,∴2*6=2×2+6×(﹣1)=﹣2,故答案为:﹣2.13.(3分)已知a﹣3b+c=8,7a+b﹣c=12,则5a﹣4b+c=18.【解答】解:由题意:a﹣3b+c=8①,7a+b﹣c=12②,②+①,得8a﹣2b=20.所以4a﹣b=10③.所以①+③,得5a﹣4b+c=18.故答案为:18.14.(3分)若满足方程组的x与y互为相反数,则m的值为11.【解答】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到+=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:1115.(3分)把一根长7m的钢管截成2m长和1m长两种规格的钢管,截成不造成浪费的截法有3种.【解答】解;截下来的符合条件的钢管长度之和刚好等于总长7米时,不造成浪费,设截成2米长的钢管x根,1米长的y根,由题意得,2x+y=7,因为x,y都是正整数,所以符合条件的解为:,,,则有3种不同的截法.故答案为:3.16.(3分)如图,由四个形状相同,大小相等的小矩形,拼成一个大矩形,大矩形的周长为12cm.设小矩形的长为xcm,宽为ycm,依题意,可列方程组得.【解答】解:设小矩形的长为xcm,宽为ycm,由题意得:,故答案为.三.解答题(共9小题,满分72分)17.(4分)解方程(组)(1);(2).【解答】解:(1)去分母得:4(2x+5)﹣3(3x﹣2)=24,去括号得:8x+20﹣9x+6=24,移项合并得:﹣x=﹣2,解得:x=2;(2),①﹣②得:3n=15,解得:n=5,将n=5代入②得:3m﹣5=1,解得:m=2,∴原方程组的解为:.18.(4分)已知关于x、y的方程组的x、y的值之和等于2,求m的值.【解答】解:关于x、y的方程组为:,由①﹣②得:x+2y=2,∵x、y的值之和等于2,∴,解这个方程组得,把代入②得:m=4.答:m的值是4.19.(6分)有大小两种货车,3辆大货车与2辆小货车一次可以运货17吨,5辆大货车与6辆小货车一次可以运货35吨,那么3辆大货车与6辆小货车一次可以运货多少吨?【解答】解:设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,依题意,得:,解得:,∴3x+6y=3×4+6×=27.答:3辆大货车与6辆小货车一次可以运货27吨.20.(8分)在等式y=ax2+bx+c中,当x=0时,y=﹣5;当x=2时,y=3;当x=﹣2时,y=11.(1)求a,b,c的值;(2)小苏发现:当x=﹣1或x=时,y的值相等.请分析“小苏发现”是否正确?【解答】解:(1)根据题意,得,②﹣③,得4b=﹣8,解得b=﹣2;把b=﹣2,c=﹣5代入②得4a﹣4﹣5=3,解得a=3,因此;(2)“小苏发现”是正确的,由(1)可知等式为y=3x2﹣2x﹣5,把x=﹣1时,y=3+2﹣5=0;把x=时,y=﹣﹣5=0,所以当x=﹣1或x=时,y的值相等.21.(8分)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.【解答】解:(1)根据题意得:,解得:.(2)∵x=﹣1,y=2,∴3+4+x=6,2y﹣x=5.∵每行的3个数、每列的3个数、斜对角的3个数之和均相等,∴6﹣(﹣2)﹣y=6;6﹣4﹣y=0;6﹣3﹣y=1.完成方阵图,如图所示.22.(10分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店应各付多少元?(2)已知甲组单独完成需要12天,乙组单独完成需要24天,单独请哪组,商店所付费用较少?【解答】解:(1)设甲单独工作一天需要x元,乙单独工作一天商店需付y元,由题意得,,解得:.答:甲单独工作一天需要300元,乙单独工作一天商店需付140元;(2)甲单独完成需付:300×12=3600(元),乙单独完成需付:140×24=3360(元).答:选择乙组商店所付费用较少.23.(10分)甲、乙二人解关于x、y的方程组,甲正确地解出,而乙因把c抄错了,结果解得,求出a、b、c的值,并求乙将c抄成了何值?【解答】解:把代入方程组,可得:,解得:c=﹣2,把代入ax+by=2中,可得:﹣2a+2b=2,可得新的方程组:,解得:,把代入cx﹣7y=8中,可得:c=﹣11.答:乙把c抄成了﹣11,a的值是4,b的值是5,c的值是﹣2.24.(10分)已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨,某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=35,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案三:A型车1辆,B型车8辆,最少租车费为2120元.25.(12分)面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘m(0<m<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发8000元的工资,给每名新工人每月发4800元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?【解答】解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得:,解得:.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2m)=240,2a+m=10,m=10﹣2a,又a,m都是正整数,0<m<10,所以m=8,6,4,2.即工厂有4种新工人的招聘方案.①m=8,a=1,即新工人8人,熟练工1人;②m=6,a=2,即新工人6人,熟练工2人;③m=4,a=3,即新工人4人,熟练工3人;④m=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则m=8,a=1;或m=6,a=2;或m=4,a=3;根据题意,得W=8000a+4800m=8000a+4800(10﹣2a)=48000﹣1600a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当m=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.。

七年级数学下册期末复习(四) 二元一次方程组(含答案)

七年级数学下册期末复习(四)  二元一次方程组(含答案)

期末复习(四) 二元一次方程组考点一 二元一次方程(组)的解的概念【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解,则2m-n 的算术平方根为( ) A.4 B.2D.±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①② 【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩方法二:1,28.x y x y =++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________. 3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( ) A.8 B.4 C.-4 D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩ 将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩ 答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

《二元一次方程组》知识清单含例题、期末专题复习试卷有答案

《二元一次方程组》知识清单含例题、期末专题复习试卷有答案

2018年七年级数学下册二元一次方程组知识清单+经典例题+专题复习试卷1.二元一次方程的定义:含有未知数,并且未知数的项的次数都是,像这样的方程叫做二元一次方程。

2.二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组,方程组中含有_________未知数,含有每个未知数的都是,并且一共有方程。

3.二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程有个解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的.叫做二元一次方程组的解。

5.代入消元法解二元一次方程组:(1)基本思路:未知数由多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方左组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程.实现消元.进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:①,从方程组中选出一个系数比校简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来.即写成y=ax+b的形式。

②・将尸=3乂+1)代入到另一个方程中,消去y,得到一个关于x的一元一次方程,解出这个一元一次方程,求出x的值。

③.把求得的x值代入y=ax+b中求出y的值。

④•把x、y的值用“ {”联立起来。

6.加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解①方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等。

②把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程。

(易错题)初中数学七年级数学下册第四单元《二元一次方程组》测试(有答案解析)

(易错题)初中数学七年级数学下册第四单元《二元一次方程组》测试(有答案解析)

