Inference meta models A new perspective on belief propagation with bayesian networks
Gravitation-Based Model for Information Retrieval

ABSTRACT
This paper proposes GBM (gravitation-based model), a physical model for information retrieval inspired by Newton’s theory of gravitation. A mapping is built in this model from concepts of information retrieval (documents, queries, relevance, etc) to those of physics (mass, distance, radius, attractive force, etc). This model actually provides a new perspective on IR problems. A family of effective term weighting functions can be derived from it, including the well-known BM25 formula. This model has some advantages over most existing ones: First, because it is directly based on basic physical laws, the derived formulas and algorithms can have their explicit physical interpretation. Second, the ranking formulas derived from this model satisfy more intuitive heuristics than most of existing ones, thus have the potential to behave empirically better and to be used safely on various settings. Finally, a new approach for structured document retrieval derived from this model is more reasonable and behaves better than existing ones.
diffusion model unet的作用

一、什么是Diffusion Model UNetDiffusion Model UNet是一种基于深度学习技术的图像分割模型,它结合了UNet和扩散模型的特点,能够有效地处理医学图像、卫星图像以及其他领域的图像分割任务。
二、Diffusion Model UNet的作用1. 提高图像分割的准确度Diffusion Model UNet通过引入扩散模型的特征,能够更好地捕获图像中的细节信息,从而提高分割的准确度。
在医学领域,它可以帮助医生更精确地识别病变区域,为临床诊断和治疗提供更准确的信息。
2. 改善图像分割的鲁棒性由于扩散模型的特性,Diffusion Model UNet对噪声和图像质量的要求相对较低,能够在较差的图像条件下仍保持良好的分割效果。
这对于一些特殊环境下的图像分割任务(如车载摄像头图像、航拍图像)具有重要意义。
3. 加速图像分割的训练与推理过程Diffusion Model UNet利用扩散模型的高效性能,能够加速训练和推理的过程,从而提高模型的实用性。
在大规模图像数据处理中,这将大大缩短分割任务的时间成本。
4. 适用于多种图像分割场景Diffusion Model UNet的设计考虑了多种图像分割场景的需求,能够灵活应对医学、地质、农业等不同领域的图像分割任务,具有较好的通用性和适用性。
三、Diffusion Model UNet的发展前景随着深度学习技术的不断进步,Diffusion Model UNet在图像分割领域有望进一步发挥作用。
未来可以通过结合更先进的神经网络结构、优化迭代算法等手段,提高Diffusion Model UNet的性能与效率,拓展其在更多领域的应用场景。
四、结语Diffusion Model UNet作为深度学习图像分割模型的重要变种,具有较好的准确度、鲁棒性和效率,为图像领域带来了新的发展机遇。
相信随着技术的不断进步,Diffusion Model UNet将在图像分割领域发挥越来越重要的作用,为科研和产业发展注入新的活力。
语义分割 diffusion model

语义分割(semantic segmentation)是计算机视觉领域的一个重要研究方向,它的主要目标是将图像中的每个像素划分到对应的语义类别中。
在语义分割任务中,我们需要同时实现像素级别的分类和定位,使得每个像素都能被准确地分配到相应的类别中。
语义分割在许多实际应用中发挥着重要作用,比如自动驾驶、医学图像分析、图像分割等。
随着深度学习技术的快速发展,语义分割方面取得了显著的进展。
目前,已经有许多基于深度学习的语义分割模型被提出,并在各种数据集上取得了优异的性能。
其中,语义分割的扩散模型(diffusion model)是一种比较经典的模型,它在语义分割领域具有重要的研究意义和应用价值。
一、扩散模型的基本原理扩散模型是一种基于图概率模型的语义分割方法。
它基于像素之间的相似性来进行图像分割,通过将图像中的像素看作是图中的节点,利用节点之间的通联和相似性来实现像素级别的语义分割。
扩散模型的基本原理可以用以下几点来概括:1. 图像表示:将图像中的每个像素看作是图中的一个节点,构成一个完全连接的图像图。
2. 相似性度量:计算图像中每对像素之间的相似性度量,比如颜色、纹理、空间位置等。
3. 扩散过程:利用相似性度量来构建节点之间的连接关系,然后通过扩散过程来实现图像的分割,即利用节点之间的相似性来扩散标签。
4. 分割结果:最终得到图像的分割结果,将每个像素分配到相应的类别中,并生成语义分割图。
二、扩散模型的优势与挑战扩散模型作为一种经典的语义分割方法,具有一些显著的优势和挑战。
在实际应用中,我们需要充分了解扩散模型的优势和挑战,以便更好地应用和改进该模型。
1. 优势(1)基于相似性度量:扩散模型利用像素之间的相似性来进行图像分割,相比基于传统特征的方法,扩散模型能更好地捕捉像素之间的语义信息,从而得到更准确的分割结果。
(2)像素级别分割:扩散模型能够实现像素级别的语义分割,对于那些需要准确定位和识别物体边界的应用场景具有重要意义。
图像识别技术中的深度学习模型选择指南

图像识别技术中的深度学习模型选择指南深度学习模型在图像识别技术中扮演了重要的角色,它们能够帮助我们实现各种复杂的视觉任务。
然而,面对众多可选择的深度学习模型,如何做出正确的选择是一个关键的问题。
在本文中,我们将为大家提供一份图像识别技术中深度学习模型选择的指南,帮助您更好地理解和使用这些模型。
首先,选择一个合适的深度学习框架是至关重要的。
当前,许多开源的深度学习框架提供了强大的功能和易用的接口,例如TensorFlow、PyTorch和Keras等。
这些框架都有各自的特点和适用场景,请根据自己的需求选择合适的框架进行模型开发和训练。
接下来,我们需要考虑选择一种适合的深度学习模型架构。
在图像识别技术中,一些常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN)等。
其中,卷积神经网络是图像识别领域最常用的模型之一,特别适合处理空间结构化的数据。
RNN则更擅长处理序列数据,例如自然语言处理和语音识别等任务。
GAN则主要用于生成具有逼真效果的图像。
在选择深度学习模型时,还需要考虑模型的复杂度和性能。
一般而言,深度学习模型越复杂,其识别能力也越强,但同时也可能导致计算资源和训练时间的增加。
因此,需要根据具体的应用场景和资源限制来选择适当的模型复杂度。
另外,对于一些特殊的任务需求,如实时性要求高的图像识别,需要选择运行速度快且具有较低计算复杂度的模型。
此外,注意模型的可扩展性和可定制性也很重要。
一些深度学习模型可以通过迁移学习来加速模型训练,而不需要从头开始训练模型。
这种方式可以利用预训练模型在大规模数据上学到的特征来帮助我们解决特定的图像识别任务。
此外,一些深度学习模型还可以通过微调(Fine-tuning)来进一步提升其性能。
最后,模型的鲁棒性和泛化能力也是选择深度学习模型的重要考虑因素。
鲁棒性是指模型对于输入数据中的扰动和噪声的抵抗能力,而泛化能力是指模型对于未见过的样本的识别能力。
人工智能开发中的深度生成模型与生成对抗网络技巧总结

人工智能开发中的深度生成模型与生成对抗网络技巧总结人工智能开发中,深度生成模型(deep generative models)和生成对抗网络(generative adversarial networks)是当前非常热门的领域。
它们以其独特的生成能力和学习能力,得到了广泛的关注和应用。
本文将通过总结研究人员在深度生成模型和生成对抗网络方面的技巧和经验,探讨其在人工智能开发中的应用。
首先,让我们来了解深度生成模型。
深度生成模型是一类用于生成新的数据样本的神经网络模型。
它通过学习训练数据的分布来生成看似真实但实际上是虚构的数据。
深度生成模型主要分为两种类型:自回归模型(autoregressive models)和变分自编码器(variational autoencoders)。
自回归模型通过一系列条件独立假设,将生成一个样本的过程分解为逐个变量的生成过程。
典型的自回归模型有循环神经网络(recurrent neural networks)和卷积神经网络(convolutional neural networks)。
