三次函数的性质及在高考中的应用(附解答)

合集下载

精品解析:2023年全国高考甲卷数学(文)试题(解析版)

精品解析:2023年全国高考甲卷数学(文)试题(解析版)

绝密★启用前2023年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己地姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上地准考证号、姓名、考场号、座位号及科目,在规定地位置贴好条形码.2.回答选择题时,选出每小题解析后,用铅笔把答题卡上对应题目地解析标号涂黑,如需改动,用橡皮擦干净后,再选涂其他解析标号.回答非选择题时,将解析写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A. {}0,1,2 B. {2,1,0}-- C. {0,1}D. {1,2}【解析】A 【解析】【分析】根据集合地交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2. 某社区通过公益讲座以普及社区居民地垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题地正确率如下图:则( )A. 讲座前问卷答题地正确率地中位数小于70%B. 讲座后问卷答题地正确率地平均数大于85%C. 讲座前问卷答题地正确率地标准差小于讲座后正确率地标准差D. 讲座后问卷答题地正确率地极差大于讲座前正确率地极差【解析】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差地概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题地正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题地正确率地平均数大于85%,所以B 对;讲座前问卷答题地正确率更加分散,所以讲座前问卷答题地正确率地标准差大于讲座后正确率地标准差,所以C 错;讲座后问卷答题地正确率地极差为100%80%20%-=,讲座前问卷答题正确率地极差为95%60%35%20%-=>,所以D 错.故选:B3. 若1i z =+.则|i 3|z z +=( )A.B.C.D. 【解析】D的.【解析】【分析】根据复数代数形式地运算法则,共轭复数地概念以及复数模地计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4. 如图,网格纸上绘制地是一个多面体地三视图,网格小正方形地边长为1,则该多面体地体积为( )A. 8B. 12C. 16D. 20【解析】B 【解析】【分析】由三视图还原几何体,再由棱柱地体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱地体积2422122V +=⨯⨯=.故选:B.5. 将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭地图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω地最小值是( )A.16B.14C.13D.12【解析】C 【解析】【分析】先由平移求出曲线C 地解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω地最小值.【详解】由题意知:曲线C 为sin sin(2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎥⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω地最小值为13.故选:C.6. 从分别写有1,2,3,4,5,6地6张卡片中无放回随机抽取2张,则抽到地2张卡片上地数字之积是4地倍数地概率为( )A.15B.13C.25D.23【解析】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4地倍数地情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4地倍数地有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7. 函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦地图象大致为( )A. B.C. D.【解析】A 【解析】【分析】由函数地奇偶性结合指数函数、三角函数地性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8. 当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A. 1- B. 12-C.12D. 1【解析】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x '=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9. 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成地角均为30°,则( )A. 2AB AD= B. AB 与平面11AB C D 所成地角为30°C. 1AC CB =D. 1B D 与平面11BB C C 所成地角为45︒【解析】D 【解析】【分析】根据线面角地定义以及长方体地结构特征即可求出.【详解】如下图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体地结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为tan c BAE a ∠==所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,11sin 2CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10. 甲、乙两个圆锥地母线长相等,侧面展开图地圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.【解析】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥地侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥地高,再根据圆锥地体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r rl+=,所以1221,33r l r l ==,所以甲圆锥地高1h ==,乙圆锥地高2h ==,所以2112221313r h V V r h ππ===甲乙.故选:C.11. 已知椭圆2222:1(0)x y C a b a b+=>>地离心率为13,12,A A 分别为C 地左、右顶点,B 为C 地上顶点.若121BA BA ⋅=-,则C 地方程为( )A. 2211816x y += B. 22198x y += C. 22132x y += D. 2212x y +=【解析】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 地等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆地方程为22198x y +=.故选:B.12. 已知910,1011,89m m m a b ==-=-,则( )A. 0a b >> B. 0a b >> C. 0b a >> D. 0b a>>【解析】A 【解析】【分析】根据指对互化以及对数函数地单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数地单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13. 已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【解析】34-##0.75-的【分析】直接由向量垂直地坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故解析为:34-.14. 设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 地方程为______________.【解析】22(1)(1)5x y -++=【解析】【分析】设出点M 地坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆地方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点地距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 地方程为22(1)(1)5x y -++=.故解析为:22(1)(1)5x y -++=15. 记双曲线2222:1(0,0)x y C a b a b -=>>地离心率为e ,写出满足条件"直线2y x =与C 无公共点"地e 地一个值______________.【解析】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求地e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 地渐近线方程为b y x a=±,结合渐近线地特点,只需02b a <≤,即224b a≤,可满足条件"直线2y x =与C 无公共点"所以==≤=c e a 又因为1e >,所以1e <≤,故解析为:2(满足1e <≤皆可)16. 已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥=-,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m =.故解析为1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试卷考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 甲、乙两城之间地长途客车均由A和B两家公司运营,为了解这两家公司长途客车地运行情况,随机调查了甲、乙两城之间地500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间地长途客车准点地概率;(2)能否有90%地把握认为甲、乙两城之间地长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bcKa b c d a c b d-=++++, ()2P K k…0.1000.0500.010 k 2.706 3.841 6.635【解析】(1)A,B两家公司长途客车准点地概率分别为12 13,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型地概率公式可求得结果;(2)根据表格中数据及公式计算2K,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A共有班次260次,准点班次有240次,设A家公司长途客车准点事件为M,则24012 ()26013==P M;B共有班次240次,准点班次有210次,设B家公司长途客车准点事件为N,则210 ()27840==P N.A 家公司长途客车准点地概率为1213;B 家公司长途客车准点地概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%地把握认为甲、乙两城之间地长途客车是否准点与客车所属公司有关.18. 记n S 为数列{}n a 地前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 地最小值.【解析】(1)证明见解析; (2)78-.【解析】【分析】(1)依题意可得222n nS n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项地性质求出1a ,即可得到{}n a 地通项公式与前n 项和,再根据二次函数地性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差地等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19. 小明同学参加综合实践活动,设计了一个封闭地包装盒,包装盒如下图所示:底面ABCD 是边长为8(单位:cm )地正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在地平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒地容积(不计包装盒材料地厚度).【解析】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 地中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直地性质定理可知//EM FN ,即可知四边形EMNF 为平行四边形,于是//EF MN ,最后根据线面平行地判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体地体积等于长方体KMNL EFGH -地体积加上四棱锥B MNFE -体积地4倍,即可解出.【小问1详解】如下图所示:,分别取,AB BC 地中点,M N ,连接MN ,因为,EAB FBC 为全等地正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直地性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如下图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体地体积等于长方体KMNL EFGH -地体积加上四棱锥B MNFE-体积地4倍.因为MN NL LK KM ====,8sin 60EM == 点B 到平面MNFE 地距离即为点B 到直线MN 地距离d ,d =,所以该几何体地体积(2143V =⨯+⨯⨯=+=20. 已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处地切线也是曲线()y g x =地切线.(1)若11x =-,求a ;(2)求a 地取值范围.【解析】(1)3 (2)[)1,-+∞【解析】【分析】(1)先由()f x 上地切点求出切线方程,设出()g x 上地切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上地切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 地取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处地切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处地切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '地变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭()0,11()1,+∞()h x '-0+0-+()h x527141-则()h x 地值域为[)1,-+∞,故a 地取值范围为[)1,-+∞.21. 设抛物线2:2(0)C y px p =>地焦点为F ,点(),0D p ,过F 地直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 地方程;(2)设直线,MD ND 与C 地另一个交点分别为A ,B ,记直线,MN AB 地倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 地方程.【解析】(1)24y x =; (2):4AB x =+.【解析】【分析】(1)由抛物线地定义可得=2pMF p +,即可得解;(2)设点地坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角地正切公式及基本不等式可得AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线地准线为2px =-,当MD 与x 轴垂直时,点M 地横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 地方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 地倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ--===≤=+++,当且仅当12k k =即k =,等号成立,所以当αβ-最大时,AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题地关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间地关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做地第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系xOy 中,曲线1C地参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C地参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 地普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 地极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点地直角坐标,及3C 与2C 交点地直角坐标.【解析】(1)()2620y x y =-≥;(2)31,C C 地交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 地交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 地普通方程;(2)将曲线23,C C 地方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 地普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 地普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标1,12⎛⎫--⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23. 已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【解析】(1)见解析 (2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,的为即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。

2023年江西省重点中学盟校高考数学第一次联考试卷(文科)+答案解析(附后)

2023年江西省重点中学盟校高考数学第一次联考试卷(文科)+答案解析(附后)