一、选择题1.如图,正方形ABCD 由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD 的面积是( )A .49B .64C .81D .1002.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm 3.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .04.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是( )A .2018B .2019C .2020D .2021 5.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩ B .135x y x y -=-⎧⎨+=-⎩ C .331x y x y -=⎧⎨-=⎩ D .2335x y x y -=-⎧⎨+=⎩6.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( ) A .-1 B .a-1 C .0 D .17.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( ) A .1x y += B .1x y +=-C .9x y +=D .9x y -=- 8.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2 B .2- C .1 D .1-9.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①② 10.若关于x y ,的二元一次方程组232320x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43-11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩12.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( )B .7C .8D .9二、填空题13.已知关于x ,y 的方程组35223x y m x y m +=+⎧⎨+=⎩,给出下列结论:①34x y =⎧⎨=-⎩是方程组的解;②2m =时,x ,y 的值互为相反数;③无论m 的x ,y 都满足的关系式22x y +=;④x ,y 的都为自然数的解有2对,其中正确的为__________.(填正确的序号)14.若关于x ,y 的方程组4,44ax by cx dy -=⎧⎨+=⎩的解是8,4,x y =⎧⎨=⎩则关于x ,y 的方程组()()()()214,2144a x b y c x d y ⎧+--=⎪⎨++-=⎪⎩的解是______. 15.如图,已知∠AOE =100°,∠DOF =80°,OE 平分∠DOC ,OF 平分∠AOC ,求∠EOF 的度数.16.一辆货车、一辆客车、一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的正中间,过了20min ,小轿车追上了客车;又过了10min ;小轿车追上了货车;再过了________min 客车追上了货车. 17.由于2020年新冠疫情影响,全国经济严重滑坡,为了促进经济发展,全国多地放宽摆摊政策,小华的爸爸积极响应国家的政策,在步行街摆摊经营学生学习用品,主要销售甲,乙,丙,丁四种用品,其中甲,乙两种用品的定价一样,丁的定价是丙定价的6倍.四种用品的定价均为整数.10月1日四种用品均按各自的定价销售,甲,丙用品的销售件数相同,乙的销售件数是丁的6倍,甲,乙的总销售额比丙,丁的总销售额多816元.10月2日,由于用品丁库存较多,按定价的八折销售,其余用品售价不变,乙的销量较10月1日下降了20%,其余用品销量不变,小华的爸爸为了考考小华,没有告诉小华确切的售价和数量,只是说:甲,丙的单价之差低于17元,不少于10元,乙,丁的单价之和不超过32元,10月1日、2日两天甲的销量不少于20件,不多于40件.请你帮小华算算10月2日甲,乙,丙,丁,四种用品的销售额最多_____元.18.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.19.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.20.为了节省空间,家里的饭碗一般是竖直摆放的,如果4只饭碗(形状、大小相同)竖直摆放的高度为11,8cm 只饭碗竖直摆放的高度为17cm .如图所示,小颖家的碗橱每格的高度为35,cm则一摞碗竖直放人橱柜时,每格最多能放________________________.三、解答题21.解方程组:(1)524365yxx y-⎧=⎪⎨⎪+=⎩①②(2)3519 8367 x yx y①②+=⎧⎨-=⎩22.2019年12月3日,140余件从明末清初延续至民国时期的民间晋绣在山西省太原美术馆展出,这是山西首次将这一传承百年的工艺品进行系统梳理.某校组织学生前去参观,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满.问这批学生的人数是多少?原计划租用45座客车多少辆?23.如图,线段AB上有一点C,D为线段BC的中点,E为线段AC上一点,EC=4AE,AB=25(1)若AD=20,求AE的长;(2)若DE=14,求BC的长24.解方程组:(1)35 5223x yx y-=⎧⎨+=⎩(2)5225 3415 x yx y+=⎧⎨-=⎩(3)131 2223x yx y⎧-=-⎪⎨⎪+=⎩(4)231 342 457 5615u vu v⎧+=⎪⎪⎨⎪+=⎪⎩25.(1)解方程31215 23x x-+-=(2)解方程组23167 x yx y-=⎧⎨+=-⎩26.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,观察图形,根据各边之间的组合关系,找出关于a、b的二元一次方程组,解方程组即可求出a、b值,进而即可得出正方形ABCD的边长,根据正方形的面积公式即可得出结论.【详解】设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,由已知得:133a ba b a b=+⎧⎨=++⎩,解得:21ab=⎧⎨=⎩,∴正方形ABCD的边长AB=3a+3b=3×(2+1)=9,∴正方形ABCD的面积为9×9=81.故选:C.【点睛】本题考查了二元一次方程组的应用,解题的关键是找出关于a、b的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,观察图形根据各边之间的关系找出方程(或方程组)是关键.2.C解析:C【分析】设小长方形的长为x ,宽为y ,列出二元一次方程组并求解,即可得出结论.【详解】解:设小长方形的长为x ,宽为y ,根据图形可得:45678x y x y =⎧⎨+=⎩, 解得123x y =⎧⎨=⎩, ∴一个小长方形的面积为212336cm ⨯=,故选:C .【点睛】本题考查二元一次方程组的实际应用,根据图形找出等量关系是解题的关键.3.C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.4.C解析:C【分析】设竖式纸盒x 个,横式纸盒y 个,正方形纸板a 张,长方形纸板b 张,由题意列出方程组可求解.【详解】解:设竖式纸盒x 个,横式纸盒y 个, 正方形纸板a 张,长方形纸板b 张,根据题意得:432x y b x y a+⎧⎨+⎩==, ∴5x+5y=5(x+y )=a+b∴a+b是5的倍数故选:C.【点睛】本题考查了二元一次方程组,根据题意列出正确的方程组是本题的关键.5.D解析:D【分析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.6.D解析:D【解析】分析:由x、y系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y ax y a+=-+⎧⎨+=-⎩①②,①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a的代数式表示x、y,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.7.C解析:C【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=.故选C.【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.8.C解析:C【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 9.A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确 解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A.【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.10.B解析:B【分析】首先解关于x的方程组,求得x,y的值,然后代入方程2x+3y=6,即可得到一个关于k 的方程,从而求解.【详解】解232320x y kx y k+=⎧⎨-=⎩得72x ky k=⎧⎨=-⎩,由题意知2×7k+3×(−2k)=6,解得k=34.故选:B【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.11.A解析:A【分析】设醇酒为x斗,行酒为y斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】解:由题意,得2 501030 x yx y+=⎧⎨+=⎩,故选A.【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.12.B解析:B【分析】根据第一列、第三行、对角线建立关于x、y的方程组,解方程组求出x、y的值,由此即可得.【详解】由题意得:29411299211y y y x y y x ++=-+⎧⎨++=-+⎩, 整理得:4222311x y x y +=⎧⎨+=⎩, 解得25x y =-⎧⎨=⎩, 则2949y y a x ++=-+,即()5259429a +⨯+=-⨯-+,解得7a =,故选:B .【点睛】本题考查了二元一次方程组的应用,依据题意,正确建立方程组是解题关键.二、填空题13.②③④【分析】先解方程组用m 表示出x 与y 根据方程组解的情况即可作出判断【详解】解:解出方程组得①由x =3得2m-6=3解得m =由y =-4得4-m =-4解得m =8∴不是方程组的解故①不正确;②若xy 的 解析:②③④【分析】先解方程组用m 表示出x 与y ,根据方程组解的情况即可作出判断.【详解】解:解出方程组得264x m y m =-⎧⎨=-⎩, ①由x =3得,2m -6=3,解得m =92, 由y =-4得,4-m =-4,解得m =8, ∴34x y =⎧⎨=-⎩不是方程组的解, 故①不正确;②若x ,y 的值互为相反数,2m -6+4-m =0,解得m =2,故②正确;③∵2m -6+2(4-m )=2,∴无论m 取何值,x ,y 都是满足关系式x +2y =2,故③正确;④∵x ,y 的都为自然数,∴m =3,4,共2个,即01x y =⎧⎨=⎩,20x y =⎧⎨=⎩.故④正确;故答案为:②③④. 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.【分析】利用已知方程组的解和换元法求解即可;【详解】设则原方程组可化为∵关于的方程组的解是∴∴即∴关于的方程组的解是;故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算是解题的关键解析:65x y =⎧⎨=⎩【分析】利用已知方程组的解和换元法求解即可; 【详解】设2x m +=,1y n -=, 则原方程组可化为4,44am bn cm dn -=⎧⎨+=⎩,∵关于x ,y 的方程组4,44ax by cx dy -=⎧⎨+=⎩的解是84x y =⎧⎨=⎩,∴84m n =⎧⎨=⎩, ∴2814x y +=⎧⎨-=⎩,即65x y =⎧⎨=⎩,∴关于x ,y 的方程组()()()()214,2144a x b y c x d y ⎧+--=⎪⎨++-=⎪⎩的解是65x y =⎧⎨=⎩;故答案是65x y =⎧⎨=⎩.