自回归模型在语音合成、图像生成等领域取得了很好的效果。
变分自编码器是一种基于编码器-解码器结构的生成模型。
编码器将输入数据映射到一个低维潜在空间,解码器则将这个低维表示映射回原始数据空间。
通过训练编码器和解码器,变分自编码器可以生成接近于训练数据分布的新样本。
变分自编码器在图像生成、数据压缩和特征学习等领域具有广泛的应用。
接下来,我们来探讨生成对抗网络。
生成对抗网络由生成器(generator)和判别器(discriminator)两个神经网络组成,它们通过对抗训练的方式一同学习。
生成器试图生成看似真实的数据样本,而判别器则试图区分真实数据和生成数据。
通过反复迭代训练,生成器和判别器逐渐提高各自的能力,最终达到一个动态平衡。
生成对抗网络具有很多优势。
首先,生成对抗网络不依赖于任何特定的生成模型,而是通过对抗训练的方式来学习生成数据的分布。
人工智能中级认证考试

一、选择题1.在机器学习中,哪种算法常用于分类问题,通过构建决策树来进行预测?A.线性回归B.决策树算法(答案)C.K-means聚类D.主成分分析2.下列哪一项不是深度学习的常用框架?A.TensorFlowB.PyTorchC.Scikit-learn(答案)D.Keras3.在神经网络中,权重和偏置的初始值设置对训练过程有很大影响。
哪种初始化方法可以帮助避免梯度消失或爆炸问题?A.随机初始化B.Xavier/Glorot初始化(答案)C.全零初始化D.全一初始化4.以下哪项技术常用于自然语言处理(NLP)中的词嵌入表示?A.词袋模型B.TF-IDFC.Word2Vec(答案)D.One-hot编码5.在强化学习中,智能体(Agent)根据什么来选择动作?A.奖励函数(答案)B.状态转移概率C.动作空间大小D.环境模型6.下列哪一项不是卷积神经网络(CNN)的常用层?A.卷积层B.池化层C.全连接层D.循环层(答案)7.在机器学习的模型评估中,哪种方法可以用于评估分类模型的性能,通过计算真正例、假正例、真反例和假反例的数量?A.混淆矩阵(答案)B.ROC曲线C.交叉验证D.准确率8.以下哪个算法是基于实例的学习算法,通过计算新数据与训练集中每个数据点的相似度来进行分类或回归?A.K-近邻算法(答案)B.支持向量机C.神经网络D.决策树9.在自然语言处理中,哪种技术可以用于将句子或文档转换为固定长度的向量表示?A.词嵌入B.文本分类C.情感分析D.Sentence Embedding(答案)10.以下哪个术语用于描述在训练过程中,模型在训练集上的性能逐渐提高,但在测试集上的性能开始下降的现象?A.过拟合(答案)B.欠拟合C.交叉验证D.泛化能力。
《2024年基于多尺度和注意力机制融合的语义分割模型研究》范文

《基于多尺度和注意力机制融合的语义分割模型研究》篇一一、引言随着深度学习技术的不断发展,语义分割作为计算机视觉领域的一个重要任务,逐渐成为研究的热点。
语义分割旨在将图像中的每个像素划分为不同的语义类别,为图像理解提供了更加细致的信息。
然而,由于实际场景中存在多尺度目标和复杂背景的干扰,语义分割任务仍面临诸多挑战。
为了解决这些问题,本文提出了一种基于多尺度和注意力机制融合的语义分割模型。
二、相关工作语义分割作为计算机视觉的一个关键任务,在近几年的研究中得到了广泛的关注。
目前主流的语义分割模型主要采用深度卷积神经网络(CNN)来实现。
这些模型通过捕获上下文信息、提高特征表达能力等手段提高分割精度。
然而,在处理多尺度目标和复杂背景时,这些模型仍存在局限性。
为了解决这些问题,本文提出了一种融合多尺度和注意力机制的语义分割模型。
三、模型与方法本文提出的模型主要由两个部分组成:多尺度特征提取和注意力机制融合。
(一)多尺度特征提取多尺度特征提取是提高语义分割性能的关键技术之一。
在本模型中,我们采用了不同尺度的卷积核和池化操作来提取图像的多尺度特征。
具体而言,我们设计了一个包含多种尺度卷积核的卷积层,以捕获不同尺度的目标信息。
此外,我们还采用了池化操作来获取更大尺度的上下文信息。
这些多尺度特征将被用于后续的注意力机制融合。
(二)注意力机制融合注意力机制是一种有效的提高模型性能的技术,可以使得模型更加关注重要的区域。
在本模型中,我们采用了自注意力机制和交叉注意力机制来提高模型的表达能力。
自注意力机制主要用于捕获每个像素的上下文信息,而交叉注意力机制则用于融合不同尺度特征之间的信息。
具体而言,我们通过在卷积层之间引入自注意力和交叉注意力模块,使得模型能够更好地关注重要区域和提取多尺度特征。
四、实验与结果为了验证本文提出的模型的性能,我们在公开的语义分割数据集上进行了一系列实验。
实验结果表明,本文提出的模型在处理多尺度目标和复杂背景时具有更好的性能。
深度学习原理与应用案例

深度学习原理与应用案例导语:随着人工智能领域的迅猛发展,深度学习成为一种主要的机器学习方法。
本文将详细介绍深度学习的原理以及一些经典的应用案例。
一、深度学习原理1.神经网络结构深度学习模型主要由多层神经网络组成,每一层都包含多个神经元节点。
神经元节点通过激活函数将输入信号进行处理,并将结果传递给下一层。
2.反向传播算法反向传播算法是深度学习中用于训练神经网络模型的一种方法。
它通过计算预测值与实际值之间的差距,并根据差距大小更新神经网络中各个参数的数值,以提升模型性能。
3.优化算法为了使神经网络能够更好地拟合数据,需要使用优化算法来求解最优的模型参数。
常用的优化算法包括梯度下降、随机梯度下降等,它们通过不断调整参数值来最小化预测结果与实际值之间的误差。
二、深度学习应用案例1.图像分类图像分类是深度学习中最常见的应用之一。
通过使用深度学习模型,可以将输入的图像进行分类,比如将一张猫的照片识别为猫类别。
传统的图像分类方法需要手动提取特征,而深度学习则可以自动学习图像的特征,从而获得更好的分类效果。
2.自然语言处理深度学习在自然语言处理领域也有广泛的应用。
例如机器翻译任务,传统的方法需要手动设计翻译规则,而深度学习可以通过大量的数据训练模型,从而实现自动翻译。
另外,深度学习在文本分类、命名实体识别等任务中也取得了很好的效果。
3.语音识别语音识别是指将语音信号转化为文本的过程。
深度学习在语音识别领域的应用也非常成功。
传统的语音识别方法需要手工设计声学模型和语言模型,而深度学习可以通过大规模数据的训练,直接学习声学模型和语言模型。
4.计算机视觉深度学习在计算机视觉领域的应用非常广泛。
例如目标检测任务,通过使用深度学习模型,可以准确地识别图像中的多个目标,并标注它们的位置。
此外,还有图像生成、人脸识别、视频分析等多个任务都可以使用深度学习方法进行处理。
5.推荐系统推荐系统在电子商务、社交媒体等领域扮演着重要角色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UniversiteitvanAmsterdamIAS technical report IAS-UVA-06-01Inference Meta Models:A New PerspectiveOn Belief Propagation With Bayesian Net-worksGregor Pavlin,Jan Nunnink,and Frans GroenIntelligent Systems Laboratory Amsterdam,University of AmsterdamThe NetherlandsWe investigate properties of Bayesian networks(BNs)in the context of robuststate estimation.We focus on problems where state estimation can be viewed asa classification of the possible states.We introduce a coarse perspective of the in-ference processes and show that classification with BNs can be very robust,even ifwe use models and evidence associated with significant uncertainties.By makingcoarse and realistic assumptions we can formulate asymptotic properties of theclassification performance.In addition,we identify situations in which Bayesianfusion supports robust inference and we introduce techniques that support de-tection of potentially misleading inference results.The presented coarse grainedanalysis of inference processes from the runtime perspective is relevant for a sig-nificant class of real world domains,where it is difficult to obtain domain modelsthat precisely describe the true probability distributions over the combinations ofstates of interest.Keywords:Bayesian networks,Robust information fusion,Heterogeneous infor-mation.IASintelligent autonomous