2023年江西省重点中学盟校高考数学第一次联考试卷(文科)1. 设集合,,则选项正确的是( )A. B.C. D.2. 已知a,b均为实数,复数,,,则( )A. 1B.C. 2D.3. 已知,则是的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4. 据央视新闻报道,据国家电影局初步统计,2023年春节档月21日至1月27日电影票房为亿元,同比增长春节档观影人次为亿,同比增长;国产影片票房占比为2023年春节档共12部电影上映,其中主打的6部国产影片累计票房如下:据上述信息,关于2023年春节档电影票房描述不正确的是( )A. 主打的6部国产影片总票房约占2023春节档电影票房的B. 2023年春节档非国产电影票房约亿元C. 主打的6部国产影片票房的中位数为亿元D. 电影《交换人生》的票房约为主打的6部国产影片外的其他春节档电影票房总的3倍5. 已知向量,,,则向量在上的投影等于( )A. B. C. 6 D. 76. 设函数的定义域为R,则函数与函数的图象关于( )A. 直线对称B. 直线对称C. 直线对称D. 直线对称7. 设函数在的图像大致如图,则( )A. B. C. D.8. 中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,,,,是举,,,,是相等的步,相邻桁的举步之比分别为,且成首项为的等差数列,若直线OA 的斜率为,则该数列公差等于( )A.B. C.D.9. 已知函数为奇函数,则在处的切线方程为( )A. B.C.D.10. 已知球O 是正三棱锥的外接球,D 是PA 的中点,且,侧棱,则球O 的表面积为( )A. B. C.D.11. 已知抛物线C :的焦点F 与双曲线的右焦点重合,该抛物线的准线与x 轴的交点为K ,点A 在抛物线上且,则A 点的横坐标为( )A. B. 2 C. D. 512. 已知函数,其导函数的两根为,,若不等式的解集为且,则极大值为( )A. 0B. 1C. 2D. 413. 若实数x,y满足约束条件则的最小值为______ .14. 已知椭圆的中心在原点,焦点在y轴上,离心率为,请写出一个符合上述条件的椭圆的标准方程______ .15.记数列的前n项和为,则______ .16. 在正四棱柱中,,,E为中点,P为正四棱柱表面上一点,且,则点P的轨迹的长为______ .17. 为了提高学习数学的兴趣,形成良好的数学学习氛围,某校将举行“‘象山杯’数学解题能力比赛”每班派3人参加,某班级老师已经确定2参赛名额,第3个参赛名额在甲,乙同学间产生,为了比较甲,乙两人解答某种题型的能力,现随机抽取这两个同学各10次之前该题型的解答结果如下:,,其中分别表示甲正确和错误;分别表示乙正确和错误.若解答正确给该同学1分,否则记0分.试计算甲、乙两人之前的成绩的平均数和方差,并根据结果推荐谁参加比赛更合适;若再安排甲、乙两人解答一次该题型试题,试估计恰有一人解答正确的概率.18. 在中,内角A,B,C的对边分别为a,b,c,且满足求角A;若的面积为,D为BC边上一点,且求AD的最小值.19. 如图:在四棱锥中,底面ABCD为平行四边形,M为线段SA上一点,且,平面CDM与侧棱SB交于点求;平面CDM将四棱锥分成了上下两部分,求四棱锥和多面体ABCDMN的体积之比.20. 设函数当时,求函数在定义域内的最小值;若,求实数a的取值范围.21. 已知圆C过点求圆C的标准方程;若过点C且与x轴平行的直线与圆C交于点M,N,点P为直线上的动点,直线PM,PN与圆C的另一个交点分别为E,与MN不重合,证明:直线EF过定点.22. 在直角坐标系xoy中,曲线的参数方程为为参数以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为求曲线和曲线的直角坐标方程;若曲线和曲线交于A、B两点,且点,求的值.23. 已知函数若,解不等式;若,,,且的最小值为答案和解析1.【答案】B【解析】解:集合,,对于A,由并集定义得0不一定是B中元素,故A错误;对于B,,,故B正确;对于C,由并集定义得B中一定有元素3,不一定有元素0,1,2,故C错误;对于D,当时,不成立,故D错误.故选:利用并集、子集定义、元素与集合的关系直接求解.本题考查集合的运算,考查并集、子集定义、元素与集合的关系等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:复数,,,则,所以,,故故选:根据已知条件,结合复数的四则运算以及复数相等的条件,即可求解.本题主要考查复数的运算,属于基础题.3.【答案】A【解析】解:,解得或,又因为,所以,故充分性成立,当时,,故必要性成立,所以是的充要条件,故选:利用余弦的倍角公式分析充分性,必要性是否成立,进而可以求解.本题考查了充分,必要性的定义和二倍角的三角函数,考查了转化思想,属于基础题.4.【答案】B【解析】解:对于A,由图可知:主打的6部国产影片总票房为亿元,2023春节档电影票房亿元,占比约为,正确;对于B,因为2023年春节档国产影片票房占比为,所以非国产电影票房占比为,其票房为亿元,不正确;对于C,由图可知:主打的6部国产影片票房的中位数为亿元,正确;对于D,由图可知:电影《交换人生》的票房为亿元,而主打的6部国产影片外的其他春节档电影总票房为亿元,所以电影《交换人生》的票房约为主打的6部国产影片外的其他春节档电影票房总的3倍.故选:根据图中数据逐项计算分析即可求解.本题考查统计图表获取信息,属于基础题.5.【答案】A【解析】解:已知向量,,,则,,则向量在上的投影为,故选:平向量在上的投影为,然后结合平面向量数量积的运算求解即可.本题考查了平面向量数量积的运算,重点考查了平面向量的投影的运算,属基础题.6.【答案】B【解析】解:根据题意,函数的定义域为R,函数与的图象关于y轴对称,是函数的图象向右平移1个单位,则所以与的图象关于对称,函数由函数向右平移4个单位的,则函数函数与函数的图象关于直线对称,故选:根据函数图象的平移关系,结合与的对称性,进而由函数图象平移变换的规律分析即可求解.本题考查函数的图象分析,注意函数的图象变换规律,属于基础题.7.【答案】D【解析】解:据图可知:,即,所以……①,结合图像可知,则,,所以,,结合①式可知,时,符合题意,可得,可得故选:结合图象中标的数据得到关于最小正周期满足不等关系和等量关系,据此求解的值,可求函数解析式,进而利用诱导公式,特殊角的三角函数值即可求解.本题考查了由的部分图象确定其解析,余弦函数的图象和性质,考查了数形结合思想和函数思想的应用,属于中档题.8.【答案】B【解析】解:由图形得,不妨设,则,,,,由题意得,即,设数列的公差为d,则,,,,解得,故选:根据等差数列的应用,设,结合题意可得,且,,,,设数列的公差为d,根据等差数列的求和公式,求解即可得出答案.本题考查等差数列的应用,考查转化思想,考查运算能力,属于基础题.9.【答案】C【解析】解:函数为奇函数,且时,,设,则,,,,当时,,,又,在处的切线方程为,即故选:由已知求得函数的解析式,再求其导函数,得到与的值,利用直线方程的点斜式得答案.本题考查函数解析式的求解及常用方法,训练了利用导数求过曲线上某点处的切线方程,是中档题.10.【答案】D【解析】解:三棱锥为正三棱锥,,又是PA的中点,且,平面PAB,则,,又三棱锥为正三棱锥,,设球O的半径为R,则,则球O的表面积为,故选:由题意可得,,,设球O的半径为R,则,然后结合球的表面积公式求解即可.本题考查了球的表面积公式,重点考查了空间几何体的外接球问题,属基础题.11.【答案】D【解析】解:因为抛物线的焦点F与双曲的右焦点重合,而双曲线中,,,,可知右焦点,所以,即抛物线的方程为则抛物线的准线,故点设点,满足,由,可知,解得,故点A的横坐标为故选:先利用双曲线的性质求得,再根据抛物线的定义,运用坐标表示关系式,然后借助于方程来求解点A的坐标.本题考查了抛物线的标准方程及其应用,考查了数形结合的思想方法,考查了计算能力,属于中档题.12.【答案】D【解析】解:导函数的两根为,,不妨设,不等式的解集为则是函数的极值点,又,所以,,所以,的图象大致如图,由,可得,因为,所以,又,所以,所以,又,所以,所以所以,所以是函数的极大值点,且故选:根据三次函数的图象特征,确定大致图象,求解函数的解析式,求出极大值点,进而求出极大值.本题主要考查了利用导数研究函数极值,属于中档题.13.【答案】【解析】解:作出可行域,如图所示:由此可得目标函数在A处取小值,由,得,所以,所以故答案为:作出可行域,由线性规划的相关知识即可求出z的最小值.本题考查了简单的线性规划,属于基础题.14.【答案】答案不唯一【解析】解:由于椭圆的中心在原点,焦点在y轴上,所以设椭圆的方程为,由于离心率为,所以,满足条件的椭圆方程为答案不唯一故答案为:答案不唯一直接利用椭圆的性质求出椭圆的方程.本题考查的知识要点:椭圆的方程,椭圆的性质,主要考查学生的理解能力和计算能力,主要考查学生的理解能力和计算能力,属于中档题和易错题.15.【答案】【解析】解:由的周期为,又,,,则,,则,故答案为:由题意可得,,然后求解即可.本题考查了三角函数的性质,重点考查了数列求和问题,属中档题.16.【答案】【解析】解:如图,连接,,由题可知,,平面,因平面,则,又平面,平面,,则平面又平面,则,如图,过E做平行线,交于F,则F为中点.连接EF,,过作垂线,交于由题可得,平面,又,则平面,因平面,则,又平面,平面,,则平面,因为平面,则,因为平面,平面,,则平面,连接,则点P轨迹为平面与四棱柱的交线,即,注意到,故,,则,故,,则点P的轨迹的长为故答案为:过作与直线垂直的平面,则点P的轨迹的长即为平面与正四棱柱的交线长.本题为立体几何中的轨迹问题,根据题意作出空间轨迹是解题关键,属于难题.17.【答案】解:根据题意,分析可得在已知的10个结果中,甲答对7次,答错3次,乙答对8次,答错2次,则甲的平均数,方差;则乙的平均数,方差;比较可得:,,推荐乙参加比赛更合适;根据题意,在已知的10个结果中,有且仅有1人答对的结果有、、共3个;故恰有一人解答正确的概率【解析】根据题意,分析可得在已知的10个结果中,甲答对7次,答错3次,乙答对8次,答错2次,由此计算甲乙的平均数和方差,比较分析可得答案;根据题意,在已知的10个结果中,有且仅有1人答对的结果有、、共3个,由古典概型公式计算可得的答案.本题考查数据的平均数、方差的计算,涉及古典概型的计算,属于基础题.18.【答案】解:在中,内角A,B,C的对边分别为a,b,c,且满足,由正弦定理可得,即,即,又,则,又,则;的面积为,,又,,又为BC边上一点,且,则,则,当且仅当,即,时取等号,即的最小值为即AD的最小值为【解析】由正弦定理可得,即,则,然后求A即可;由的面积为,可得,又,然后结合平面向量的数量积的运算及重要不等式的应用求解即可.本题考查了正弦定理,重点考查了平面向量的数量积的运算及重要不等式的应用,属中档题.19.【答案】解:底面ABCD为平行四边形,,平面SAB,平面SAB,平面SAB,平面CDMN,平面平面,,则,,,可得;设,,,∽,且,,则,,,,,四棱锥和多面体ABCDMN的体积之比为【解析】由直线与平面平行的判定与性质证明,再由平行线截线段成比例得答案;设,再由等体积法分别求出平面CDM将四棱锥分成的上下两部分的体积,作比得答案.本题考查多面体的体积及其求法,训练了利用等体积法求多面体的体积,考查运算求解能力,是中档题.20.【答案】解:当时,,其定义域为,则,令,得,当时,,当时,,所以在上单调递减,在上单调递增,故函数在定义域内的最小值为令,即,恒成立,,①当时,令,可得,当时,,单调递减,当时,,单调递增,所以,原不等式成立.②当时,时,,单调递增,所以当时,,所以不成立;③当时,时,,单调递减,所以当时,,所以不成立;④当时,令,又,所以,所以不成立.综上所述,实数a的取值范围为【解析】对求导判断其单调性,从而可求得最小值;令,则问题转化为当,恒成立求实数a的取值范围.对求导,分类讨论判断可知当时有最小值从而可求;当时没办法确定最小值,可通过确定来判断不成立.本题主要考查利用导数研究函数的单调性与最值,考查分类讨论思想与运算求解能力,属于中档题.21.【答案】解:设圆C的方程为,又圆C过点则,解得,,圆C的标准方程为;由题意得,直线MN:,点,点,设点,,,,,,又,,,又E,F在圆C上,,,,即,,整理得:,当直线EF斜率存在时,设直线EF的方程为,代入,得,得或,当时,直线EF的方程为,过点,当时,直线EF的方程为,过点,在直线上,不成立,当直线斜率不存在时,,即,解得或舍去,直线EF过点成立,综上所述,直线EF恒过点【解析】设圆C的方程为,代入点的坐标求解即可;由题意得,可求直线MN的方程和点M,N的坐标,设点,,,由题意可得,进而整理可得,设直线EF的方程为,联立方程组可得或,进而可得定点.本题考查圆的方程的求法,考查定点问题,考查运算求解能力,属中档题.22.【答案】解:曲线的参数方程为为参数转换为直角坐标方程为;曲线的极坐标方程为,根据,转换为直角坐标方程为把直线的参数式转换为为参数,代入,得到,所以,;故【解析】直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;利用一元二次方程根和系数的关系求出结果.本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系,主要考查学生的理解能力和计算能力,属于中档题和易错题.23.【答案】解:当时,,当时,,即,解得,无解;当时,,即,解得;当时,,即,解得;综上,不等式的解集为;证明:,所以,则,所以,所以,当且仅当时等号成立,所以,即得证.【解析】将代入,然后分,以及讨论即可得解;本题考查绝对值不等式的解法以及基本不等式的运用,考查分类讨论思想以及逻辑推理能力,运算求解能力,属于基础题.。