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.15.【分析】由OE 平分∠DOCOF 平分∠AOC 则设∠DOE=∠EOC=x ∠COF=∠FOA=y 得出∠AOE=2y+x=100°∠DOF=2x+y=80°然后列二元一次方程组求出xy 最后根据∠EOF=∠E 解析:60【分析】由OE 平分∠DOC ,OF 平分∠AOC ,则设∠DOE=∠EOC=x ,∠COF=∠FOA=y ,得出∠AOE=2y+x=100°,∠DOF=2x+y=80°,然后列二元一次方程组求出x 、y ,最后根据∠EOF=∠EOC+∠COF 解答即可. 【详解】解:设∠DOE=∠EOC=x ,∠COF=∠FOA=y则2100280y x x y +=⎧⎨+=⎩,解得2040x y ⎧=⎨=⎩∴∠EOF=∠EOC+∠COF=x+y=60. 故答案为60. 【点睛】本题主要考查了角平分线的定义、二元一次方程组的应用以及角的和差的相关知识,根据题意列出二元一次方程组并求解是解答本题的关键.16.【分析】由于在某一时刻货车在前小轿车在后客车在货车与小轿车的中间所以设在某一时刻客车与货车小轿车的距离均为S 千米小轿车货车客车的速度分别为abc (千米/分)由过了分钟小轿车追上了客车可以列出方程由又 解析:30【分析】由于在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的中间,所以设在某一时刻,客车与货车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由过了20分钟,小轿车追上了客车可以列出方程()20a c s -=,由又过了10分钟,小轿车追上了货车列出方程()302a b s -=,由再过t 分钟,客车追上了货车列出方程()()30t c b s +-=,联立所有方程求解即可求出t 的值. 【详解】解:设在某一时刻,客车与货车、小轿车的距离均为S 千米,再过t 分钟,客车追上了货车,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由题意可得:()()()()2030230a c s a b s t c b s -=⎧⎪-=⎨⎪+-=⎩①②③由②×2-①×3 得:60sc b -=④, ④代入③中得:3060t +=, ∴30t =(分).故答案为:30. 【点睛】此题主要考查了三元一次方程组的应用,解题的关键是正确理解题意,准确变为题目的数量关系,然后列出方程组解决问题.17.4【分析】先分别设10月1日的甲乙丙丁的单价销量再根据题意设出10月2日甲乙丙丁的单价及销量进而列出10月2日的销售额代数式再根据题中的数量关系列方程和不等式分两种情况进行求解:①当时;②当时进而代解析:4. 【分析】先分别设10月1日的甲乙丙丁的单价、销量,再根据题意设出10月2日甲乙丙丁的单价及销量,进而列出10月2日的销售额代数式,再根据题中的数量关系列方程和不等式分两种情况进行求解:①当12m n -=,658x y +=时;②当16m n -=,651x y +=时,进而代入W 求值比较即可求解. 【详解】解:由题意,设未知数列表:设10月2日销售额:)4.8 4.8 4.8W mx my nx ny m n x y =+++=++ 由题意得:66816mx my nx ny +--=, 化简得()()6816m n x y -+=, 且1017m n ≤-≤,m +6n≤32,20≤2a≤40 ∵m ,n ,x ,y 都为正整数,所以可得12m n -=,658x y +=或者16m n -=,651x y +=. ①当12m n -=,658x y +=时,m =12+n , 代入到m +6n≤32可得:7n ≤20, ∴n 最大为2,此时m 最大为14,把m =14,n =2代入()()6816m n x y -+=得: x +6y =68, ∴4.8y =54.4-0.8x ,∴()()()21454.40.81654.40.2W x x x =++-=+ ∵20240x ≤<,∴当20x时,W 最大为()1654.40.220934.4⨯+⨯=②当16m n -=,651x y +=时,得4.840.80.8y x =-, ∵632m n +≤,∴n 最大为2,此时m 最大为18,∴()()()21454.40.82040.80.2W x x x =++-=+ ∵20240x ≤≤, ∴当20x时,W 最大为()2040.80.220816⨯+⨯=∵816934.4<, ∴W 最大为934.4元. 【点睛】本题主要考查不定方程和不等式的应用,解题的关键是正确解读题意列出方程和不等式.18.1【分析】根据二元一次方程的定义列出关于ab 的二元一次方程组通过解方程组来求ab 的值【详解】根据题意得解得:故答案是:21【点睛】本题主要考查了二元一次方程定义关键是掌握含有两个未知数并且含有未知数解析:1 【分析】根据二元一次方程的定义列出关于a 、b 的二元一次方程组,通过解方程组来求a ,b 的值. 【详解】根据题意,得2413231a b a b +-=⎧⎨--=⎩,解得:21a b =⎧⎨=⎩.故答案是:2,1. 【点睛】本题主要考查了二元一次方程定义,关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.19.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化解析:45% 【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可. 【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==; 故答案为:45%. 【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.20.【分析】由题意得碗的高度和碗的个数的关系式为y=kx+b 然后代入题中的两种情况得根据每格橱柜最高35cm 即可求出答案【详解】设碗的个数为xcm 碗摞起来的高度为ycm 可得碗的高度和碗的个数的关系式为y 解析:20【分析】由题意得,碗的高度和碗的个数的关系式为y=kx+b ,然后代入题中的两种情况得352y x =+, 根据每格橱柜最高35cm ,即可求出答案. 【详解】设碗的个数为x cm ,碗摞起来的高度为y cm ,可得碗的高度和碗的个数的关系式为y=kx+b ,根据4只碗摞起来的高度为11cm ,8只碗摞起来的高度为17cm ,列方程组411817k b k b +=⎧⎨+=⎩ ,解得:325k b ⎧=⎪⎨⎪=⎩ ,352y x =+, 碗橱每格的高度为35cm ,33552x =+, 解得:20x,所以每格最多能放20个碗,故答案为:20. 【点睛】本题考查了二元一次方程的应用,关键是根据题意,找出合适的等量关系式,列出方程组求解.三、解答题21.(1)515x y =⎧⎨=⎩;(2)81x y =⎧⎨=-⎩【分析】(1)由4⨯①-②消去x ,求出y 的值,再把y 的值代入①求出x 的值即可;(2)由3⨯①+5⨯②消去y ,求出x 的值,再把x 的值代入①求出y 的值即可. 【详解】解:(1)4⨯①-②,得44321065x x y y --=--,解得15y =, 把15y =代入①,得15552x -==, ∴515x y =⎧⎨=⎩;(2)3⨯①+5⨯②,得915401557335x y x y ++-=+,解得8x =, 把8x =代入①,得24519y +=,解得1y =-, ∴81x y =⎧⎨=-⎩.【点睛】本题考查二元一次方程组,解题的关键是掌握二元一次方程组的解法. 22.学生人数为240人,原计划租用45座客车5辆 【分析】此题注意总人数是不变的,设原计划租用45座客车x 辆,学生人数为y 人.根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满”列出方程组并解答. 【详解】解:设原计划租用45座客车x 辆,学生人数为y 人. 根据题意,得154560(1)y xx y -=⎧⎨-=⎩.解,得5240x y =⎧⎨=⎩.答:学生人数为240人,原计划租用45座客车5辆. 【点睛】本题考查了二元一次方程组的应用.此题要抓住不变量,可以有不同的解法,本题关键是找到等量关系.23.(1)AE=3;(2)BC=20 【分析】(1)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解; (2)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;【详解】解:(1)设AE=a,CD=b,∵EC=4AE,D为线段BC的中点,∴CE=4a,AC=AE+CE=5a,BC=2b,∵AD=20,AB=25∴AC+CD=5a+b=20AC+BC=5a+2b=25解得:a=3,b=5即AE=a=3;(2)设AE=a,CD=b,∵EC=4AE,D为线段BC的中点,∴CE=4a,BC=2b,∵DE=CE+CD=4a+b=14AB=AE+CE+BC=5a+2b=25解得:a=1,b=10即BC=2b=20.【点睛】本题考查两点间的距离和二元一次方程组,解题的关键是熟练掌握线段中点的性质及线段的和差倍数.24.(1)34xy=⎧⎨=⎩;(2)5xy=⎧⎨=⎩;(3)11xy=⎧⎨=⎩;(4)322uv⎧=-⎪⎨⎪=⎩【分析】根据二元一次方程组的运算法则求解即可.【详解】(1)35 5223x yx y-=⎧⎨+=⎩①②,①×2+②,得:11x=33,解得:x=3,将x=3代入②,得:15+2y=23,解得:y=4,则方程组的解为34 xy=⎧⎨=⎩;(2)5225 3415x yx y+=⎧⎨-=⎩①②,①×2+②,得:13x=65,解得:x=5,将x=5代入①,得:25+2y=25,解得:y =0, 所以方程组的解为5x y =⎧⎨=⎩; (3)1312223x y x y ⎧-=-⎪⎨⎪+=⎩①②, ②﹣①×4,得:7y =7, 解得:y =1,将y =1代入②,得:2x +1=3, 解得:x =1,则方程组的解为11x y =⎧⎨=⎩;(4)原方程组整理可得:896242514u v u v +=⎧⎨+=⎩①②,①×3﹣②,得:2v =4, 解得:v =2,将v =2代入①,得:8u +18=6, 解得:u =32-, 所以方程组的解为322u v ⎧=-⎪⎨⎪=⎩.【点睛】本题主要考查的是解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解答本题的关键.25.(1)7x =;(2)11x y =-⎧⎨=-⎩.【分析】(1)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解; (2)方程组利用加减消元法求出解即可. 【详解】(1)去分母得:()()33122130x x --+=, 去括号得:934230x x ---=, 移项合并得:535x =, 解得:7x =; (2)23167x y x y -=⎧⎨+=-⎩①②,①2⨯+②得:55x =-, 解得:1x =-,把1x =-代入①得:1y =-,则方程组的解为11x y =-⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,以及解一元一次方程,解方程组利用了消元的思想,消元的方法有:加减消元法与代入消元法.26.(1) 18辆;(2) 租45座的客车2辆,租60座客车最省钱. 【分析】(1)设单租45座客车x 辆,则参加春游的师生总人数为45x 人,根据人数与客车的数量关系建立方程求出其解即可;(2)等量关系为:45座客车能坐的人数+60座客车能坐的人数=秋游的师生总人数,选取正整数解,比较即可. 【详解】解:(1)设单租45座客车x 辆,则参加春游的师生总人数为45x 人.根据题意,得 45x =60(x−4)−30, 解得:x =18.答:只租45座的客车,需要18辆车; (2)解:45×18=810(人)设租45座客车x 辆,60座客车y 辆. 根据题意得: 45x +60y =810. ∵x ,y 均为正整数,∴x =2,y =12;或x=6,y=9;或x=10,y=6;或 x=14,y=3. 2500×2+3000×12=41000(元) 2500×6+3000×9=42000(元) 2500×10+3000×6=43000(元) 2500×14+3000×3=44000(元) ∵41000﹤42000﹤43000﹤44000∴租45座的客车2辆,租60座客车12辆最省钱. 【点睛】本题主要考查了用一元一次方程及二元一次方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.。