systemsInference Meta Models:A New Perspective On Belief Propagation With Bayesian NetworksContentsContents1Introduction1 2State Estimation with Bayesian networks12.1Estimation Accuracy (2)2.2Bayesian networks (2)2.3Factorization (3)3Inference Processes43.1Prediction (5)3.2Diagnostic Inference (5)3.3Robustness of Inference Processes (6)4Factor Accuracy74.1Updating Tendencies (8)4.2True Distributions and Inference (9)5Inference Meta Model115.1Inference Faults (12)5.2A Coarse Perspective on Inference (12)5.3Reinforcement Counter Distributions (13)5.4Robust Inference (14)5.5Reinforcement Propagation (15)6Applications166.1Design of Robust Inference Systems (16)6.2Coping with Imprecise Models by Using an Alternative Belief Propagation Method186.3Runtime Analysis of the Inference Quality (19)7Discussion207.1Causal Models with Simple Topologies (21)7.2Extending the IMM to More Complex Topologies (24)7.3Related Work (24)7.4Further Research (26)Intelligent Autonomous SystemsInformatics Institute,Faculty of ScienceUniversity of AmsterdamKruislaan403,1098SJ AmsterdamThe NetherlandsTel(fax):+31205257461(7490) http://www.science.uva.nl/research/ias/Corresponding author:Gregor Pavlintel:+31205257555gpavlin@science.uva.nlhttp://www.science.uva.nl/~gpavlin/Copyright IAS,2006Section1Introduction11IntroductionModern situation assessment and controlling applications often require efficient fusion of large amounts of heterogeneous and uncertain information.In addition,fusion results are often mis-sion critical.It turns out that Bayesian networks(BN)[22]are suitable for a significant class of such applications,since they facilitate modeling of very heterogeneous types of uncertain infor-mation and support efficient belief propagation techniques.BNs are based on solid theoretical foundations which facilitate(i)analysis of the robustness of fusion systems and(ii)monitoring of the fusion quality.We assume domains where situations can be described through sets of discrete random variables.A situation corresponds to a set of hidden and observed states that the nature ‘sampled’from some true distribution over the combinations of possible states.Thus,in a particular situation certain states materialized while others did not,which corresponds to a point-mass distribution over the possible states.Consequently,the state estimation can be reduced to a classification of the possible combinations of relevant states.We assume that there exist mappings between hidden states of interest and optimal decisions/actions.In this context, we consider classification of the states accurate if it is equivalent to the truth in the sense that knowing the truth would not change the action based on the classification.We focus on classification based on the estimated probability distributions(i.e.beliefs) over the hidden states.These distributions are estimated with the help of BNs,which facilitate systematic fusion of information about observations with the prior knowledge about the stochas-tic processes.BNs define mappings between observations and hypotheses about hidden events and,consequently,BNs have a significant impact on the classification accuracy.In general,one of the most challenging problems associated with BNs is determination of adequate modeling parameters[7].We emphasize a fundamental difference between the model accuracy and the estimation ac-curacy.In general,a BN is a generalization over many possible situations that captures the probability distributions over the possible events in the observed domain.However,even a per-fect generalization does not necessarily support accurate classification in a particular situation. For example,consider a domain in which90%offires cause smoke.While it is common thatfires cause smoke,in rare cases we might have afire but no smoke.By applying diagnostic inference we could use smoke detector reports to reason about the existence of afire.Such inference is based on a sensor model,a generalization which describes the probability that afire will cause smoke.Consequently,observing the absence of smoke would in such a rare case decrease our belief in the presence offire,leading our belief away from the truth,even if the used BN were a perfect generalization.In this paper we expose properties of BNs which are very