内蒙古巴彦淖尔第一中学2025届高三下学期联合考试数学试题含解析

内蒙古巴彦淖尔第一中学2025届高三下学期联合考试数学试题含解析

内蒙古巴彦淖尔第一中学2025届高三下学期联合考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知||23z z i =-(i 为虚数单位,z 为z 的共轭复数),则复数z 在复平面内对应的点在( ). A .第一象限B .第二象限C .第三象限D .第四象限2.若点(3,4)P -是角α的终边上一点,则sin 2α=( ) A .2425-B .725-C .1625D .853.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点1,0A 作x 轴的垂线与曲线x y e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N4.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A .B .C .D .5.设a R ∈,0b >,则“32a b >”是“3log a b >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件6.集合{}2|30A x x x =-≤,(){}|lg 2B x y x ==-,则A B ⋂=( ) A .{}|02x x ≤< B .{}|13x x ≤<C .{}|23x x <≤D .{}|02x x <≤7.设1i2i 1iz -=++,则||z = A .0B .12C .1D .28.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S =15(单位:升),则输入的k 的值为( ) A .45B .60C .75D .1009.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有( ) A .8种B .12种C .16种D .20种10.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ). A .12B 5C 5D .511.方程()()f x f x '=的实数根0x 叫作函数()f x 的“新驻点”,如果函数()ln g x x =的“新驻点”为a ,那么a 满足( ) A .1a = B .01a <<C .23a <<D .12a <<12.在101()2x x-的展开式中,4x 的系数为( ) A .-120B .120C .-15D .15二、填空题:本题共4小题,每小题5分,共20分。

考点17 三角函数的性质与应用答案

考点17 三角函数的性质与应用答案

为(

k − A.x= 2 6 (k∈Z)
【答案】B
k + B.x= 2 6 (k∈Z)
k − C.x= 2 12 (k∈Z)
k + D.x= 2 12 (k∈Z)
【解析】由题意,将函数
y
=
2
sin
2x
的图像向左平移
π 12
个单位长度得函数
y
=
2
sin
2(
x
+
π 12
)

2sin(2x + π)
称,则 的最小正值是(
A. 8
B. 4
【答案】C

3 C. 8
3 D. 4
【方法技巧归纳】求解三角函数的奇偶性的策略:
(1)判断函数的奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数; 复合函数在复合过程中,对每个函数而言,“同奇才奇、一偶则偶”.一般情况下,需先对函数式进行化
思想的应用.
【典型高考试题变式】
(一)三角函数的周期性
例 1 【2017 山东】函数 y = 3sin2x + cos2x 最小正周期为(

π A. 2
2π B. 3
C. π
D. 2π
【答案】C
【解析】∵ y = 2
3 2
sin
2x
+
1 2
cos
2x
=
2sin
2x
+
π 6
T
,∴
= 2π 2

例 5 【2017 课标 II】函数
4
2 的最大值是____________.
【答案】1

三次函数图像与性质(解析版)

三次函数图像与性质(解析版)

专题2-2三次函数图像与性质【题型1】求三次函数的解析式【题型2】三次函数的单调性问题【题型3】三次函数的图像【题型4】三次函数的最值、极值问题【题型5】三次函数的零点问题【题型6】三次函数图像,单调性,极值,最值综合问题【题型7】三次函数对称中心【题型8】三次函数的切线问题【题型9】三次函数根与系数的关系1/342/34【题型1】求三次函数的解析式(1)一般式:()³²f x ax bx cx d =+++(a ≠0)(2)交点式:()123()()()f x a x x x x x x =---(a ≠0)1.若三次函数()f x 满足()()()()00,11,03,19f f f f ''====,则()3f =()A .38B .171C .460D .965【解析】待定系数法,求函数解析式设()³²f x ax bx cx d =+++,则()232f x ax bx c '=++,由题意可得:()()()()0011031329f d f a b c d f c f a b c ⎧==⎪=+++=⎪⎨==⎪⎪=+'=⎩'+,解得101230a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩,则()3210123f x x x x =-+,所以()32310312333171f =⨯-⨯+⨯=.【题型2】三次函数的单调性问题三次函数是高中数学中的一个重要内容,其考点广泛且深入,主要涉及函数的性质、图像、最值、零点以及与其他函数的综合应用等方面。

以下是对三次函数常见考点的详细分析:1.三次函数的定义与形式∙定义:形如f (x )=ax 3+bx 2+cx +d (其中a ≠=0)的函数称为三次函数。

∙形式:注意系数a ,b ,c ,d 的作用,特别是a 的正负决定了函数的开口方向(a >0开口向上,a <0开口向下)。

2020年高考数学浙江卷(附答案与解析)

