平方差公式因式分解
利用完全平方差公式进行因式分解

因式分解的几种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x3 -2x 2-xx3 -2x2 -x=x(x2 -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a2 +4ab+4b2解:a2 +4ab+4b2 =(a+2b)23、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m2 +5n-mn-5m解:m2 +5n-mn-5m= m 2-5m -mn+5n= (m2 -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x2 -19x-6分析: 1 ×7=7, 2×(-3)=-61×2+7×(-3)=-19解:7x2 -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x2 +6x-40解x2 +6x-40=x2 +6x+( 9) -(9 ) -40=(x+ 3)2 -(7 ) 2=[(x+3)+7]*[(x+3) – 7]=(x+10)(x-4)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

,
y
3. 2
方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问 题中,通常需先因式分解,然后整体代入或联立方程组求值.
例4 计算下列各题: (1)1012-992; (2)53.52×4-46.52×4.
解:(1)原式=(101+99)(101-99)=400; (2)原式=4(53.52-46.52) =4(53.5+46.5)(53.5-46.5) =4×100×7=2800.
(2)原式=(a2-4b2)-(a+2b) =(a+2b)(a-2b)-(a+2b) =(a+2b)(a-2b-1).
例3 已知x2-y2=-2,x+y=1,求x-y,x,y的值.
解:∵x2-y2=(x+y)(x-y)=-2,
x+y=1①, ∴x-y=-2②.
联立①②组成二元一次方程组,
解得
x
1 2
(x a p)2 (x b q)2
(x p) (x q) (x p) (x q)
(2x p q)( p q).
方法总结:公式中的a、b无论表示数、单项式、还是多项式,只
要被分解的多项式能转化成平方差的形式,就能用平方差公式因 式分解.
针对训练 分解因式:
(1)(a+b)2-4a2; (2)9(m+n)2-(m-n)2.
8. (1)992-1能否被100整除吗?
(2)n为整数,(2n+1)2-25能否被4整除? 解:(1)∵ 992-1=(99+1)(99-1)=100×98,
∴992-1能否被100整除. (2)原式=(2n+1+5)(2n+1-5)
=(2n+6)(2n-4) =2(n+3) ×2(n-2)=4(n+3)(n-2). ∵n为整数 ∴(2n+1)2-25能被4整除.
北师大版八年级数学下册课件:4.3 用平方差公式因式分解 (共16张PPT)

相同项 相反项
平方差公式
(1)公式:
a2 b2 (a b)(a b)
(4)形象表示: □2-△2=(□+△)(□-△)
☆2-○2=(☆+○)(☆-○)
平方差公式
(1)公式:
a2 b2 (a b)(a b)
(5)举例说明:
x2 16
9m2 4n2
x2 42 (3m)2 (2n)2
16
4
64x2 y2 (8 x q )2
牛刀小试
练习2:下列多项式可不可以用平 方差公式分解因式?
x2 y×2 x2 y√2
x2 y×2 x2 (y)√2
多项式具有什么特征时, 可以用平方差公式因式分解?
(1)多项式是二项式; (2)每一项都可以写成平
总结提升
能写成( )2-( )2的式子,可以 用平方差公式分解因式.
公式中的a , b可以是单独的数 字、字母、单项式、多项式. 分解因式,有公因式时先 “提”后“公”,应进行到每 一个多项式因式不能再分解为
方的形式; (3)两项的符号相反,
一正一负.
例题讲解
例1:把下列各式分解因式
(1) 1 9x2
(2) 25x2 1 y2 4
(3) 25(m n)2 9(m n)2
(4) 3y3 48y
学以致用
把下列各式分解因式
(1) a2b2 m2
(2) x2 a b c2
(3) 5ax4 5ay2 (4) (x y z)2 (x y z)2
拓展延伸
分解因式
、 x4 81y 4 2、(x 1) b2 (x 1)
第2课时运用平方差公式因式分解