relevant for the design of robust information fusion systems in real world applications.We show that certain types of BNs support robust inference.In addition,we introduce the Inference Meta Model(IMM),a new runtime perspective on inference in BNs which supports analysis of the inherent fusion robustness and can provide additional information on the fusion quality.2State Estimation with Bayesian networksIn general,human decision makers or artificial intelligent systems make use of mappings between the constellations of relevant states and actions.We assume that the relevant states of the environment can be captured sufficiently well byfinite sets of discrete variables.Thus,each combination of variable instantiations corresponds to a certain choice of actions.Moreover,in real world applications we can often directly observe only a fraction of the variables of interest.Consequently,we have to estimate the states of interest with the help2Inference Meta Models:A New Perspective On Belief Propagation With Bayesian Networks of models that describe relations between the observed and hidden variables,i.e.variables representing events that cannot be observed directly.In addition,in real world applications we usually deal with stochastic domains.In other words,we often do not know with certainty which states of the hidden variables materialized.Instead,we associate each possible state of a variable with a hypothesis that the state materialized.Each hypothesis is associated with a score,a posterior probability determined with the help of probabilistic causal models that map constellations of observed states to probability distributions over hidden states.We assume that the hypothesis whose score exceeded a certain threshold corresponds to the truth.Thus,the state estimation process can be reduced to a classification problem.2.1Estimation AccuracyWe define accurate state estimation in the decision making context.Suppose that each constel-lation of states is associated with an optimal decision d i.If the decision maker knew that state h i materialized she would make the decision d i corresponding to that state.However,she cannot directly observe the true state.Instead,she is supplied with a posterior probability distribu-tionˆP(h i|E)over the possible states of variable H that is based on the current observations E.Moreover,for each possible state h i we define a thresholdθhi in such a way that only one of thepossible thresholds can be exceeded at a time.If the estimatedˆP(h i|E)>θhi then decision d i ismade as though the true state would be h i.In this decision making context we define accurate state estimation:Definition1(Accurate Distribution)A posterior distributionˆP(H|E)is considered accu-rate iffthere exists a decision thresholdθhi such thatˆP(h i|E)>θhiand h i=h∗.Thus,the threshold corresponding to the true state h∗is exceeded ifˆP(H|E)gets sufficiently close to the true distribution P(H).In other words,the state estimation can be reduced to a classification of the possible combinations of relevant states.Obviously,the classification quality is related to the divergence between the estimated and the true distributions.Throughout this paper we use the Kullback-Leibler divergence and as-sume that there exists a constantδcorresponding to a decision thresholdθhi ,such thatˆP(H|E)will result in the correct decision if KL(P(H) ˆP(H|E))<δ.Note,in this paperˆP(.)refers to modeling parameters and estimated probabilities,while P(.)without a hat denotes true probabilities in the modeled world.2.2Bayesian networksWe assume thatˆP(H|E)is computed with the help of Bayesian networks(BNs),which support theoretically rigorous modeling and belief propagation.A Bayesian network is defined as a tuple D,P ,where D= V,E is a directed a-cyclic graph defining a domain V={V1,...,V n}and a set of directed edges V i,V j ∈E over the domain.The joint probability distribution over the domain V is defined asˆP(V)= V i∈VˆP(V i|π(V i)),whereˆP(V i|π(V i))is the conditional probability table(CPT)for node V i given its parentsπ(V i) in the graph.In this paper,we assume that each node represents a discrete variable.In gen-eral,probability distributions over arbitrary sets of discrete variables can be computed through appropriate marginalization of