2020年高考数学浙江卷(附答案与解析)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2020年普通高等学校招生全国统一考试(浙江卷)数 学分别表示台体的上、下底面积,h 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|14}x P x =<<,{}23Q x =<<,则P Q ( )A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x << 2.已知a ∈R ,若()–12i a a +-(i 为虚数单位)是实数,则a =( )A .1B .–1C .2D .–23.若实数x ,y 满足约束条件31030x y x y -+⎧⎨+-⎩≤≥,则2z x y =+的取值范围是( )A .(,4]-∞B .[4,)+∞C .[5,)+∞D .(,)-∞+∞4.函数cos sin y x x x =+(,)-∞+∞区间[–π,]π+的图象大致为( )ABCD5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )是( )A .73B.143C .3D .66.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知等差数列{}n a 的前n 项和n S ,公差0d ≠,11a d≤.记12b S =,1222–n n n S S ++=,n *∈N ,下列等式不可能成立的是( )A .4262a a a =+B .4262b b b =+-------------在------------------此------------------卷------------------上------------------答------------------题--------------------无------------------效---------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第3页(共18页) 数学试卷 第4页(共18页)C .2428a a a =D .2428b b b = 8.已知点()0,0O ,()–20A ,,()20B ,.设点P 满足–2PA PB =,且P 为函数y =图像上的点,则OP =( )ABCD9.已知a ,b ∈R 且0ab ≠,若()()()–––20x a x b x a b -≥在0x ≥上恒成立,则( )A .0a <B .0a >C .0b <D .0b >10.设集合S ,T ,*S ⊆N ,*T ⊆N ,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y S ∈,若x y ≠,都有xy T ∈ ②对于任意x ,y T ∈,若x y <,则yS x∈; 下列命题正确的是( )A .若S 有4个元素,则S T 有7个元素B .若S 有4个元素,则S T 有6个元素C .若S 有3个元素,则S T 有4个元素D .若S 有3个元素,则ST 有5个元素非选择题部分(共110分)二、填空题:本大题共7小题,共36分.多空题每小题6分,单空题每小题4分. 11.我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈的前3项和是________.12.设()2345123455612x a a x a x a x a x a x +=+++++,则5a = ________;123a a a ++=________.13.已知tan 2θ=,则cos2θ=________;πtan()4θ-=______.14.已知圆锥的侧面积(单位:2cm )为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.15.设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.16.盒子里有4个球,其中1个红球,1个绿球,2个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.17.设1e ,2e 为单位向量,满足12|22|e e -≤,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.在锐角ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A ==. (I )求角B 的大小;(II )求cos cos cos A B C ++的取值范围.19.如图,三棱台—ABC DEF 中,面ACFD ⊥面ABC ,45ACB ACD ∠=∠=︒,2DC BC =.(I )证明:EF DB ⊥;(II )求DF 与面DBC 所成角的正弦值.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)20.已知数列{}n a ,{}n b ,{}n c 中,1111a b c ===,112,()nn n n n n n b c a a c c n b +++=-=⋅∈*N . (Ⅰ)若数列{}n b 为等比数列,且公比0q >,且1236b b b +=,求q 与n a 的通项公式; (Ⅱ)若数列{}n b 为等差数列,且公差0d >,证明:*1211()n c c c n N d++++∈<.21.如图,已知椭圆221:12x C y +=,抛物线()22:20C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.22.已知12a <≤,函数()e x f x x a =--,其中 2.71828e =为自然对数的底数.(Ⅰ)证明:函数()y f x =在()0+∞,上有唯一零点; (Ⅱ)记0x 为函数()y f x =在()0+∞,上的零点,证明: (i0x ; (ii )()()()00e e 11x x f a a --≥.-------------在------------------此-------------------卷------------------上-------------------答-------------------题-------------------无------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)2020年普通高等学校招生全国统一考试(浙江卷)数学答案解析一、选择题 1.【答案】B 【解析】()()()1,42,32,3P Q ==故选:B【考点】交集概念 【考查能力】基本分析求解 2.【答案】C【解析】因为()()12i a a -+-为实数,所以20a -=,2a =∴ 故选:C【考点】复数概念 【考查能力】基本分析求解 3.【答案】B【解析】绘制不等式组表示的平面区域如图所示,目标函数即:1122y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大,z 取得最小值时,其几何意义表示直线系在y 轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点A 处取得最小值, 联立直线方程:31030x y x y -+=⎧⎨+-=⎩,可得点A 的坐标为:()2,1A ,据此可知目标函数的最小值为:min 2214z =+⨯= 且目标函数没有最大值故目标函数的取值范围是[)4,+∞. 故选:B .4.【答案】A【解析】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且πx =时,πcos πsin ππ0y =+=-<,据此可知选项B 错误. 故选:A . 5.【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱, 且三棱锥的一个侧面垂直于底面,且棱锥的高为1, 棱柱的底面为等腰直角三角形,棱柱的高为2, 所以几何体的体积为: 11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【考点】根据三视图计算几何体的体积 6.【答案】B【解析】依题意m ,n ,l 是空间不过同一点的三条直线,当m ,n ,l 在同一平面时,可能m n l ∥∥,故不能得出m ,n ,l 两两相交. 当m ,n ,l 两两相交时,设mn A =,m l B =,n l C =,根据公理2可知m ,n确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以m ,n ,l 在同一平面.综上所述,“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件. 故选:B【考点】充分,必要条件的判断 7.【答案】D.数学试卷 第9页(共18页) 数学试卷 第10页(共18页)【解析】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,234b a a =+∴,478b a a =+,61112b a a =+,81516b a a =+.()47822b a a =+∴,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177+=+,41288+=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,()113220d a d d a -=+-∴>即24280b b b ->; 当0d <时,1a d ≥,()113220d a d d a -=+-∴<即24280b b b ->,所以24280b b b ->,D 不正确. 故选:D .【考点】等差数列的性质应用 8.【答案】D【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2c =,1a =可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =由()22103y x x y ⎧⎪⎨-⎪==⎩>,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==. 故选:D .【考点】双曲线的定义的应用,二次曲线的位置关系的应用 【考查能力】数学运算 9.【答案】C【解析】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点1x a =,2x b =,32x a b =+当0a >时,则23x x <,10x >,要使()0f x ≥,必有2a b a +=,且0b <, 即b a =-,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <. 综上一定有0b <. 故选:C【考点】三次函数在给定区间上恒成立问题 【考查能力】分类讨论思想10.【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T =,包含4个元素,排除选项D ;若取{}2,4,8S =,则..,此时{}2,4,8,16,32ST =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ; 下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,1234,,,p p p p ∈*N ,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21pS p ∈,若11p =,则22p ≥,则332p p p <,故322pp p =即232p p =,又444231p p p p p >>>,故442232p pp p p ==,所以342p p =,故{}232221,,,S p p p =,此时52p T ∈,2p T ∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故321p p p =,211pp p =,即331p p =,221p p =, 又44441231p p p p p p p >>>>,故441331p pp p p ==,所以441p p =,故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈,则31q S p ∈,故131i qp p =,1,2,3,4i =,故31i q p +=,1,2,3,4i =,数学试卷 第11页(共18页) 数学试卷 第12页(共18页)即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}2345671111111,,,,,,S T p p p p p p p ⋃=即S T 中有7个元素.故A 正确. 故选:A .【考点】“新定义”主要是指即时定义新概念,新公式,新定理,新法则,新运算五种 【考查能力】基础数学知识 二、填空题 11.【答案】10 【解析】因为()12n n n a +=,所以11a =,23a =,36a =.即312313610S a a a =++=++=. 故答案为:10.【考点】利用数列的通项公式写出数列中的项并求和 12.【答案】80 122【解析】()512x +的通项为()15522rr r r r r T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=. 故答案为:80;122【考点】利用二项式定理求指定项的系数问题 【考查能力】数学运算13.【答案】35-13【解析】2222222222cos sin 1tan 123cos2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, πtan 1211tan()41tan 123θθθ---===++,1故答案为:35-;13【考点】二倍角余弦公式以及弦化切,两角差正切公式 【考查能力】基本分析求解 14.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则 π2π12π2π2r l r l ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1r =,2l =. 故答案为:1【考点】圆锥侧面展开图有关计算 15.【答案】3【解析】由题意,1C ,2C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得3k =,b =-. ;【考点】直线与圆的位置关系 【考查能力】数学运算 16.【答案】131【解析】因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球,所以1111(0)4433P ξ==+⨯=,随机变量0,1,2ξ=212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=,111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.故答案为:13;1.【考点】古典概型概率,互斥事件概率加法公式,数学期望 【考查能力】基本分析求解数学试卷 第13页(共18页) 数学试卷 第14页(共18页)17.【答案】2829【解析】12|2|2e e -∵≤124412e e ∴-⋅+≤,1234e e ⋅∴≥,222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a b θ+⋅+⋅⋅===+⋅+⋅+⋅⋅∴12424228(1)(1)3332953534e e =--=+⋅+⨯≥.故答案为:2829.【考点】利用模求向量数量积,利用向量数量积求向量夹角,利用函数单调性求最值 【考查能力】综合分析求解 三、解答题18.【答案】(Ⅰ)π3B=(Ⅱ)32⎤⎥⎝⎦【解析】(Ⅰ)由2sin b A 结合正弦定理可得:2sin sin B A A =,sin B =∴ ABC △为锐角三角形,故π3B =. (Ⅱ)结合(Ⅰ)的结论有:12πcos cos cos cos cos 23A B C A A ⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 6π2A ⎛⎫=++ ⎪⎝⎭.由20π32π02A A π⎧-⎪⎪⎨⎪⎪⎩<<<<可得:ππ62A <<,ππ2π363A +<<,则πsin 3A ⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,π13sin 232A ⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【考点】解三角形19.【答案】(Ⅰ)证明见解析 【解析】(Ⅰ)作DH AC ⊥交AC 于H ,连接BH .∵平面ADFC ⊥平面ABC ,而平面ADFC ⋂平面ABC AC =,DH ⊂平面ADFC , ∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥.45ACB ACD ∠=∠=︒∵,2CD BC CH ==⇒=∴.在CBH △中,22222cos45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,BH BC ⊥∴.由棱台的定义可知,EF BC ∥,所以DH EF ⊥,BH EF ⊥,而BHDH H =,EF ⊥∴平面BHD ,而BD ⊂平面BHD ,EF DB ⊥∴.(Ⅱ)因为DF CH ∥,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角. 作HG BD ⊥于G ,连接CG,由(I )可知,BC ⊥平面BHD ,因为所以平面BCD ⊥平面BHD ,而平面BCD⋂平面BHD BD =,HG ⊂平面BHD,HG ⊥∴平面BCD .即CH 在平面DBC 内的射影为CG ,HCG ∠即为所求角. 在Rt HGC △中,设BC a =,则CH,BH DHHG BD ⋅==, sin HG HCG CH ∠===∴ 故DF 与平面DBC .【考点】空间点,线,面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法数学试卷 第15页(共18页) 数学试卷 第16页(共18页)【考查能力】直观想象能力和数学运算20.【答案】(Ⅰ)12q =,1423n n a -+=.(Ⅱ)证明见解析.【解析】(Ⅰ)依题意11b =,223,b q b q ==,而1236b b b +=,即216q q +=,由于0q >,所以解得12q =,所以112n n b -=. 所以2112n n b ++=,故11112412n n n n n c c c -++=⋅=⋅,所以数列{}n c 是首项为1,公比为4的等比数列,所以14n n c -=.所以114n n n n a a c -+==-(2,n n ∈*N ≥).所以121421443n n n a a --+=+++⋅⋅⋅+=. (Ⅱ)依题意设()111n b n d dn d =+-=+-,由于12n n n n c bc b ++=, 所以111n n n n c b c b --+=()2,n n ∈*N ≥, 故131232211112211143n n n n n n n n n n n c c c b b bc b b c c c c c c c b b b b b ------+-=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ 121111111111n n n n n n b b d b b d b b d b b +++⎛⎫⎛⎫+⎛⎫==-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以121223*********n nn c c c d b b b b b b +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11111n d b +⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭.由于0d >,11b =,所以10n b +>,所以1111111n d b d +⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭<.即1211n c c c d++++<,n ∈*N . 【考点】累加法,累乘法求数列的通项公式,裂项求和法21.【答案】(Ⅰ)1,032⎛⎫⎪⎝⎭(Ⅱ)40【解析】(Ⅰ)当116p =时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1,032⎛⎫⎪⎝⎭;(Ⅱ)设()11,A x y ,()22,B x y ,()00,M x y ,:I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 12222m y y λλ-+=+∴,022m y λλ-=+,00222mx y m λλ=+=+, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ+=∴,2101022x x y m y m p m λλλ+=+++=+∴,2122222mx p m λλ=+-+∴. 由222214222x y x px y px +=⇒+==⎧⎪⎨⎪⎩,即2420x px +-= 12x p ⇒==-+222221822228162p p p m p p pλλλλλ+⇒-++⋅=+++≥,18p ,21160p ≤,p ≤, 所以,p ,此时A . 法2:设直线():0,0l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m x m +=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,数学试卷 第17页(共18页) 数学试卷 第18页(共18页)所以当m =,t =时,p.【考点】直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值 【考查能力】数学运算22.【答案】(Ⅰ)()1x f x e '=-∵,0x ∵>,1x e ∴>,()0f x '∴>,()f x ∴在()0,+∞上单调递增,12a ∵<≤,22(2)240f e a e =---∴≥>,(0)10f a =-<;所以由零点存在定理得()f x 在()0,+∞上有唯一零点; (Ⅱ)(i )0()0f x =∵,000x e x a --=∴,()0020000121x xx e x x e x ⇔----≤≤, 令()()2102xg x e x x x =---<<,()()21022xx h x e x x =---<<一方面:()()11x h x e x h x '=--=,()110x h x e '=->,()()00h x h ''=∴>,()h x ∴在()0,2单调递增,()()00h x h =∴>,2102xx e x ---∴>,22(1)x e x x -->;另一方面:12a ∵<≤,11a -∴≤;所以当01x ≥0x 成立, 因此只需证明当01x <<时2()10x g x e x x =---≤, 因为()()112x g x e x g x '=--=,()120ln 2x g x e x '=-=⇒= 当(0,ln 2)x ∈时,()10g x '<,当(ln 2,1)x ∈时,()10g x '>,所以()()()max{0,1}g x g g '''<,()00g '=∵,()130g e '=-<,()0g x '∴<()g x ∴在()0,1单调递减,()()00g x g =∴<,21x e x x --∴<,综上,()002000121xxe x x e x ----∴≤≤,0x (ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+-∵>0x0()(2)](1)(1)2)a a a a t x t e a e e a e =--=--+-∴≥,因为12a <≤,所以a e e >,()21a a -≥,()()()()011212a t x e a a e --+--∴≥,只需证明()()()221211a a e e a ----≥, 即只需证明224(2)(1)(1)a e e a ---≥,令()()()()224211a s a e e a =----,()12a <≤,则()()()()()228218210aas a e e e e e e '=------≥>,()()()21420s a s e =-+∴>>,即()()()224211ae e a ---≥成立, 因此()()()0x 0e e 11xf a a --≥.【考点】利用导数研究函数零点,利用导数证明不等式 【考查能力】综合分析论证与求解。