人教版初中数学七年级数学下册第四单元《二元一次方程组》测试题(含答案解析)

人教版初中数学七年级数学下册第四单元《二元一次方程组》测试题(含答案解析)

一、选择题1.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或5 2.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a 3.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩4.两位同学在解方程组时,甲同学由278ax by x cx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C 写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为 A .452a b c ===-,, B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,, 5.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3 6.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( ) A .-1 B .a-1 C .0 D .17.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x y x y -=⎧⎨-=⎩8.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x y D .11x y =⎧⎨=⎩ 9.下列方程中,属于二元一次方程的是( )A .235x x -=+B .1xy y +=C .315x y -=-D .325x y += 10.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x 岁和y 岁,则可列方程组( )A .440x y x y x y -=-⎧⎨-=-⎩B .440x y x y -=⎧⎨+=⎩C .440x y y x -=⎧⎨-=⎩D .440x x y y x y -=-⎧⎨-=-⎩ 11.下列方程是二元一次方程的是( ). A .32x y -= B .1xy = C .2+3=x x D .153x y -= 12.下列说法正确的是( )A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12 C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩D .若3m n x +与22112m x y --是同类项,则2m =,1n = 二、填空题13.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.14.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本. 15.若12x y =⎧⎨=-⎩是二元一次方程23ax y -=的解,则a 的值为________. 16.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.17.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+ (10b )2021=________. 18.甲、乙两码头相距180km ,某轮船从甲码头顺流航行到乙码头需要5h ,返回时需要6h ,那么这条河的水流速度是________.19.单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______. 20.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______. 三、解答题21.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A 种原料和2吨B 种原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料,该厂现有A 种原料120吨,B 种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元?22.解方程组(1)310518x y x y +=⎧⎨+=⎩(2)312491a b a b ⎧+=⎪⎨⎪-=-⎩ 23.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?24.解方程组(1)()() 322 3553x yx y⎧-=+⎪⎨+=-⎪⎩.(2)1 32321 x yx y⎧-=-⎪⎨⎪-=⎩.25.解下列方程组:(1)137x yx y+=⎧⎨-=⎩(2)23151475x yx y+=⎧⎪++⎨=⎪⎩26.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】∵2x+1·4y=128,27=128,∴x+1+2y=7,即x+2y=6.∵x,y均为正整数,∴22xy=⎧⎨=⎩或41xy=⎧⎨=⎩∴x+y=4或5. 2.A解析:A【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.3.A解析:A【分析】设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x 棵,公路长为y 米,由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩, 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.4.A解析:A【分析】把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答.【详解】解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得:3223148a b c -=⎧⎨+=⎩①②, 由②得:c 2=-,四个选项中行只有A 符合条件.故选择:A.【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.5.C解析:C【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可.【详解】解:根据题意,得121m n m n -=⎧⎨+-=⎩, 解得21m n =⎧⎨=⎩. 故选:C .6.D解析:D【解析】分析:由x 、y 系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y a x y a +=-+⎧⎨+=-⎩①②, ①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a 的代数式表示x 、y ,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.7.C解析:C【分析】根据等量关系式“①4辆板车运货量+5辆卡车运货量=27吨;②10辆板车运货量+3辆卡车运货量=20吨”根据相等关系就可设未知数列出方程.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4x+5y=27;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10x+3y=20.可列方程组为452710320x y x y +⎧⎨+⎩==. 故选:C .【点睛】由关键性词语“4辆板车和5辆卡车一次能运27吨货”,“10辆板车和3车卡车一次能运货20吨”,找到等量关系是解决本题的关键.8.D解析:D【分析】将各项中x 与y 的值代入方程检验即可.【详解】解:x-2y=1,解得:x=2y+1,当y=-1时,x=-1,所以11x y =-⎧⎨=-⎩是方程21x y -=的解,选项A 不合题意, 当y=-0.5时,x=-1+1=0,所以00.5x y =⎧⎨=-⎩是方程21x y -=的解,选项B 不合题意; 当y=0时,x=1,所以10x y =⎧⎨=⎩是方程21x y -=的解,选项C 不合题意; 当y=1时,x=2+1=3,所以11x y =⎧⎨=⎩不是方程21x y -=的解,选项D 符合题意; 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 9.C解析:C【分析】根据二元一次方程的定义解答.【详解】解:A 、该方程中只含有1个未知数,不是二元一次方程,故本选项不符合题意; B 、该方程中含有未知数的项最高次数是2,不是二元一次方程,故本选项不符合题意; C 、该方程符合二元一次方程的定义,故本选项符合题意;D 、该方程不是整式方程,故本选项不符合题意;故选:C .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.10.A解析:A【分析】根据题设小亮和老师的岁数分别为x 岁和y 岁,根据题意列出方程组解答即可.【详解】解:设小亮和老师的岁数分别为x 岁和y 岁可得440x y x y x y -=-⎧⎨-=-⎩故选A【点睛】此题考查二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列出方程组求解.11.A解析:A【分析】根据二元一次方程的定义,对各个选项逐个分析,即可得到答案.【详解】32x y -=是二元一次方程,故选项A 正确;1xy =,含未知数的项的次数是2,故选项B 错误;2+3=x x 是一元一次方程,故选项C 错误;153x y-=,不是整式方程,故选项D 错误; 故选:A .【点睛】本题考查了二元一次方程的知识;解题的关键是熟练掌握二元一次方程的定义,从而完成求解.12.C解析:C【分析】求出方程的特殊解即可判断A ;代入得到关于k 的方程,求出即可;代入求出x ,把x 的值代入求出y 即可;根据同类项的定义求出即可.【详解】A 、1732y x -=,当y=1时,x=7,当y=3时,x=4,当y=5时,x=1,正整数解有3个,故本选项错误;B 、把x=5,y=2代入方程得:10-6=2k ,∴k=2,故本选项错误;C 、利用代入法解方程组得得:x=1,y=-1,故本选项正确;D 、根据同类项的定义得到m+n=2,2m-1=0,解得:12m =,32n =,故本选项错误. 故选:C .【点睛】 本题主要考查了同类项的概念,二元一次方程以及解二元一次方程组等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键.二、填空题13.-40【分析】把甲的结果代入方程组求出c 的值得到关于a 与b 的方程将乙结果代入第一个方程得到a 与b 的方程联立求出a 与b 的值在计算abc 的值即可【详解】解:由甲运算结果得解得由乙运算结果得得解得=故答案解析:-40【分析】把甲的结果代入方程组求出c 的值,得到关于a 与b 的方程,将乙结果代入第一个方程得到a 与b 的方程,联立求出a 与b 的值,在计算abc 的值即可.