提公因式与平方差公式在同一个题中显现时,要先考虑提公因式法,再考虑平方差公式;同时每个因式都要分解完全.
布置作业
课本P45习题12.5第1题中(3)(4)(5),第3题3.通过总结能够让学生对因式分解有更进一步的明白得.
【知识网络】
运用平方差公式分解因式
框架图式总结,更
容易形成知识网络.
【教学反思】
①[授课流程反思]
A.新课导入□B.情形导入□
导入时教师要提醒学生假如多项式是二项式,通常考虑应
用平方差公式;假如多项式中有公因式可提,应先提取公
因式,而且还要“提”得完全.
②[讲授成效反思]
A.重点□B.难点□C.易错点
运用平方差公式因式分解,第一应注意每个公式的特点.分析多项式的次数和项数,然后再确定公式.
③[师生互动反思]
师生出示幻灯片后要放手让学生独立摸索求解,然后师生共同讨论,纠正学生解题中可能发生的错误,并对各种错误进行评析.
④[习题反思]
好题题号__________________________________________ 错题题号__________________________________________
反思,更进一步提升.。
平方差公式知识点归纳总结

平方差公式知识点归纳总结平方差公式是数学中常用的公式之一,用于计算两个数的平方之差。
在代数学和几何学中都有广泛的应用。
本文将对平方差公式的定义、原理、应用以及相关例题进行全面的总结和归纳。
一、平方差公式的定义和原理平方差公式是指对于任意实数a和b,有:(a + b)(a - b) = a^2 - b^2这个公式也可以写成:a^2 - b^2 = (a + b)(a - b)平方差公式的原理是基于多项式的乘法公式进行推导,通过展开和合并同类项的方法,可以得到上述等式。
二、平方差公式的应用1. 因式分解平方差公式在因式分解中经常被使用。
对于二次三项式或含有平方项的多项式,可以利用平方差公式将其分解为两个因式的乘积。
例如,对于多项式x^2 - 4,我们可以将其分解为(x + 2)(x - 2)。
2. 数列求和平方差公式在数列求和中也有应用。
考虑一个等差数列:a, a + d, a + 2d, ..., a + (n-1)d,其中a为首项,d为公差,n为项数。
当我们计算这个数列的平方和时,可以利用平方差公式简化计算。
例如,要求等差数列1, 3, 5, 7的平方和,可以利用平方差公式将其化简为:(1^2 + 7^2) + (3^2 + 5^2) = 503. 平方差法求根平方差公式还可以在求解方程中使用。
特别是在二次方程的解法中,通过巧妙地运用平方差公式,可以简化求解的过程。
例如,对于二次方程x^2 - 5x + 6 = 0,我们可以利用平方差公式将其化简为:(x - 2)(x - 3) = 0从而得到方程的两个根x = 2和x = 3。
三、平方差公式的例题1. 例题一:计算(7 + 3)(7 - 3)的值。
解:根据平方差公式,我们有:(7 + 3)(7 - 3) = 7^2 - 3^2 = 49 - 9 = 402. 例题二:分解多项式x^2 - 9y^2。
解:利用平方差公式,我们可以得到:x^2 - 9y^2 = (x + 3y)(x - 3y)通过展开乘法,可以验证这个分解是正确的。
用平方差公式因式分解公开课教案