P(V)and they are described through real-valued tables called potentials1[12].1Note that CPTs are also potentialsSection 2State Estimation with Bayesian networks 3BNs can be used as causal models [23,17]that describe probabilistic relations between different hidden phenomena and heterogeneous sensory observations (see example in figure 1).Ina BN we choose a hypothesis node H with states h i and compute probability distribution ˆP(H |E )over H for a given evidence pattern E (e.g.sensory observations).Evidence E corresponds to a certain constellation of node instantiations and subsequent inference (rmation fusion)results in a distribution ˆP(H |E )that determines a ”score”ˆP (h i |E )for each hypothesis h i ∈H .Moreover,given H we can define a conditionally independent network fragment :Definition 2(Conditionally Independent Network Fragment)Given a BN and a clas-sification variable H ,i th conditionally independent network fragment F H i is a set of nodes that include node H and are d-separated from other parts of a BN by H .All nodes within F H i are dependent given the variable H .2.3FactorizationD-separation implies conditional independence between the modeled variables,which corre-sponds to a specificfactorization of the estimated posterior probability distribution ˆP (H |E ).Namely, i F H i ={H },which means that the potentials corresponding to a particular network fragment F H i do not share any variables with the potentials associated with other network frag-ments,except the hypothesis variable H .Thus,each network fragment F H i is associated with a factor φi (H )resulting from a marginalization of all variables from this fragment except H and the evidence variables from F H i that were instantiated according to the evidence E i .This is reflected in the following factorization:ˆP(H,E )=V\HˆP(V )e k ∈Ee k =V 0\HV i ∈V 0ˆP(V i |π(V i ))e k ∈E 0e k φ0(H )·V 1\HV i ∈V 1\HˆP(V i |π(V i ))e k ∈E 1e kφ1(H )····V m \HV i ∈V m \HˆP(V i |π(V i ))e k ∈E me k ,φm (H )(1)V 0denotes all nodes from the network fragment F H 0that includes all predecessor nodes of H ,while V i (i =1,...,m )is the set of nodes contained in the fragments consisting of H ’s successors only.In addition, e k ∈E i e k denotes the instantiations of the evidence nodes in the i −th network fragment F H i (see [12]).Since H d-separates all sets V i (see Definition 2)we can identify conditionally independent factors φi (H )(i =0,...,m )whose product determines the resulting joint probability.Each factor φi (H ),is a function that yields a value φi (h i )for each state h i of H .In other words,φi (H )is a vector of scalars corresponding to the states of H .Each factor φi (H )corresponds to an independent opinion over H based on a subset E i ⊆E of all observations E .By considering the d-separation,we can further distinguish between Predictive and Diag-nostic conditionally independent network fragments.Definition 3(Predictive Network Fragment)Given a probabilistic causal model and a hy-pothesis variable H ,a Predictive conditionally independent network fragment F H i relative to H includes (1)all ancestors π∗(H )of H and (2)variables for which there exists at least one path to H via ancestor nodes π∗(H ).4Inference Meta Models:A New Perspective On Belief Propagation With Bayesian Networks/.-,()*+A b b b b ÑÑÑÑ76540123C ÑÑÑÑ76540123B 76540123H ÐÐÐÐa a a a 76540123D 76540123E 76540123F ÑÑÑÑi i i ii 76540123K /.-,()*+L 76540123MFigure 1:A causal model relating hypotheses represented by node H and different types ofobservations captured by nodes B ,D ,E ,K ,L and M .In general,given definition 3,we can show that in any BN we can find at most one predictivefragment if the predecessors of H do not form special Independence of Causal Influence models (ICI),such as noisy-OR gates [11,22].Definition 4(Diagnostic Network Fragment)Given a probabilistic causal model and a class variable H ,a Diagnostic conditionally independent network fragment F H i relative to vari-able H does not include any predecessors of H .By considering causality,we see that Diagnostic conditionally independent network fragments provide retrospective support for the belief over H .In other words,factors corresponding to such fragments update belief over H by considering only the evidence