第二章 第十节 函数的模型与应用 解析版-备战2022年(新高考)数学一轮复习考点讲解+习题练习

第十节函数模型及其应用知识回顾1.几类函数模型2.三种函数模型的性质1.【2019年浙江丽水高一上学期期末考试数学试卷统测】某种放射性元素的原子数N随时间t的变化规律是N=N0eλt,其中N0,λ是正的常数.当N=2N0时,t=________ .ln⁡2【答案】1λ【解析】【解答】某种放射性元素的原子数N随时间t的变化规律是N=N0eλt,其中N0,λ是正的常数.当N= 2N0时,则N=N0eλt=2N0≠0,化为:eλt=2,ln⁡2.解得t=1λ故答案为1λln⁡2.【分析】由题意可得:N =N 0e λt =2N 0≠0,化为:e λt =2,化为对数式即可得出. 【备注】【点评】本题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.2.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________. 答案p +1q +1-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =1+p1+q -1.3.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处. 答案 5解析 由题意得,y 1=k 1x ,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时取等号.4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为________. 答案 15,12解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.5.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.6.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg 3≈0.477)( ) A .6 B .9 C .8 D .7 答案 BC解析 设经过n 次过滤,产品达到市场要求, 则2100×⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120, 由n lg 23≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2≈7.4,故选BC.课中讲解考点一.函数图像刻画变化过程例1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )解析:选C 小明匀速行驶时,图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.变式1.如图,四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h 和时间t 之间的关系,其中不正确的个数为( )A.1B.2C.3 D.4解析:选A将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来.图①应该是匀速的,故下面的图象不正确;②中的变化率应该是越来越慢的,正确;③中的变化率是先快后慢再快,正确;④中的变化率是先慢后快再慢,也正确,故只有①是错误的.例2.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()答案 D解析y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.变式2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响.根据近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据得到下面的散点图.则下列哪个作为年销售量y关于年宣传费x的函数模型最适合()A.y=ax+b B.y=a+b xC.y=a·b x D.y=ax2+bx+c答案 B解析根据散点图可知,选择y=a+b x最适合.考点二.应用所给的模型解决实际问题例1.候鸟每年都要随季节的变化而进行大规模迁徙,研究某种候鸟的专家发现,该种候鸟的飞行速度 v (单位:m ⋅s −1)与其耗氧量 Q 之间的关系为 v =a +blog 3⁡Q10(其中 a 、b 是常数).据统计,该种鸟类在静止时的耗氧量为 30 个单位,而其耗氧量为个 90 单位时,飞行速度为 1m ⋅s −1.若这种候鸟为赶路程,飞行的速度不能低于 2m ⋅s −1,求其耗氧量至少要多少个单位. 【答案】270 个单位【解析】由题意,知 {a +blog 3⁡3010=0a +blog 3⁡9010=1,即 {a +b =0a +2b =1,解得 {a =−1b =1,所以 v =−1+log 3⁡Q 10, 要使飞行速度不能低于 2m ⋅s −1,则有 v ⩾2,即 −1+log 3⁡Q 10⩾2,即 log 3⁡Q10⩾3,解得 Q10⩾27,即 Q10⩾270,所以耗氧量至少要 270 个单位.变式1.数据显示,某 IT 公司 2018 年上半年五个月的收入情况如下表所示:月份 2 3 4 5 6月收入(万元)1.42.565.311121.3根据上述数据,在建立该公司 2018 年月收入 y (万元)与月份 x 的函数模型时,给出两个函数模型 y =x 12 与 y =2x 3供选择.(1) 你认为哪个函数模型较好,并简单说明理由; 【答案】函数 y =2x 3这一模型较好【解析】画出散点图由图可知点 (2,1.4);(3,2.56);(4,5.31);(5,11);(6,21.3) 基本上是落在函数 y =2x 3的图像的附近,因此用函数 y =2x 3这一模型较好.(2) 试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过 100 万元?(参考数据 lg⁡2=0.3010,lg⁡3=0.4771) 【答案】大约从第 9 月份开始 【解析】当2x 3>100 时,2x >300,∴lg⁡2x >lg⁡300即 xlg⁡2>2+lg⁡3∴x >2+lg⁡3lg 2=2+0.47710.3010≈8.23故大约从第 9 月份开始,该公司的月收入会超过 100 万元. 当2x 3>100 时,2x >30028=256<300;29=512>300故大约从第 9 月份开始,该公司的月收入会超过 100 万元.例2.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝⎛⎭⎫116t -a(a 为常数),如图所示,根据图中提供的信息,回答下列问题:①从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________________________________________________________________________.②据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 答案 ①y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,⎝⎛⎭⎫116t -0.1,t >0.1②0.6解析 ①设y =kt ,由图象知y =kt 过点(0.1,1), 则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1). 由y =⎝⎛⎭⎫116t -a过点(0.1,1),得1=⎝⎛⎭⎫1160.1-a , 解得a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).②由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.变式2.拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. 答案 4.24解析 ∵m =6.5,∴[m ]=6, 则f (6.5)=1.06×(0.5×6+1)=4.24. 考点三.构建函数模型解决实际问题1.二次函数模型例1.某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表(单位:万美元):预计m ∈[6,8],另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税,假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 1,x 2之间的函数关系式,并指明定义域;(2)如何投资才可获得最大年利润?请你做出规划.[解] (1)由题意得y 1=10x 1-(20+mx 1)=(10-m )x 1-20(0≤x 1≤200且x 1∈N),y 2=18x 2-(40+8x 2)-0.05x 22=-0.05x 22+10x 2-40=-0.05(x 2-100)2+460(0≤x 2≤120且x 2∈N). (2)∵6≤m ≤8,∴10-m >0, ∴y 1=(10-m )x 1-20为增函数. 又0≤x 1≤200,x 1∈N ,∴当x 1=200时,生产A 产品的最大利润为(10-m )×200-20=1 980-200m (万美元). ∵y 2=-0.05(x 2-100)2+460(0≤x 2≤120,且x 2∈N), ∴当x 2=100时,生产B 产品的最大利润为460万美元. (y 1)max -(y 2)max =(1 980-200m )-460=1 520-200m . 易知当6≤m <7.6时,(y 1)max >(y 2)max .即当6≤m <7.6时,投资生产A 产品200件可获得最大年利润;当m =7.6时,投资生产A 产品200件或投资生产B 产品100件,均可获得最大年利润; 当7.6<m ≤8时,投资生产B 产品100件可获得最大年利润.变式1. 某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( ) A .[4,8] B .[6,10] C .[4%,8%] D .[6%,10%]答案 A解析 根据题意,要使附加税不少于128万元,需⎝⎛⎭⎫30-52R ×160×R %≥128, 整理得R 2-12R +32≤0,解得4≤R ≤8,即R ∈[4,8].2. 指对数函数模型例2.某公司为激励创新,计划逐年加大研发资金投入.若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年D .2021年变式2.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时[解析] (1)设第n (n ∈N *)年该公司全年投入的研发资金开始超过200万元. 根据题意得130(1+12%)n -1>200, 则lg[130(1+12%)n -1]>lg 200, ∴lg 130+(n -1)lg 1.12>lg 2+2, ∴2+lg 1.3+(n -1)lg 1.12>lg 2+2, ∴0.11+(n -1)×0.05>0.30,解得n >245,又∵n ∈N *,∴n ≥5,∴该公司全年投入的研发资金开始超过200万元的年份是2020年.故选C. (2)由已知得192=e b ,① 48=e 22k +b =e 22k ·e b ,②将①代入②得e 22k =14,则e 11k =12,当x =33时,y =e 33k +b =e 33k ·e b =⎝⎛⎭⎫123×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C. [答案] (1)C (2)C3. 对勾函数模型例3 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.答案 5解析 根据图象求得y =-(x -6)2+11, ∴年平均利润yx=12-⎝⎛⎭⎫x +25x , ∵x +25x ≥10,当且仅当x =5时等号成立.∴要使平均利润最大,客车营运年数为5.变式3.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3 平方米,且高度不低于 3 米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________米.答案 2 3解析 由题意可得BC =18x -x2(2≤x <6),∴y =18x +3x 2≥218x ×3x2=6 3. 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.4. 分段函数模型例4.某市营业区内住宅电话通话费用为前 3 分钟 0.20 元,以后每分钟 0.10 元(前 3 分钟不足 3 分钟按 3 分钟计,以后不足 1 分钟按 1 分钟计).(1) 在直角坐标系内,画出一次通话在 6 分钟内(包括 6 分钟)的话费 y (元)关于通话时间 t (分钟)的函数图象; 【答案】见解析 【解析】如下图所示.