【详解】解:由甲运算结果得322a b -=,3148c +=,解得2c =-,由乙运算结果得222a b -+=,得322222a b a b -=⎧⎨-+=⎩, 解得45a b =⎧⎨=⎩. ∴ abc =45(2)40⨯⨯-=-故答案为:-40【点睛】本题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.14.80【分析】先设甲种书的单价为x 元数量为y 本乙种书的数量为z 本根据数学组购买了甲乙两种自然科学书籍若干本用去7690元:语文组购买了AB 两种文学书籍若干本用去8330元列出方程组求出z-y 的值即可求解析:80【分析】先设甲种书的单价为x 元,数量为y 本,乙种书的数量为z 本,根据数学组购买了甲、乙两种自然科学书籍若干本,用去7690元:语文组购买了A 、B 两种文学书籍若干本,用去8330元列出方程组,求出z-y 的值即可求出答案.【详解】设甲种书的单价为x 元,数量为y 本,乙种书的数量为z 本,根据题意得:()()8769088330xy x z x y xz ⎧+-⎪⎨-+⎪⎩==,整理得:8769088330xy xz z xy y xz +-⎧⎨-+⎩=①=②, ②−①得:8z-8y =640,则z-y =80,故乙种书籍比甲种书籍多买了80本故答案为:80.【点睛】此题考查了三元二次方程组的应用,关键是读懂题意,根据题目中的数量关系列出方程组,在解方程组时要注意方程组的特点.15.【分析】把x 与y 的值代入方程计算即可求出a 的值【详解】把代入方程得:解得:故答案为:【点睛】本题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:1-【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把12x y =⎧⎨=-⎩代入方程得:()223a -⨯-=, 解得:1a =-,故答案为:1-.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 16.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化 解析:45%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==;故答案为:45%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.17.【分析】根据甲看错了方程①中的a②没有看错代入②得到一个方程求出b 的值乙看错了方程②中的b①没有看错代入①求出a 的值然后再把ab 的值代入代数式计算即可求解【详解】解:根据题意得4×(-3)-b=-2解析:0【分析】根据甲看错了方程①中的a ,②没有看错,代入②得到一个方程求出b 的值,乙看错了方程②中的b ,①没有看错,代入①求出a 的值,然后再把a 、b 的值代入代数式计算即可求解.【详解】解:根据题意得,4×(-3)-b=-2,5a+5×4=15,解得a=-1,b=-10,则a 2020+ (10b )2021=(-1)2020+(-110×10)2021=1-1=0 故答案是:0.【点睛】 本题考查了二元一次方程的解,根据题意列出方程式解题的关键.18.【分析】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意列二元二次方程组并求解即可得到答案【详解】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意得:即①-②得:∴即这条河的解析:3/km h【分析】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h ,根据题意列二元二次方程组并求解,即可得到答案.【详解】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h 根据题意得:18051806y x y x ⎧+=⎪⎪⎨⎪-=⎪⎩即3630y x y x +=⎧⎨-=⎩①② ①-②,得:23630x =-∴3x =即这条河的水流速度是3/km h故答案为:3/km h .【点睛】本题考查了二元二次方程组的知识;解题的关键是熟练掌握二元二次方程组的性质,并运用到实际问题中,从而完成求解.19.-3【分析】根据两个单项式可以合并求出mn 的值再化简多项式代入即可【详解】解:单项式-x2m-ny3与单项式可以合并∴2m-n=33=m+n 组成方程组解得:m=2n=1当m=2n=1时故答案为:【点解析:-3【分析】根据两个单项式可以合并,求出m 、n 的值,再化简多项式代入即可.【详解】解:单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并 ∴2m-n=3,3=m+n组成方程组解得:m=2,n=1当m=2,n=1时 ()()224222m n m n n m -+---- 82918=-+-3=-故答案为:3-.【点睛】本题考查同类项定义,以及代入多项式求值,值得注意的是本题代入求值时,可以直接代入,化简后代入反而繁缛了.20.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩【分析】先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225x y ⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.三、解答题21.(1)生产甲种产品15件,乙种产品20件才能恰好使两种原料全部用完;(2)每件甲产品应涨价0.6万元.【分析】(1)首先设生产甲种产品x 件,生产乙种产品y 件,然后列出二元一次方程组即可求解; (2)设每件甲种产品涨价m 万元,根据甲的销售额+乙的销售额=总销售额列出方程,即可求解.【详解】设生产甲种产品x 件,生产乙种产品y 件,根据题意,得43120250x y x y +=⎧⎨+=⎩解得1520 xy=⎧⎨=⎩答:生产甲种产品15件,乙种产品20件才能恰好使两种原料全部用完.(2)设每件甲种产品涨价m万元,根据题意,得(3)15(110%)520144m+⨯+-⨯⨯=解得0.6m=答:每件甲产品应涨价0.6万元.【点睛】本题考查了一元一次方程的应用,二元一次方程组的应用,重点是根据题意找到等量关系,并根据等量关系列出方程.22.(1)42xy=⎧⎨=-⎩﹔(2)1213ab⎧=⎪⎪⎨⎪=⎪⎩【分析】(1)应用加减消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】(1)310 518 x yx y+=⎧⎨+=⎩①②②-①,可得2x=8,解得x=4,把x=4代入①,解得y=-2,∴原方程组的解是4-2 xy=⎧⎨=⎩(2)312491 a ba b⎧+=⎪⎨⎪-=-⎩①②①×4,可得4a+6b=4③,③-②,可得15b=5,解得13b=.把13b=代入①,解得12a=,∴原方程组的解是1213ab⎧=⎪⎪⎨⎪=⎪⎩.【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.23.(1)甲;(2)625;(3)丙商场先打了8.8折后再参加活动.【分析】(1)分别计算在甲,乙商场的费用,比较后可得答案;(2)设商品的标价为x 元,判断:600<x <800,再根据最后付款额是一样的列方程,解方程可得答案;(3)先求解同种商品在丙商场付款350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,可得方程625100350,10y n ⨯-= 由n 为正整数,进行讨论并检验,从而得到答案.【详解】解:(1)张丽在甲商场购买所花:85052%442⨯=(元),在乙商场购买所花:8504100450-⨯=(元),由442<450,张丽应该选择甲商场购买.(2)设商品的标价为x 元,由题意可得:600<x <800,则 52%3100,x x =-⨯0.48300,x ∴=625x ∴=答:此商品的标价是625元.(3)由(2)得:625元的商品在乙商场付款6253100325-⨯=元,所以同种商品在丙商场付款325+25=350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,则 625100350,10y n ⨯-= 整理得:5828,y n -=8528,n y ∴=-5288y n -∴= , 又n 为正整数,当5288y -=时,7.2,1,y n == 经检验:7.2625=45010⨯元,此时2n =,不合题意,舍去, 当52816y -=时,8.8,2,y n == 经检验:8.862555010⨯=元,此时2n =,符合题意, 当52824y -=时,10.4,y = 此时不符合题意,故舍去,综上:丙商场先打了8.8折后再参加活动.【点睛】本题考查的是一元一次方程的应用,二元一次方程的正整数解的应用,分类讨论的数学思想,掌握以上知识是解题的关键.24.(1)57x y =⎧⎨=⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)先将两个方程分别整理,再利用加减法解方程组;(2)先将方程①化简,再利用加减法解方程组.【详解】(1)3(2)2355(3)x y x y -=+⎧⎨+=-⎩①②, 整理得38x y -=③,3520x y -=-④,③-④,得7y =,将7y =代入③,得5x =,所以原方程的解是57x y =⎧⎨=⎩. (2)132321x y x y ⎧-=-⎪⎨⎪-=⎩①②,由①整理得236x y -=-③,23⨯-⨯②③,得4y =,将4y =代入②,得3x =,所以原方程的解是34x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法、加减法,根据二元一次方程组的特点选用恰当的解法是解题的关键.25.(1)21x y =⎧⎨=-⎩;(2)61x y =⎧⎨=⎩【分析】(1)方程组运用加减消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.【详解】解:(1)137x y x y +=⎧⎨-=⎩①② ①+②得4x=8,解得,x=2把x=2代入①得,2+y=1,解得,y=-1所以,方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得,23155723x y x y +=⎧⎨-=⎩①② ①×7+②×3得,29x=174解得,x=6把x=6代入①得,y=1,所以,原方程组的解为61x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.26.(1)5元的笔记本买25本,8元的笔记本买15本;(2)见解析【分析】(1)设5元、8元的笔记本分别买x 本、y 本,根据题意列二元一次方程组解答;(2)根据(1)中求出的5元、8元笔记本的本数求出应找回的钱数,再与68比较即可得出结论.【详解】(1)设5元、8元的笔记本分别买x 本、y 本,由题意得405868313x y x y +=⎧⎨++=⎩,解得2515x y =⎧⎨=⎩, 答:5元的笔记本买25本,8元的笔记本买15本;(2)应找回的钱数为:3005258155568-⨯-⨯=≠,∴不能找回68元.【点睛】此题考查二元一次方程组的实际应用,有理数的混合运算,正确理解题意是解题的关键.。