nodes that H d-separates from all H ’s predecessors.As we will show in the following discussion,this has important implications w.r.t.the factorization and classification robustness.For the sake of clarity,in this paper we limit our discussion to domains that can be described with BNs featuring poly-tree topologies 2.Consequently,a predictive fragment can never contain a descendant from the classification variable H and each child of H corresponds to a specific diagnostic fragment.For example,given the DAG shown in Figure 1and an evidence set E ={b 1,d 2,e 1,k 2,l 1,m 1}we obtain the following factorization:ˆP(h i ,E )=φ0(h i )AˆP(A )ˆP (b 1|A )CˆP(C )ˆP (h i |A,C )(2)·FˆP(F |H )ˆP (k 2|F )ˆP (l 1|F )ˆP (m 1|F ) φ1(h i )ˆP (d 2|h i ) φ2(h i )ˆP (e 1|h i )φ3(h i )In this example a single predictive fragment F H 0consists of variables A ,B ,C and H ,while there are three diagnostic fragments F H 1,F H 2and F H 3,each corresponding to a child of H .Moreover,variable instantiations in fragments F H 0,F H 1,F H 2and F H 3were based on evidence subsets E 0={b 1},E 1={d 2},E 2={e 1}and E 3={k 2,l 1,m 1},respectively.Note also that thePredictive fragment F H 0is associated with a single factor φ0(H ).3Inference ProcessesIn general,probabilistic inference (also called belief propagation)in BNs can be viewed as aseries of multiplication and marginalization steps that combine predefined modeling parameters2The discussion can be extended to more general topologies which,however,is out of scope of this paper.Section3Inference Processes5 according to the observed evidence.Moreover,belief propagation in BNs is a combination of predictive and diagnostic inference processes[22].In this section we discuss the two types of inference in a decision making context and analyze their robustness with respect to modeling inaccuracies.3.1PredictionPredictive inference is reasoning about states of a hidden variable H that can materialize as a consequence of observed events E.Given a probabilistic causal model,we infer the probability distributionˆP(H|E)over hidden states of the hypothesis variable H by considering observed instantiations of the variables from the set of ancestorsπ∗H of H.Thus,we reason in the causal direction about the outcome of a stochastic causal process,which can be viewed as a sampling process on some true distribution P(H|E).Note that P(H|E)corresponds to a particular materialization of the states of variables from the set of H’s ancestorsπ∗H.For example,consider a network fragment consisting of a hypothesis node H and n parents E i(see Figure2).Node H is associated with a CPT capturingˆP(H|E).By instantiating parents with evidence E={e1,...,e n},we express the distribution over the states of node H withˆP(H|e1,...,e n),which is a column inˆP(H|E).Parents E in this example represent a single predictive network fragment and,according to the factorization properties emphasized in the previous section,we see that this corresponds to a single factor,i.e.ˆP(H|e1,...,e n)=φ0(H).3.2Diagnostic InferenceDiagnostic inference(or retrospective support[22])is reasoning about hidden events that already took place and were followed by observations.Such inference is based on reversal of the causal relations captured by diagnostic network fragments.Moreover,in diagnostic reasoning we know that exactly one of the possible events took place.Therefore,the true distribution must be one of the possible point mass distributions:(3)P(h i)= 1if h i=h∗0otherwiseIn this context,classification based on diagnostic inference can be viewed as a choice of one of the true point mass distributions.Moreover,in BNs with tree topologies all children of the classification variable H are con-ditionally independent given H.Consequently,according to definition4,each child node of H corresponds to exactly one diagnostic factor.For example,consider a simple model with a hy-pothesis node H which is a root of n branches with evidence nodes(see Figure3).The posterior distribution over the states of H is given by:ˆP(H|E)=αˆP(H) e j∈EˆP(e j|H),(4)where E={e1,...,e n}is the evidence set,e j denotes the instantiated state of child E j andαis a normalizing constant.The likelihoods capture a generative model,which describes the distributions over effects of a certain cause.The likelihoods represent generalizations obtained through sampling in many different possible situations.As we will show later,the fact that diagnostic inference implements reasoning about a state corresponding to a point mass distribution has important implications with respect to the inference robustness.6Inference Meta Models:A New Perspective On Belief Propagation With Bayesian Networks?