(2) 如果一次通话t分钟(t>0),写出话费y(元)关于通话时间t(分钟)的函数关系式(可用[t]表示不小于t的最小整数).【答案】y={0.2,0<t⩽30.2+[t−3]×0.1,t>3【解析】由(1)知,话费y与时间t的关系是分段函数.当0<t⩽3时,话费y为0.2元;当t>3时,话费y应为(0.2+[t−3]×0.1)元.所以y={0.2,0<t⩽30.2+[t−3]×0.1,t>3.变式4.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;①该店月销量Q(百件)与销量价格P(元)的关系如图所示;①每月需各种开支2000元.(1) 当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;【答案】当P=19.5元时,月利润余额最大,为450元【解析】设该店月利润余额为L元,则由题设得L=Q(P−14)×100−3600−2000①由销量图易得Q={−2P+50,14⩽P⩽20−32P+40,20<P⩽26,代入①式得L={(−2P+50)(P−14)×100−5600,14⩽P⩽20(−32P+40)(P−14)×100−5000,20<P⩽26当14⩽P⩽20时,L max=450元,此时P=19.5元;当20<P⩽26时,L max=12503元,此时P=613元.故当P=19.5元时,月利润余额最大,为450元.(2) 企业乙只依靠该店,最早可望在几年后脱贫?【答案】最早可望在20年后脱贫【解析】设可在n年后脱贫,依题意有12n×450−50000−58000⩾0,解得n⩾20.即最早可望在20年后脱贫.课后习题一.单选题1.(2018·北京石景山联考)小明在如图1所示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30 s,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t(s),他与教练间的距离为y(m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点NC.点P D.点Q解析:选D假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故A选项错误;假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故B选项错误;假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小明的距离等于经过30 s时教练到小明的距离,而点P不符合这个条件,故C选项错误;经判断点Q符合函数图象,故D选项正确,选D.2.(2019·洛阳模拟)某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数x(正常情况下0≤x≤100,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资y(元).要求绩效工资不低于500元,不设上限,且让大部分教职工绩效工资在600元左右,另外绩效工资越低或越高时,人数要越少.则下列函数最符合要求的是()A.y=(x-50)2+500 B.y=10x25+500C .y =11 000(x -50)3+625D .y =50[10+lg(2x +1)]解析:选C 由题意知,拟定函数应满足:①是单调递增函数,且增长速度先快后慢再快;②在x =50左右增长速度较慢,最小值为500.A 中,函数y =(x -50)2+500先减后增,不符合要求;B 中,函数y =10x25+500是指数型函数,增长速度是越来越快,不符合要求;D 中,函数y =50[10+lg(2x +1)]是对数型函数,增长速度是越来越慢,不符合要求;而C 中,函数y =11 000(x -50)3+625是由函数y =x 3经过平移和伸缩变换得到的,符合要求.故选C.3.(2019·邯郸名校联考)某企业准备投入适当的广告费对甲产品进行促销宣传,在一年内预计销售量y (万件)与广告费x (万元)之间的函数关系为y =1+3x x +2(x ≥0).已知生产此产品的年固定投入为4万元,每生产1万件此产品仍需再投入30万元,且能全部售完. 若每件甲产品售价(元)定为“平均每件甲产品所占生产成本的150%”与“年平均每件甲产品所占广告费的50%”之和,则当广告费为1万元时,该企业甲产品的年利润为( )A .30.5万元B .31.5万元C .32.5万元D .33.5万元解析:选B 由题意,产品的生产成本为(30y +4)万元,销售单价为30y +4y ×150%+xy ×50%,故年销售收入为z =⎝⎛⎭⎫30y +4y ×150%+xy ×50%·y =45y +6+12x .∴年利润W =z -(30y +4)-x =15y +2-x 2=17+45x x +2-x 2(万元).∴当广告费为1万元时,即x =1,该企业甲产品的年利润为17+451+2-12=31.5(万元).故选B. 4.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 2≈0.301 0,lg 3≈0.477 1)( ) A .5.2 B .6.6 C .7.1 D .8.3 答案 B解析 设这种放射性元素的半衰期是x 年, 则(1-10%)x =12,化简得0.9x =12,即x =log 0.912=lg12lg 0.9=-lg 22lg 3-1≈-0.301 02×0.477 1-1≈6.6(年).故选B. 5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3 D .26 m 3答案 A解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx ,0<x ≤10,10m +x -10·2m ,x >10,则10m +(x -10)·2m =16m ,解得x =13.6.(2020·青岛模拟)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),所以S =xy =-54(y -12)2+180,所以当y =12时,S 有最大值,此时x =15.检验符合题意.二.多选题7.(多选)在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量y (单位:千克)与时间x (单位:小时)的函数图象,则以下关于该产品生产状况的正确判断是( )A .在前三小时内,每小时的产量逐步增加B .在前三小时内,每小时的产量逐步减少C .最后一小时内的产量与第三小时内的产量相同D .最后两小时内,该车间没有生产该产品 答案 BD解析 由该车间5小时来某种产品的总产量y (千克)与时间x (小时)的函数图象,得前三小时的年产量逐步减少,故A 错误,B 正确;后两小时均没有生产,故C 错误,D 正确.三.填空题 8.(2019·唐山模拟)某人计划购买一辆A 型轿车,售价为14.4万元,购买后轿车每年的保险费、汽油费、车检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用________年后,用在该车上的费用(含折旧费)达到14.4万元.解析:设使用x 年后花费在该车上的费用达到14.4万元,依题意可得,14.4(1-0.9x )+2.4x =14.4. 化简得x -6×0.9x =0. 令f (x )=x -6×0.9x ,易得f (x )为单调递增函数,又f (3)=-1.374<0,f (4)=0.063 4>0,所以函数f (x )在(3,4)上有一个零点. 故大约使用4年后,用在该车上的费用达到14.4万元. 答案:49.某地区要建造一条防洪堤,其横断面为等腰梯形ABCD ,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的取值范围为________.解析:根据题意知,93=12(AD +BC )h ,其中AD =BC +2×x 2=BC +x ,h =32x ,所以93=12(2BC +x )32x ,得BC =18x -x2,由⎩⎨⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.所以y =BC +2x =18x +3x2(2≤x <6),由y =18x +3x2≤10.5,解得3≤x ≤4.因为[3,4] ⊆[2,6),所以腰长x 的取值范围为[3,4]. 答案:[3,4]10.(2019·皖南八校联考)某购物网站在2019年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________. 答案 3解析 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.11.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于⎝⎛⎭⎫v 202 km ,那么这批物资全部到达灾区的最少时间是______ h .(车身长度不计) 答案 12解析 设全部物资到达灾区所需时间为t h ,由题意可知,t 相当于最后一辆车行驶了⎣⎡⎦⎤36×⎝⎛⎭⎫v 202+400 km 所用的时间,因此,t =36×⎝⎛⎭⎫v 202+400v =36v 400+400v≥236v 400×400v=12, 当且仅当36v 400=400v ,即v =2003时取等号.故这些汽车以2003 km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.四.解答题12.某城市现有人口总数为 100 万,如果年自然增长率为 1.2%,试解答下面的问题: (1) 写出 x 年后该城市的人口总数 y (万人)与年数 x (年)的函数关系式; 【答案】y =100×(1+1.2%)x ,x ∈N ∗【解析】1 年后该城市人口总数为 y =100+100×1.2%=100×(1+1.2%);2 年后该城市人口总数为 y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2;3 年后该城市人口总数为 y =100×(1+1.2%)3;…; x 年后该城市人口总数为 y =100×(1+1.2%)x ,x ∈N ∗.(2) 计算 10 年以后该城市人口总数(精确到 0.1 万); 【答案】112.7 万【解析】10 年后该城市人口总数为 y =100×(1+1.2%)10=100×1.01210≈112.7(万).(3) 计算大约多少年以后该城市人口总数将达到 120 万(精确到 1 年). 【答案】16 年【解析】令 y =120,则有 100×(1+1.2%)x =120,解方程可得 15<x <16. 故大约 16 年后该城市人口总数将达到 120 万.13.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 p (千帕)是气球的体积 V (立方米)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1) 写出这个函数的解析式;【答案】p=96V【解析】设p与V的函数的解析式为p=k,把点A(1.5,64)代入,解得k=96.V∴这个函数的解析式为p=96.V(2) 当气球的体积为0.8立方米时,气球内的气压是多少千帕?【答案】120千帕【解析】把V=0.8代入p=96,p=120,V当气球的体积为0.8立方米时,气球内的气压是120千帕.(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?立方米【答案】气球的体积应不小于23,【解析】由p=144时,V=23∴p⩽144时,V⩾2,3当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于2立方米314.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域.【答案】y=−12x+10,定义域为[4,8]【解析】作PQ⊥AF于Q,∴PQ=(8−y)米,EQ=(x−4)米.又△EPQ∼△EDF,∴EQPQ =EFFD,即x−48−y=42.∴y=−12x+10,定义域为[4,8].15.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=1 2log3⁡O100,单位是m/s,其中O表示鱼的耗氧量的单位数,(1) 当一条鱼的行氧量是2700个单位时,它的游速是多少?【答案】当一条鱼的行氧量是2700个单位时,它的游速是32(m/s)【解析】由题意得v=12log3⁡2700100=32(m/s)当一条鱼的行氧量是2700个单位时,它的游速是32(m/s).(2) 计算一条鱼静止时耗氧量的单位数.【答案】当一条鱼静止时耗氧量的单位数是100【解析】当一条鱼静止时,即v=0,则0=12log3⁡O100,解得O=100当一条鱼静止时耗氧量的单位数是100.。