用平方差公式因式分解公开课教案一、教学目标1. 让学生掌握平方差公式的概念和运用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决问题的能力和对数学的兴趣。
二、教学内容1. 平方差公式的介绍和记忆。
2. 平方差公式的运用和因式分解。
3. 例题讲解和练习。
三、教学方法1. 采用讲解法,引导学生理解和记忆平方差公式。
2. 采用示例法,展示平方差公式的运用和因式分解的过程。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入新课,介绍平方差公式的概念。
2. 讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 通过示例,展示平方差公式的运用和因式分解的过程。
4. 布置练习题,让学生独立完成,并进行讲解和点评。
五、教学评价1. 课后收集学生的练习册,进行批改和评价。
2. 在课堂上,对学生的练习进行点评和指导。
3. 关注学生在课堂上的参与度和对平方差公式的掌握程度。
六、教学资源1. 教学PPT,展示平方差公式的推导过程和示例。
2. 练习题,供学生进行练习和巩固。
七、教学时间1课时八、教学拓展1. 引导学生思考:平方差公式在实际生活中的应用。
2. 布置课后作业,让学生进一步巩固平方差公式的运用和因式分解的能力。
九、教学反思2. 根据学生的反馈,调整教学方法和策略,以便更好地引导学生理解和运用平方差公式。
十、教学预案1. 针对学生的不同程度,准备不同难度的练习题,以满足不同学生的需求。
2. 在课堂上,关注学生的疑问,及时进行解答和指导。
六、教学活动1. 课堂互动:邀请学生上台演示平方差公式的运用和因式分解的过程,鼓励其他学生提问和参与讨论。
2. 小组活动:学生分组进行练习,互相讲解和讨论解题方法,促进合作学习。
七、学习任务1. 学生通过课堂讲解和练习,掌握平方差公式的运用和因式分解的方法。
2. 学生能够独立解决相关问题,并能够解释解题过程。
八、学习评估1. 课堂练习:学生当场完成练习题,教师及时进行点评和指导。
4.因式分解-平方差公式

整式乘法
a²- b² = (a+b)·(a-b)
因式分解
平方差公式
你对平方差公式认识有多深?
a2-b2=(a+b)(a-b)
△2- 2=(△+ )(△- )
首2-尾2=(首+尾)(首-尾)
1a 2
4b 5
1 4
a2
16 b2 25
1 2
a
4 5
b
1 2
a
4 5
b
公式中的a , b可以是单独的数字、字 母、单项式、多项式。
分解因式,有公因式时先“提”后“公”, 应进行到每一个多项式因式不能再分解为止。
课堂练习
把下列各式分解因式:
(1) m2-4
(4) x2y2-z2
(2) 4x2-25
(3)4x3 9xy2
(5) (x+2)2-9 (6) (x+a)2_(y-b)2
★被分解的多项式含有两项,且这两项异号, 并且能写成( )2-( )2的形式。
(2) 公式右边:
(是分解因式的结果)
★分解的结果是两个底数的和乘以两个底数 的差的形式。
探 1、下列多项式可以用平方差公式去 分解因式吗?
索 (1) 4x2+y2 练 习 (2) 4x2-y2
不可以 可以
: (3) -4x2-y2 不可以
② 2x3 - 8x
能否化为□2-△2
有公因式,哦
解:原式=2x(x2-4)
=2x(x2-22) =2x(x+2)(x-2)
首先提取公因式 然后考虑用公式 最终必是连乘式
先化为 □2-△2
① 9(m+ n)2 - (m - n)2
平方差公式分解因式

2.原式=(x2)² -1²
=(x2+1)(x2-1)
=(x2+1)(x+1)(x-1)
例3.把下列各式因式分解 解:
1)x3y2-x5 2)ab3解: -4ab
1.原式=x3(y2-x2)
3.原式=x(x2-9) 应先提公因 =x(x+3)(x-3) 式,再用平方 差公式进行因 式分解
3)x3-9x
=(7a+2b-5c)(-3a+2b+5c)
2.原式=[2(a+b)]² -[5(a-c)]²
例2.把下列各式因式分解
1)64a8-b4
因式分解时, 必须进行到每 2 2-(y2)2 3. 原式 =(x ) 解: 一个因式都不 2)x4-1 2+y 2)(x2-y2) 能再分解为止 =(x 4 2 2 2 4 2 1.原式=(8a ) -(b ) =(8a +b )(8a4-b2) 3)x4解: -y4 = (x2 + y2)(x+y)(x-y) 解:
看谁做得最快最 正确!
观察以上式子是满足什么乘法公 式运算? 以上式子的右边的多项式有什么 共同点?
引例:
对照平方差公式怎样将下面的多项式分解因式
1)
m² - 16
2)
4x²- 9y²
m² - 16= m² - 4² =( m + 4)( m - 4) a² - b² = (a + b)( a - b )
平方差公式:
2 2 + (a b)(a b) = a - b
整式乘法
两个数的和与两个数的差的乘积, 等于这两个数的平方差.
a - b = ( a+ b)( a - b)