人教版七年级数学下册期末复习四二元一次方程组习题【优选】

人教版七年级数学下册期末复习四二元一次方程组习题【优选】

期末复习(四) 二元一次方程组各个击破命题点1 二元一次方程组的解法【例1】 (厦门中考)解方程组:⎩⎪⎨⎪⎧2x +y =4,①2y +1=5x.② 【思路点拨】 方法一:将①变形为y =4-2x ,然后代入②,消去y ,转化为一元一次方程求解; 方法二:①×2-②,消去y ,转化为一元一次方程求解.【解答】 方法一:由①,得y =4-2x ,③代入②,得2(4-2x)+1=5x ,解得x =1,把x =1代入③,得y =2,∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 方法二:①×2,得4x +2y =8.③③-②,得4x -1=8-5x.解得x =1.把x =1代入②,得y =2,∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 【方法归纳】 二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.1.(毕节中考)已知关于x ,y 的方程x 2m -n -2+4y m +n +1=6是二元一次方程,则m ,n 的值为(A )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43 D .m =-13,n =432.(枣庄中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为8. 3.(滨州中考)解方程组:⎩⎪⎨⎪⎧3x +4y =19,①x -y =4.②解:由②,得x =4+y.③把③代入①,得3(4+y)+4y =19.解得y =1.把y =1代入③,得x =4+1=5.∴原方程组的解为⎩⎪⎨⎪⎧x =5,y =1. 命题点2 由解的关系求方程组中字母的取值【例2】 若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =1+a ,x +3y =3 ①②的解满足x +y<2,则a 的取值范围为(A )A .a<4B .a>4C .a<-4D .a>-4【思路点拨】 本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x +y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x +y<2求出a 的取值范围,但计算量大.【方法归纳】 通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的算术平方根为(B ) A .4 B .2C . 2D .±25.已知方程组⎩⎪⎨⎪⎧ax +by =1,2x -y =1和方程组⎩⎪⎨⎪⎧ax -by =5,x +2y =3的解相同,求a 和b 的值. 解:解方程组⎩⎪⎨⎪⎧2x -y =1,x +2y =3,得⎩⎪⎨⎪⎧x =1,y =1. 将⎩⎪⎨⎪⎧x =1,y =1代入⎩⎪⎨⎪⎧ax +by =1,ax -by =5,得 ⎩⎪⎨⎪⎧a +b =1,a -b =5,即⎩⎪⎨⎪⎧a =3,b =-2.命题点3 二元一次方程组的应用【例3】 (临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【思路点拨】 (1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元,由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】 (1)设平安客运公司60座和45座的客车每辆每天的租金分别为x 元,y 元.由题意,得⎩⎪⎨⎪⎧x -y =200,4x +2y =5 000.解得⎩⎪⎨⎪⎧x =900,y =700. 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需租金5 200元.【方法归纳】 列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.设未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.6.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒的总价为440元.7.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子上的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?解:设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得⎩⎪⎨⎪⎧x +y =70,1 200x ×2=1 800y.解得⎩⎪⎨⎪⎧x =30,y =40. 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.整合集训1.下列方程组中,是二元一次方程组的是(B )A .⎩⎪⎨⎪⎧2x +y =-1y +z =2B .⎩⎪⎨⎪⎧5x -3y =3y =2+3x C .⎩⎪⎨⎪⎧x -5y =1xy =2 D .⎩⎪⎨⎪⎧3x -y =7x 2+y =1 2.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =1,3x -2y =8时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形结果:①⎩⎪⎨⎪⎧6x +9y =1,6x -4y =8;②⎩⎪⎨⎪⎧4x +6y =1,9x -6y =8;③⎩⎪⎨⎪⎧6x +9y =3,-6x +4y =-16; ④⎩⎪⎨⎪⎧4x +6y =2,9x -6y =24. 其中变形正确的是(B )A .①②B .③④C .①③D .②④3.方程组⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11 ②的最优解法是(C ) A .由①得y =3x -2,再代入②B .由②得3x =11-2y ,再代入①C .由②-①,消去xD .由①×2+②,消去y4.方程组⎩⎪⎨⎪⎧2x +y =4,x +3z =1,x +y +z =7的解是(C )A .⎩⎪⎨⎪⎧x =2y =2z =1B .⎩⎪⎨⎪⎧x =2y =1z =1C .⎩⎪⎨⎪⎧x =-2y =8z =1D .⎩⎪⎨⎪⎧x =2y =2z =25.(广州中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为(B ) A .-4 B .4 C .-2 D .26.若(x +y -5)2+|2x -3y -10|=0,则x ,y 等于(C )A .⎩⎪⎨⎪⎧x =3y =2 B .⎩⎪⎨⎪⎧x =2y =3 C .⎩⎪⎨⎪⎧x =5y =0 D .⎩⎪⎨⎪⎧x =0y =5 7.A ,B 两地相距6 km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km /h ,乙的速度为y km /h ,则得方程组为(D )A .⎩⎪⎨⎪⎧x +y =63x +3y =6B .⎩⎪⎨⎪⎧x +y =63x -y =6 C .⎩⎪⎨⎪⎧x -y =63x +3y =6 D .⎩⎪⎨⎪⎧x +y =63x -3y =6 8.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为(C )A .50人,40人B .30人,60人C .40人,50人D .60人,30人9.(齐齐哈尔中考)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是(C )A .1或2B .2或3C .3或4D .4或510.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需要315元,购买甲1件、乙2件、丙3件共需要285元,那么购甲、乙、丙三种商品各一件共需要(C )A .50元B .100元C .150元D .200元11.(安顺中考)如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =0.12.已知a 、b 是有理数,观察下表中的运算,并在空格内填上相应的数.13.孔明同学在解方程组⎩⎪⎨⎪⎧y =-2x 的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为⎩⎪⎨⎪⎧x =-1,y =2,又已知3k +b =1,则b 的正确值应该是-11. 14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为35.15.(武汉中考)定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=10.三、解答题(共50分)16.(12分)解方程组:(1)(荆州中考)⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7;② 解:由②,得x =7-3y.③③代入①,得3(7-3y)-2y =-1.解得y =2.把y =2代入③,得x =7-3y =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =2.(2)⎩⎪⎨⎪⎧4(x -y -1)=3(1-y )-2,x 2+y 3=2.解:原方程组可化为:⎩⎪⎨⎪⎧4x -y =5,①3x +2y =12.② ①×2+②,得11x =22,∴x =2.将x =2代入①,得y =3.∴原方程组的解是⎩⎪⎨⎪⎧x =2,y =3.17.(12分)已知方程组⎩⎪⎨⎪⎧5x +y =3,ax +5y =4与方程组⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,求a ,b 的值. 解:解方程组⎩⎪⎨⎪⎧5x +y =3,x -2y =5,得⎩⎪⎨⎪⎧x =1,y =-2. 将x =1,y =-2代入ax +5y =4,得a =14.将x =1,y =-2代入5x +by =1,得b =2.18.(12分)如图,周长为34的长方形ABCD 被分成7个大小完全一样的小长方形,求小长方形的长和宽.解:设小长方形的长为x ,宽为y.由题意,得⎩⎪⎨⎪⎧x +y +2x =17,x +y +5y =17,解得⎩⎪⎨⎪⎧x =5,y =2. 答:小长方形的长为5,宽为2.19.(14分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?解:(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得⎩⎪⎨⎪⎧x +y =50,1 500x +2 100y =90 000.解得⎩⎪⎨⎪⎧x =25,y =25. 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧x +z =50,1 500x +2 500z =90 000.解得⎩⎪⎨⎪⎧x =35,z =15. 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧y +z =50,2 100y +2 500z =90 000.解得⎩⎪⎨⎪⎧y =87.5,z =-37.5.不合题意,舍去.故此种方案不可行. (2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,丙种电冰箱15台.。

二元一次方程组复习概念~zhu

二元一次方程组复习概念~zhu

考点三: 考点三:解的定义
x = −2, 1、已知 y = 3 是方程 是方程3x-3y=m和5x+y=n的公共 、 和 的公共 解,则m2-3n= 246.
关于解法
1、解二元一次方程组你有几种方法? 、解二元一次方程组你有几种方法? 两种: 两种:代入法和加减法 2、代入法和加减法解方程组,“代入”与“加 、代入法和加减法解方程组, 代入” 的目的是什么? 减”的目的是什么? 消元: 消元:把二元一次方程转化为一元一次方程 3、解二元一次方程组的步骤是什么? 、解二元一次方程组的步骤是什么?
关于应用
在列二元一次方程组解实际问题的过 程中,你认为最关键的是什么? 程中,你认为最关键的是什么?
找出等量关系, 找出等量关系,列出方程组
知识方法结“网络”
实际问题
数 方程组
数学问题 (二元一次方程组 二元一次方程组) 二元一次方程组
解 方 程 组 元
实际问题
数学问题 (二元一次方程 二元一次方程
1.解二元一次方程组的基本思路是 2.用加减法解方程组{ 2x-5y=7①
消元 .
相减 直接消去 x .
由①与② 2x+3y=2②
3.用加减法解方程组{ 由 6x-5y=12② ①与②相加 ,可直接消去
4x+5y=28①
y .
4.用加减法解方程组 用加减法解方程组 具体解法如下
(1) ①-②得x=1
D)
B、只有两个 、 D、有无数个 、
6、下列属于二元一次方程组的是 ( 、 A. B.
A

3 5 + =1 x y x− y = 0
x + y = 5 C. 2 2 x + y = 1

河南省实验中学七年级数学下册第四单元《二元一次方程组》测试题(有答案解析)

河南省实验中学七年级数学下册第四单元《二元一次方程组》测试题(有答案解析)