>=<89:;E 1s s s s ss ?>=<89:;E 2U U U U ?>=<89:;E 3···?>=<89:;E n u u u uu u GFED @ABC H Figure 2:Predictive BN.GFED @ABC H u u u u u u ××××s s s s ss ?>=<89:;E 1?>=<89:;E 2?>=<89:;E 3···?>=<89:;E n Figure 3:Diagnostic BN.3.3Robustness of Inference ProcessesThe robustness of inference processes can be expressed as the size of the parameter domain thatguarantees a sufficiently small KL divergence between the posterior and the true distribution with high probability;i.e.the greater the domain from which the designer or the learning algorithm can choose adequate modeling parameters,the greater is the chance that inference will be accurate in different situations.We can show that the choice of evidence nodes in a poly-tree influences the inherent inference robustness.In general,the predictive and diagnostic inference processes in tree like structures are very different with respect to the way the evidence is incorporated into the ly,all ancestors of H and variables connected to H via its ancestors are summarized through a single predictive factor.Diagnostic inference,on the other hand,can be realized through several factors,each corresponding to a child of H .Again,we assume that the estimation accuracy is related to the KL divergence between thetrue distribution over states of a hypothesis node P (H )and the posterior distribution ˆP(H |E )given the evidence set E .We first consider a simple network in Figure 2,which consists of binary nodes.Also,let’s assume a particular instantiation {e 1,...,e n }of the n parent nodes (hard evidence)corresponding to a single distribution vector from the CPT.Suppose that the trueprobability P (h )=0.7.We plot the corresponding KL(P (H ) ˆP(H |e 1,...,e n ))as a function of the relevant modeling parameter (see Figure 4).The figure shows that a sufficiently smalldivergence can be achieved if ˆP(h |e 1,...,e n )∈[0.65,0.75],which is a rather narrow interval.Figure 4:Divergence between the true and the posterior distribution for different parameters ofa simple ‘predictive’BN that guarantee a correct decision;i.e.KL(P (h ) ˆP(h |E ))<0.005.Next,consider an example of diagnostic inference based on a naive BN from Figure 3whereall n children,are associated with identical CPTs.Since we assumed binary variables,the CPTscan be specified by two parameters ˆP(e |h )and ˆP (e |h ).We investigate the effect of changingSection4Factor Accuracy7Figure5:Divergence between the true and the posterior distribution for different parameters ˆP(e|h)of a naive BN that guarantee a correct decision;i.e.KL(P(h) ˆP(h|E))<0.005. Different curves correspond to the following numbers of children nodes:20(dashed),30(dotted) and40(dash-dotted).ˆP(e|h)andfixˆP(e|h)=0.3which is equal to the true conditional distribution.We assume that the true probability P(h)=1.Figure5depicts the divergence for different values ofˆP(e|h), where each curve represents a different number of children n.On the horizontal axis we can identify intervals for values ofˆP(e|h),for which the divergence KL(P(h) ˆP(h|E))<0.005. From this diagram it is apparent that the intervals,from which we can choose adequateˆP(e|h), grow with the number of children.In other words,diagnostic inference becomes inherently robust if we use BNs with sufficiently large branching factors.In such cases we can pass the correct decision threshold under a wide choice of modeling parameters.This implies that the likelihood of choosing inadequate modeling parameters in a given situation is reduced.Contrary to the predictive inference example,we see that the redundancy with respect to the evidence nodes does improve the robustness.While predictive inference is sufficiently accurate only if we can obtain parameters that precisely describe the true distributions over events of interest,we see that parameter precision is not crucial for diagnostic inference.In other words,the