学科网高考数学试卷答案

一、选择题1. 答案:A解析:根据三角函数的性质,sin(π - α) = sinα,故选A。

2. 答案:B解析:利用二项式定理展开,可得(2x - 1)^4 = 16x^4 - 32x^3 + 24x^2 - 8x + 1,故选B。

3. 答案:C解析:由数列的通项公式an = n^2 - 3n + 2,可得a10 = 10^2 - 3×10 + 2 = 92,故选C。

4. 答案:D解析:利用向量的数量积公式,可得(1, 2)·(2, 3) = 1×2 + 2×3 = 8,故选D。

5. 答案:B解析:由指数函数的性质,可得y = 2^x + 2^(-x)在(-∞, +∞)上单调递增,故选B。

二、填空题6. 答案:-1解析:由二次函数的性质,对称轴为x = -b/2a,代入a = 1,b = -2,可得对称轴为x = 1,故顶点坐标为(1, -1)。

7. 答案:8解析:由对数函数的性质,可得log2(2^3) = 3,故选8。

8. 答案:2解析:由等差数列的性质,可得第n项an = a1 + (n - 1)d,代入a1 = 1,d = 2,n = 10,可得a10 = 1 + (10 - 1)×2 = 19,故选2。

9. 答案:π/3解析:由三角函数的性质,可得sin(π/3) = √3/2,故选π/3。

10. 答案:4解析:由组合数的性质,可得C(5, 2) = 5! / (2!×(5-2)!) = 10,故选4。

三、解答题11. 解答:(1)设f(x) = x^2 - 4x + 4,则f'(x) = 2x - 4。

令f'(x) = 0,解得x = 2。

此时,f(2) = 0,故x = 2为f(x)的极值点。

(2)设g(x) = x^3 - 3x + 2,则g'(x) = 3x^2 - 3。

令g'(x) = 0,解得x = ±1。

专题27 含参不等式的存在性与恒成立问题-学会解题之高三数学万能解题模板【2021版】【解析版】

学习界的007⎨ 专题27 含参不等式的存在性与恒成立问题【高考地位】含参不等式的恒成立问题越来越受到高考命题者的青睐,由于新课标高考对导数应用的加强,这些不等式的恒成立问题往往与导数问题交织在一起,这在近年的高考试题中不难看出这个基本的命题趋势. 解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,在高考中各种题型多以选择题、填空题和解答题等出现,其试题难度属高档题.方法一判别式法万能模板内容使用场景含参数的二次不等式解题模板第一步首先将所求问题转化为二次不等式;第二步运用二次函数的判别式对其进行研究讨论;第三步得出结论.例1 设f (x) =x 2 - 2mx + 2 ,当x ∈[-1,+∞) 时,f (x) ≥m 恒成立,求实数m 的取值范围.【解析】第一步,首先将所求问题转化为二次不等式;第二步,运用二次函数的判别式对其进行研究讨论;⎧⎪∆≥ 0⎪F (-1) ≥0解得- 3 ≤m ≤-2 .⎪- 2m⎪-⎩ 2≤-1第三步,得出结论.综上可得实数m 的取值范围为[-3,1) .综上可得实数m 的取值范围为[-3,1) .【变式演练1】【2020 届百校联考高考考前冲刺必刷卷】已知集合A ={x x2 + 2ax + 2a ≤ 0},若A 中只有一个元素,则实数a 的值为()A.0 B.0 或-2 C.0 或2 D.2【答案】C【分析】根据题意转化为抛物线y =x2 + 2ax + 2a 与x 轴只有一个交点,只需△ = 4a2 - 8a = 0 即可求解.【详解】若A 中只有一个元素,则只有一个实数满足x2 + 2ax + 2a ≤ 0 ,即抛物线y =x2 + 2ax + 2a 与x 轴只有一个交点,∴△ = 4a2 - 8a = 0 ,∴ a = 0 或 2.故选:C【变式演练2【】安徽省皖江名校联盟2021 届高三第二次联考】对∀x ∈R ,不等式(a -1)x2 +(a -1)x -1 < 0恒成立,则实数a 的取值范围是()A.(-3,1) B.(-3,1] C.(-4,1) D.[-4,1]【答案】B【分析】学习界的首先根据不等式恒成立,对二次项系数是否为零进行讨论,结合图形的特征,列出式子求得结果.【详解】对∀x ∈ R ,不等式(a -1)x 2+ (a -1) x -1 < 0 恒成立, 当 a = 1 时,则有-1 < 0 恒成立;当a -1 ≠ 0 , a -1 < 0 且∆ = (a -1)2 + 4(a -1) < 0 ,解得-3 < a < 1.实数 a 的取值范围是(-3,1]. 故选:B.方法二 分离参数法例 2 已知函数 f ( x ) = kx 2- ln x ,若 f ( x ) > 0 在函数定义域内恒成立,则 k 的取值范围是()A . ⎛ 1 , e ⎫B . ⎛1 , 1 ⎫C . ⎛-∞,1 ⎫D . ⎛1 , +∞ ⎫e ⎪ 2e e⎪ 2e ⎪ 2e ⎪ ⎝ ⎭⎝ ⎭⎝⎭⎝ ⎭【答案】D【解析】第一步,首先对待含参的不等式问题在能够判断出参数的系数正负的情况下,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式;第二步,先求出含变量一边的式子的最值;第三步,由此推出参数的取值范围即可得出结论.考点:函数的恒成立问题.【方法点晴】本题主要考查了函数的恒成立问题,其中解答中涉及到利用导数研究函数的单调性、利用导数研究函数的极值与最值、恒成立的分离参数构造新函数等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想,试题有一定的思维深度,属于中档试题,解答中根据函数的恒成立,利用分离参数法构造新函数,利用新函数的性质是解答的关键.含参不等式分离参数后的形式因题、因分法而异,因此解决含参不等式恒成立问题需把握住下述结论:(1 ) f (x) <g(a) 恒成立⇔f (x)max <g(a) ;(2 )f (x) ≤g(a) 恒成立⇔ f (x)max≤g(a) ;(3 )f (x) >g(a) 恒成立⇔f (x)min >g(a) .(4)f (x) ≥g(a) 恒成立⇔f (x)min≥g(a) .学&科网【变式演练3】【江苏省苏州市新草桥中学2020-2021 学年高三上学期10 月月考】正数a ,b满足9a +b =ab ,若不等式a +b ≥-x2 + 2x +18 -m 对任意实数x 恒成立,则实数m 的取值范围是()A.[3, +∞)B.(-∞, 3) C.(-∞, 6)D.[6, +∞)【答案】A【分析】先利用基本不等式求得a +b 的最小值,再把问题转化为 m ≥ f (x ) 恒成立的类型,最后求解 f (x ) 的最大值即可. 【详解】因为9a + b = ab ,所以 1 + 9= 1,且 a , b 为正数,a b所以 a + b = (a + b )( 1 + 9) = 10 + b +9a a bab10 +16 ,当且仅当 b = 9a,即 a = 4 , b = 12 时,取等号,所以(a + b ) a bmin= 16 ,若不等式 a + b ≥ -x 2 + 2x +18 - m 对任意实数 x 恒成立, 则16 ≥ -x 2 + 2x +18 - m 对任意实数 x 恒成立, 即m ≥ -x 2 + 2x + 2 对任意实数 x 恒成立,因为-x 2+ 2x + 2 = -(x -1)2+ 3 3 , 所以 m ≥ 3 , 故选:A.【变式演练 4】【北京市人大附中 2021 届高三年级 10 月数学月考】已知方程 x 2 + ax -1 = 0 在区间[0,1]上有解,则实数a 的取值范围是( )A . [0, +∞)B . (-∞, 0)C . (-∞, 2]D . [-2, 0]【答案】A【分析】化简方程,分离参数,利用数形结合即可求解【详解】方程x2 +ax -1 = 0 在区间[0,1]上有解,当x = 0 时,方程无解;当0 <x ≤ 1时,则有a =1-x2=1-,令g(x) =1-x ,x xxx1 -(1+x2 )g(x)g '(x) =--1 =< 0 ,即在0 <x ≤1时为减函数,x2 x2由于g(1) = 0 ,所以,当0 <x ≤1时,g (x) ≥ 0 ,所以,只要a ≥ 0 ,方程x2 +ax -1 = 0 在区间[0,1]上有解故选:A方法三函数性质法例3 设函数f (x) =e x -1-x -ax2 ,若x ≥ 0 时,f (x) ≥ 0 ,求a 的取值范围.【答案】a ≤1 2【解析】第一步,首先可以把含参不等式整理成适当形式如f (x, a) ≥ 0 、f (x, a) < 0 等;1-x第二步,从研究函数的性质入手,转化为讨论函数的单调性和极值;第三步,得出结论.【点评】函数、不等式、导数既是研究的对象,又是解决问题的工具.本题抓住 f (0) = 0 这一重要的解题信息,将问题转化为 f (x ) ≥ f (0) 在 x ≥ 0 时恒成立,通过研究函数 f (x ) 在[0, +∞) 上是不减函数应满足的条件,进而求出 a 的范围.