一、选择题1.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,42.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12a D .﹣12a 3.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-84.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-5.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩6.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③B .①③C .②③D .①②7.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23C .16-D .168.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A.449x y yx y x-=+⎧⎨-=+⎩B.449x y yx y x-=+⎧⎨-=-⎩C.449x y yx y x-=-⎧⎨-=+⎩D.449x y yx y x-=-⎧⎨-=-⎩9.已知xyz≠0,且4520430x y zx y z-+=⎧⎨+-=⎩,则 x:y:z 等于()A.3:2:1 B.1:2:3 C.4:5:3 D.3:4:510.已知关于x,y的二元一次方程组323223x y mx y m+=-⎧⎨+=⎩的解适合方程x-y=4,则m的值为()A.1 B.2 C.3 D.411.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x斗,买到行酒y斗,根据题意可列方程组为()A.5010302x yx y+=⎧⎨+=⎩B.5010302y xx y+=⎧⎨+=⎩C.5010230x yx y+=⎧⎨+=⎩D.5010230y xx y+=⎧⎨+=⎩12.下表为服饰店卖出的服装种类与原价对照表.某日服饰店举办大拍卖,外套按原价打六折出售,衬衫和裤子按原价打八折出售,各种服装共卖200件,营业额是24000元,则外套卖出了()A.100件B.80件C.60件D.40件二、填空题13.重庆某快递公司规定:寄件不超过1kg的部分按起步价计费,超过1kg不足2kg,按照2kg收费;超过2kg不足3kg按照3kg收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a元,超过部分b元/kg;寄往北京的起步价为()7a+元,超过部分()4b+元/kg.已知一个寄往重庆市内的快件,质量为2kg,收费13元;一个寄往北京的快件,质量为4.5kg,收费42元.如果一个寄往北京的快件,质量为2.8kg,应收费______元.14.已知关于x ,y 的方程组35223x y m x y m +=+⎧⎨+=⎩,给出下列结论:①34x y =⎧⎨=-⎩是方程组的解;②2m =时,x ,y 的值互为相反数;③无论m 的x ,y 都满足的关系式22x y +=;④x ,y 的都为自然数的解有2对,其中正确的为__________.(填正确的序号)15.若32x y =⎧⎨=⎩是方程24x ay -= 的一个解,则a =________.16.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩的解是x =_____,y =_____.17.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 18.我们称使方程2323x y x y++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______.19.2017年复兴号的成功研制生产,标志着我国高速动车组走在了世界先进前列.2019年全世界最长的高速动车组复兴号CR 400A ﹣B 正式运营,全长约440米,如图,将笔直轨道看成1个单位长度为1米的数轴,CR 400A ﹣B 停站时首尾对应的数分别为a ,b ,向右行驶一段距离后,首尾对应的数分别为c ,d ,若c ﹣d =2(|a |﹣|b |),则b 的值为__.20.130+-++=x y y ,则x y -=________.三、解答题21.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a ,b 的值(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量 阶梯 电量x (单位:度) 电费价格 一档 0<x≤180 a 元/度 二180<x≤350b 元/度22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:+污水处理费)已知小王家2020年4月份用水15吨,交水费45元;5月份用水25吨,交水费91元.(1)求a, b的值;(2)如果小王家6月份上交水费150元,则小王家这个月用水多少吨?23.列方程解应用题《乌鸦喝水》的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,喝到了水.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高________cm,放入一个大球水面升高________cm;(2)如果放入10个球且使水面恰好上升到52厘米,应放入大球、小球各多少个?(3)若放入一个钢珠可以使液面上升k厘米,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到41厘米,则k的整数值为____________.(球和钢珠完全在水面以下)24.为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户,若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完. (1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N 95口罩.若需购买医用口罩和N 95口罩共1200个,其中N 95口罩不超过200个,钱恰好全部用完,则有几种购买方案,.25.已知α∠与β∠互为补角,且β∠比α∠的一半大15︒,求β∠的余角.26.若关于,x y 的方程组37x y ax y b -=⎧⎨+=⎩和关于,x y 的方程组28x by ax y +=⎧⎨+=⎩有相同的解,求,a b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值. 【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩,∴a 、b 的值分别是3、2. 故选:B . 【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.2.A解析:A 【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差. 【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2am a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=, 图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a , 故选A . 【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.3.A解析:A 【分析】将第二个方程代入第一个方程消去m 即可得. 【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.C解析:C 【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.5.A解析:A 【分析】利用代入消元法即可求解. 【详解】 解:5213310x y x y +=⎧⎨-=⎩①②,由②得:310y x =-③,把③代入②可得:()5231013x x +-=, 解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.6.A解析:A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+=解得10k =,则结论②正确解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③ 故选:A . 【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.7.A解析:A 【分析】根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案. 【详解】 解:由题意,得 6×(-3)k-2×2=8,解得k=-23, 故选A . 【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键.8.D解析:D 【分析】根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.9.B解析:B 【分析】由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可. 【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z , ∴x :y :z=x :2x :3x=1:2:3, 故选B . 【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键.10.C解析:C 【分析】通过观察方程组可知第一个方程减去第二个方程可得22x y m -=-,再结合4x y -=即可求得答案. 【详解】解:∵323223x y m x y m +=-⎧⎨+=⎩①②①-②得,22x y m -=- ∵4x y -= ∴224m -= ∴3m =. 故选:C 【点睛】本题考查了根据二元一次方程组的解满足一定的条件求参数问题,能根据题目特点灵活运用加减消元法、代入消元法是解题的关键.11.A解析:A 【分析】设醇酒为x 斗,行酒为y 斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可. 【详解】 解:由题意,得2501030x y x y +=⎧⎨+=⎩,故选A . 【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.12.B解析:B 【分析】设卖出外套x 件,衬衫y 件,裤子z 件.根据题意可列三元一次方程组,即可解出x ,即可选择. 【详解】设卖出外套x 件,衬衫y 件,裤子z 件. 根据题意可列方程组:2000.62500.81250.812524000x y z x y z ++=⎧⎨⨯+⨯+⨯=⎩200150100()24000x y z x y z ++=⎧⎨++=⎩ 80120x y z =⎧⎨+=⎩故卖出外套80件 故选B 【点睛】根据题意列出三元一次方程组是解答本题的关键,注意把y z +看作一个整体.二、填空题13.30【分析】根据分别寄快递到上海和北京的快递质量和费用即可得出关于ab 的二元一次方程组解之然后根据28kg 按照3kg 收费即可得出应收费【详解】解:依题意得:解得寄往北京市快件重28kg 按照3kg 收费解析:30 【分析】根据分别寄快递到上海和北京的快递质量和费用,即可得出关于a ,b 的二元一次方程组,解之,然后根据2.8kg 按照3kg 收费即可得出应收费.解:依题意,得:137(51)(4)42a b a b +=⎧⎨++-+=⎩,解得112a b =⎧⎨=⎩ , 寄往北京市快件重2.8kg 按照3kg 收费,应收费:7(31)(4)1172(24)30a b ++-+=++⨯+=元,故答案为:30.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.②③④【分析】先解方程组用m 表示出x 与y 根据方程组解的情况即可作出判断【详解】解:解出方程组得①由x =3得2m-6=3解得m =由y =-4得4-m =-4解得m =8∴不是方程组的解故①不正确;②若xy 的解析:②③④【分析】先解方程组用m 表示出x 与y ,根据方程组解的情况即可作出判断.【详解】解:解出方程组得264x m y m=-⎧⎨=-⎩, ①由x =3得,2m -6=3,解得m =92, 由y =-4得,4-m =-4,解得m =8, ∴34x y =⎧⎨=-⎩不是方程组的解, 故①不正确;②若x ,y 的值互为相反数,2m -6+4-m =0,解得m =2,故②正确;③∵2m -6+2(4-m )=2,∴无论m 取何值,x ,y 都是满足关系式x +2y =2,故③正确;④∵x ,y 的都为自然数,∴m =3,4,共2个,即01x y =⎧⎨=⎩,20x y =⎧⎨=⎩.