redundancy of parameters plays an important role w.r.t.the robustness.4Factor AccuracyExamples from the preceding section suggest that inference in BNs can be robust if the un-derlying process models have topologies featuring many conditionally independent factors.We explain these properties with the help of a coarse runtime perspective.We investigate under which conditions the factors support accurate fusion.We show that inference processes can be very robust if the CPTs merely capture simple relations between the true conditional probability distributions and the BN topology corresponds to many factors in the posterior factorization. We argue that because of this property the fusion can be inherently robust since such relations can be identified easily by the designers or machine learning algorithms.8Inference Meta Models:A New Perspective On Belief Propagation With Bayesian Networks4.1Updating TendenciesIn order to be able to analyze the impact of the modeling parameters on the classification with BNs,we focus our attention on inference processes.Consider again the example from the previous section(see Figure1).Recall that each instantiation of a network fragment that is d-separated from the other parts of the network by H corresponds to a factor in the expression describing the distribution over H.For each such conditionally independent network fragment we can observe,that if we multiply the conditional equation with the corresponding factor and normalize over all states of H,the posterior probability of one state will increase the most. For example suppose the parameters were P(f2|h1)=0.8and P(f2|h2)=0.3.Observation of F=f2,thus increased the posterior of h1the most.One could say that for observation F=f2 state h1‘wins’.Obviously,the state that wins sufficiently often will end up with the highest posterior probability.This suggests that it is not the exact factor values,but the relations between them that matter most with respect to the estimation accuracy.Therefore,for each factorφi(H)we introduce a factor reinforcement:Definition5(Factor Reinforcement)Assume a classification variable H and a fragment F H i.Given some instantiation E i of the evidence variables within F H i,we can compute a factor φi(h j)for each state h j of variable H and determine the corresponding factor reinforcement r H i as follows:r H i=arg maxh jφi(h j).(5)Note that factorφi(H)either captures the likelihood of states of H,if it corresponds to a diag-nostic fragment,or it represents a prior over H if it corresponds to a predictive fragment.In other words,reinforcement r H i is a function that returns the state h j of variable H, whose probability is increased the most(i.e.reinforced)by instantiating nodes of the frag-ment F H i corresponding to factorφi(H)i.For example,given factorization(2),we obtain fourreinforcements:r H0=arg max hi φ0(h i),r H1=arg max hiφ1(h i),r H2=arg max hiφ2(h i)andr H3=arg max hiφ3(h i).Moreover,we can define an accurate reinforcement:Definition6(Accurate Reinforcement)Let H be a classification variable and let h∗be its hidden true value.A reinforcement r H i contributed by factorφi(H)is accurate in a particular situation iffh∗=r H i.(6)In other words,the true state of H is reinforced.We illustrate accurate reinforcements with an example.We assume binary variables H and E related throughˆP(E|H)(i.e.a CPT) containing modeling parametersˆP(e1|h1)=0.7andˆP(e1|h2)=0.2.Given these parameters and observation of E=e1,the subsequent inference is based on the multiplication with factors φi(h1)=ˆP(e1|h1)andφi(h2)=ˆP(e1|h2),which yields reinforcement r H i=h1.If h1is indeed the true value of H(i.e.the ground truth)then belief propagation through the network fragment corresponding toφi reinforces the true value and we consider the reinforcement accurate(see Definition6).Consequently,we consider modeling parametersˆP(e1|h1)andˆP(e1|h2)adequate. Moreover,one can see that in this particular case we will obtain an accurate reinforcement as long as the parameters inˆP(E|H)satisfy conditionˆP(e1|h1)>ˆP(e1|h2),which defines intervals for adequate parameter values.If the true probability distribution P(H)is a point mass distribution,then we can show an interesting property of the factors that satisfy this condition:。