故答案为:②③④.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.1【分析】将解代入二元一次方程再解一个一元一次方程即可【详解】解:∵是方程的一个解∴∴故答案为:1【点睛】本题考查了二元一次方程的解解决此类题目时只要将解代入方程计算即可解析:1【分析】将解代入二元一次方程,再解一个一元一次方程即可.【详解】解:∵32x y =⎧⎨=⎩是方程24x ay -=的一个解, ∴2324a ⨯-=,∴1a =,故答案为:1.【点睛】本题考查了二元一次方程的解,解决此类题目时,只要将解代入方程计算即可. 16.-1-3【分析】把代入方程组可求出c1﹣c2=2(a1﹣a2)c1﹣2a1=3再根据方程组即可求出xy 的值【详解】解:把代入方程组得所以c1﹣c2=2(a1﹣a2)c1﹣2a1=3方程组①﹣②得(a解析:-1 -3【分析】把23x y =⎧⎨=⎩代入方程组1122a x y c a x y c +=⎧⎨+=⎩可求出c 1﹣c 2=2(a 1﹣a 2),c 1﹣2a 1=3,再根据方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②,即可求出x 、y 的值. 【详解】解:把23x y =⎧⎨=⎩代入方程组1122a x y c a x y c +=⎧⎨+=⎩得, 11222323a c a c +=⎧⎨+=⎩, 所以c 1﹣c 2=2(a 1﹣a 2),c 1﹣2a 1=3,方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②,①﹣②得,(a 1﹣a 2)x =a 1﹣a 2﹣(c 1﹣c 2), 所以(a 1﹣a 2)x =﹣(a 1﹣a 2),因此x =﹣1,把x =﹣1代入方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩①②中的方程①得,﹣a 1+y =a 1﹣c 1,所以y =2a 1﹣c 1=﹣(c 1﹣2a 1)=﹣3,故答案为:﹣1,﹣3.【点睛】本题考查二元一次方程组及其解法,掌握方程组的解法是解决问题的关键,解二元一次方程组的基本思想是消元.17.【分析】变形方程组根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组即是当代入方程组之后的方程组则也是这一方程组的解所以∴故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算解析:52m n =⎧⎨=-⎩【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x m y n =-=⎧⎨=--=⎩,∴52m n =⎧⎨=-⎩. 故答案是52m n =⎧⎨=-⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.18.【分析】(1)根据使方程成立的一对数xy 为相伴数对记为(xy )将x 换成6代入计算即可;(2)结合(1)将x 和y 换成a 和b 代入计算即可用含a 的代数式表示b 【详解】(1)∵(6y )是相伴数对∴解得:;故 解析:272- 94a - 【分析】(1)根据使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(x .y ),将x 换成6代入计算即可;(2)结合(1)将x 和y 换成a 和b ,代入计算即可用含a 的代数式表示b .【详解】(1)∵(6,y )是“相伴数对”, ∴662323y y ++=+, 解得:272y =-; 故答案为:272-; (2)∵(a ,b )是“相伴数对”, ∴2323a b a b ++=+, 解得:94b a =-; 故答案为:94a -. 【点睛】本题考查了一元一次方程和二元一次方程的应用,解决本题的关键是理解题目中“相伴数对”的定义,并运用.19.-110【分析】由题意得出a ﹣b =2(|a|﹣|b|)=440①当ab 都为负数时②当a≥0b <0时③当a >0b≥0时分别计算即可得出结果【详解】解:由题意得:c ﹣d =a ﹣b =440∵c ﹣d =2(|a解析:-110【分析】由题意得出a ﹣b =2(|a |﹣|b |)=440,①当a 、b 都为负数时,②当a ≥0、b <0时,③当a >0,b ≥0时,分别计算即可得出结果.【详解】解:由题意得:c ﹣d =a ﹣b =440,∵c ﹣d =2(|a |﹣|b |),∴a ﹣b =2(|a |﹣|b |)=440,①当a 、b 都为负数时,4402()440a b a b -=⎧⎨-+=⎩, 方程组无解; ②当a ≥0、b <0时,4402()440a b a b -=⎧⎨+=⎩,解得:330110a b =⎧⎨=-⎩; ③当a >0,b ≥0时,4402()440a b a b -=⎧⎨-=⎩, 方程组无解;综上所述,b 的值为﹣110,故答案为:﹣110.【点睛】本题考查了数轴、绝对值、二元一次方程组的解等知识;熟练掌握绝对值的性质,进行分类讨论是解题的关键.20.7【分析】由绝对值的性质可以得到关于xy 的二元一次方程解方程求得xy 的值后即可算出x-y 的值【详解】解:由题意得:解之得:故答案为7【点睛】本题考查绝对值的应用理解绝对值为非负数的性质是解题关键解析:7【分析】由绝对值的性质可以得到关于x 、y 的二元一次方程,解方程求得x 、y 的值后即可算出x-y 的值.【详解】解:由题意得:1030x y y +-=⎧⎨+=⎩,解之得: 43x y =⎧⎨=-⎩,()437x y ∴-=--=, 故答案为7.【点睛】本题考查绝对值的应用,理解绝对值为非负数的性质是解题关键.三、解答题21.(1)a=0.6,b=0.7;(2)415度【分析】(1)根据各档的电费价格和所用的电数以及所缴纳电费,列出方程组,进行求解即可; (2)根据题意先判断出小明家所用的电所在的档,再设小明家五月份用电量为m 度,根据价格表列出等式,求出m 的值即可.【详解】解:(1)由题意可得:{180(252180)158.4180(340180)220a b a b +-=+-=解得:a=0.6,b=0.7(2)若一个月用电量为350度,电费为180×0.6+(350-180)×0.7=227,∵285.5>227,∴小明家7月份用电量超过350度;设小明家7月份用电量为m 度,则有:180×0.6+(350-180)×0.7+(m-350)×0.9=285.5;解得:m=415;∴小明家7月份用电量为415度;【点睛】此题考查了二元一次方程组的应用和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.22.(1)a =2.2,b =4.2;(2)35吨【分析】(1)根据等量关系:小王家2013年4月用水15吨,交水费45元,5月份用水25吨,交水费91元,列出方程组求解即可.(2)设小王家这个月用水x 吨,根据17吨及以下按2.2元收费,超过17吨但不超过30吨的部分按4.2元收费,超过30吨的部分按6元收费和污水处理的钱数,列出方程,求出x 的值即可.【详解】解:(1)根据题意,得15(0.8)4517(0.8)8(0.8)91a a b +=⎧⎨+++=⎩, 解得: 2.24.2a b =⎧⎨=⎩. 答:a 的值是2.2,b 的值是4.2;(2)设小王家这个月用水x 吨,则17(a +0.8)+13(b +0.8)+(x -30)×(6+0.8)=150,解得:x =35,答:小王家这个月用水35吨.【点睛】本题考查二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组. 23.(1)2, 3;(2)放入大球6个,小球4个;(3)13或3或1.【分析】(1)设一个小球使水面升高x 厘米,根据题意列出方程,求出方程的解即可得到结果; (2)设放入大球m 个,小球n 个,根据题意列出关于m 与n 的方程组,求出方程组的解即可得到结果;(3)设在玻璃桶内同时放入z 个小球和钢珠时,水面上升到41厘米,根据题意列出关系式,即可确定出k 的整数解.【详解】解:(1)设一个小球使水面升高x 厘米,由图形得:3x =32﹣26,解得:x =2,设一个大球使水面升高y 厘米,由图形得:2y =32﹣26,解得:y =3,故答案为: 2, 3;(2)设放入大球m 个,小球n 个,根据题意得:10325226m n m n +=⎧⎨+=-⎩, 解得:64m n =⎧⎨=⎩, 答:如果要使水面上升到52cm ,应放入大球6个,小球4个;(3)设在玻璃桶内同时放入z 个小球和钢珠时,水面上升到41厘米,根据题意得:zk +2z =41﹣26,∵z 、k 为正整数,∴当z =1时,k =13;当z =3时,k =3;当z =5时,k =1,则k 的整数值为13或3或1.故答案为: 13或3或1.【点睛】本题考查了二元一次方程组的应用和二元方程的正整数解问题,准确把握题目提供的数量关系,列出方程是解题关键.24.(1)医用口罩的单价为2.5 元/个,洗手液的单价为30元/瓶;(2)有三种购买方案【分析】(1)设医用口罩的单价为x 元/个,洗手液的单价为y 元/瓶,根据题意得出方程组,解方程组即可;(2)设增加购买N95口罩a 个,洗手液b 瓶,则医用口罩(1200−a )个,根据题意得6a +2.5(1200−a )+30b =5400,解得b =80−760a ,可得a 为60的倍数,且a≤200,进而得出结论.【详解】(1)设医用口罩的单价为x 元/个,洗手液的单价为y 元/瓶, 根据题意得:80012054002001200805400x y x y ++⎧⎨+⎩== 解得: 2.530x y ⎧⎨⎩==, 答:医用口罩的单价为2.5 元/个,洗手液的单价为30元/瓶;(2)设增加购买N95口罩a 个,洗手液b 瓶,则医用口罩(1200−a )个,根据题意得:6a +2.5(1200−a )+30b =5400,化简,得:7a +60b =4800,∴b =80−760a ,∵a,b都为正整数,∴a为60的倍数,且a≤200,∴6073ab⎧⎨⎩==,12066ab⎧⎨⎩==,18059ab⎧⎨⎩==,∴有三种购买方案.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用;由题意列出二元一次方程组或二元一次方程是解题的关键.25.20°.【分析】根据补角的概念和题意列出二元一次方程组,解方程组求出∠α的值,根据余角的概念计算即可.【详解】解:由题意得,1801152αββα∠+∠︒⎧⎪⎨∠-∠︒⎪⎩==,解得11070αβ∠︒⎧⎨∠︒⎩==,90°-β∠=20°.答:β∠的余角为20°.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.同时还考查了解二元一次方程组.26.75a=-,115b=-.【分析】首先把3x-y=7和2x+y=8联立方程组,求得x、y的数值,再进一步代入原方程组的另一个方程,再进一步联立关于a、b的方程组,进一步解方程组求得答案即可.【详解】解:由题意得37 28 x yx y-=⎧⎨+=⎩,解得32 xy=⎧⎨=⎩,把32xy=⎧⎨=⎩代入原方程组+yax bx by a=⎧⎨+=⎩,得,3+232a bb a=⎧⎨+=⎩,解得75115ab⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末复习(四) 二元一次方程组考点一 二元一次方程(组)的解的概念【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解,则2m-n 的算术平方根为( ) A.4 B.2D.±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①② 【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩方法二:1,28.x y x y =++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________. 3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( ) A.8 B.4 C.-4 D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩ 将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩ 答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

相关文档
最新文档