隐含条件 f (0) = 0 对解题思路的获得,起到了十分重要的导向作用.【变式演练 5】【云南省昆明市第一中学 2021 届高中新课标高三第二次双基检测】记函数f ( x ) = ln ( x +1) + 的定义域为 A ,函数g (x ) = e x - e - x + sin x +1,若不等式 g (2x + a ) + g (x 2 -1) > 2 对 x ∈ A 恒成立,则a 的取值范围为( )A . [2, +∞)B . (2, +∞)C . (-2, +∞)D . [-2, +∞)【答案】A⎨【分析】根据函数解析式,先求出 A = (-1,1] ;令 m ( x ) = e x- e- x+ sin x ,根据函数奇偶性的定义,判定 m (x ) 是奇函数;根据导数的方法判定 m (x ) 是增函数;化所求不等式为 a > - x 2 - 2 x + 1 ,进而可求出结果. 【详解】由⎧x +1 > 0 解得-1 < x ≤ 1 ,即 A = (-1,1] , ⎩1- x ≥ 0令m (x ) = e x- e - x+ sin x ,则m (-x ) = e- x- e x - sin x = -m (x ) ,则 m (x ) 是 R 上的奇函数; 又m '(x ) = e x+ e - x+ cos x ≥ 2 + cos x > 0 显然恒成立,所以 m ( x ) 是增函数;由 g (2x + a ) + g (x 2-1) > 2 得 m (2x + a ) + m ( x 2-1)+ 2 > 2 ,即m (2x + a ) + m (x 2-1) > 0 ,即 m (2x + a ) > -m (x 2-1),由 m (x ) 是 R 上的奇函数且为增的函数, 所以 m (2x + a ) > m (1- x2) 得: 2 x + a > 1 - x 2.所以 a > -x 2 - 2x +1 = -( x +1)2+ 2 ,当 x ∈(-1,1]时, -( x +1)2+ 2 < 2 .所以 a ≥ 2 .故选:A.【高考再现】1.【2020 年高考浙江卷9】已知a , b ∈R 且ab ≠ 0 ,若(x-a)(x-b)(x- 2a -b)≥ 0 在x ≥ 0 上恒成立,则()A. a < 0B. a > 0C. b < 0D. b > 0【答案】C【思路导引】对a 分a > 0 与 a < 0 两种情况讨论,结合三次函数的性质分析即可得到答案.【解析】当a < 0 时,在x ≥ 0 上,x -a ≥ 0 恒成立,∴只需满足(x-b)(x- 2a -b)≥ 0 恒成立,此时2a +b <b ,由二次函数的图象可知,只有b < 0 时,满足(x-b)(x- 2a -b)≥ 0 ,b > 0 不满条件;当b < 0 时,在[0, +∞)上,x -b ≥ 0 恒成立,∴只需满足(x-a)(x- 2a -b)≥ 0 恒成立,此时当两根分别为x =a 和x = 2a +b ,(1)当a +b > 0 时,此时0 <a < 2a +b ,当x ≥ 0 时,(x -a)(x- 2a -b)≥ 0 不恒成立,(2)当a +b < 0 时,此时2a +b <a ,若满足(x -a)(x- 2a -b)≥ 0 恒成立,只需满足a < 0当a +b = 0 时,此时2a +b =a > 0 ,满足(x -a)(x- 2a -b)≥ 0 恒成立,综上可知满足(x-a)(x-b)(x- 2a -b)≥ 0 在x ≥ 0 恒成立时,只有b < 0 ,故选C .2.【2020 年高考上海卷11】已知a ∈R ,若存在定义域为R 的函数f (x) 同时满足下列两个条件,①对任意x ∈R ,f (x ) 的值为x 或x2 ;②关于x 的方程f (x) =a 无实数解;则a 的取值范围为.0 0 0 0【答案】(-∞, 0) (0,1) (1, +∞)【解析】由y =x2 和y =x 的图象和函数的定义可知,若满足 f (x)的值为x 或f (x)=x 2 ,只有0 0 0 0f (0)= 0 = 02 ,f (1)=1 =12 ,结合②可知若方程f (x)=a 无实数解,则a ∈(-∞, 0) (0,1) (1, +∞),故答案为:(-∞, 0) (0,1) (1, +∞).【专家解读】本题的特点是函数图象及其性质的应用,本题考查了函数与方程,二次函数图象及其应用,考查函数与方程思想、数形结合思想,考查数学运算、数学直观、数学建模等学科素养.解题关键是正确a cc · 4a作出函数图象,应用函数图象及其性质解决问题.3. 【2018 年全国普通高等学校招生统一考试数学(江苏卷)】在O ABC 中,角 A,B,C 所对的边分别为 a,h,c ,²ABC ܥ 1ൌ0°,²ABC 的平分线交 AC 于点 D ,且 BD ܥ 1,则 4a h c 的最小值为 .【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,SOABC ܥ SOABD h SOBCD ,由角平分线性质和三角形面积公式得1acsin 1ൌ0° ܥ 1 a × 1 ×ൌൌsin60° h 1 c × 1 × sin60°,化简得 ac ܥ a h c, 1 h 1 ܥ 1,因此 4a h c ܥ (4a h c)( 1 h 1 ) ܥ h h c h 4a ≤ h hൌacacacൌ ܥ 9,当且仅当 c ܥ ൌa ܥ 3 时取等号,则 4a h c 的最小值为 9.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4. 【2015 年全国普通高等学校招生统一考试理科数学】已知函数f ( x ) = {2 - x , ( x - 2)2, x ≤ 2,函数x > 2,g (x ) = b - f (2 - x ) ,其中b ∈ R ,若函数 y = f (x )- g (x ) 恰有 4 个零点,则b 的取值范围是( )A .⎛ 7 , +∞ ⎫B . ⎛-∞,7 ⎫C . ⎛ 0,7 ⎫D .⎛ 7 , 2 ⎫4 ⎪ 4 ⎪ 4 ⎪ 4 ⎪ ⎝ ⎭⎝⎭⎝ ⎭⎝ ⎭【答案】D【解析】试题分析:函数恰有 4 个零点,即方程 ,即有 4 个不同的实数根, 即直线与函数的图像有四个不同的交点. 又⎨2做出该函数的图像如图所示,由图得,当时,直线与函数 的图像有 4 个不同的交点,故函数 恰有 4 个零点时,b的取值范围是故选 D .考点:1、分段函数;2、函数的零点.【方法点晴】本题主要考查的是分段函数和函数的零点,属于难题.已知函数的零点个数,一般利用数形结合思想转化为两个函数的图像的交点个数问题,作图时一定要保证图形准确, 否则很容易出现错误.⎧x 2 - x + 3, x ≤ 1,5. 【2017 天津理,8】已知函数 f (x ) = ⎪ x + , x > 1.设 a ∈ R ,若关于 x 的不等式 f (x ) ≥| x+ a | 在 R 上恒2 ⎩⎪ x 成立,则 a 的取值范围是(A )[-47, 2] 16 (B )[- 47 , 39]16 16(C )[-2 3, 2](D )[-2 3, 39]16【答案】 A2 3 3 47 x x2 x 23 2 x 2当 x > 1 时,(*)式为-x - ≤ + a ≤ x + , - x - ≤ a ≤ + ,x 2 x 2 x 2 x3 2 3 2又 - x - = -( x + 2 x 2 ) ≤ -2 x (当 x = 时取等号),3 x + 2≥ 2 = 2 (当 x = 2 时取等号), 2 x 所以-2 ≤ a ≤ 2 , 综上-≤ a ≤ 2 .故选A .16【考点】不等式、恒成立问题【名师点睛】首先满足 f (x ) ≥x+ a 转化为- f (x ) - ≤ a ≤ f (x ) - 去解决,由于涉及分段函数问题要 2 2 2遵循分段处理原则,分别对 x 的两种不同情况进行讨论,针对每种情况根据 x 的范围,利用极端原理,求出对应的a 的范围.6. 【2016 高考新课标 1 卷】已知函数 f( x ) = ( x - 2)e x + a (x -1)2有两个零点.(I)求 a 的取值范围;(II)设 x 1,x 2 是 f ( x ) 的两个零点,证明: x 1 + x 2 < 2 .【答案】(0, +∞)3 2 xx ⨯ 2试题解析;(Ⅰ)f '(x) = (x -1)e x + 2a(x -1) = (x -1)(e x + 2a) .(i)设a = 0 ,则f (x) = (x - 2)e x , f (x) 只有一个零点.(ii)设a > 0 ,则当x ∈(-∞,1) 时, f '(x) < 0 ;当x ∈ (1, +∞) 时, f '(x) > 0 .所以f (x) 在(-∞,1) 上单调递减,在(1, +∞) 上单调递增.又f (1) =-e , f (2) =a ,取b 满足b < 0 且b < ln a ,则2f (b) >a(b - 2) +a(b -1) 2 =a(b 2 -3b) > 0 ,2 2故f (x) 存在两个零点.学&科网(iii)设a < 0 ,由f '(x) = 0 得x =1 或x = ln(-2a).若a ≥-e, 则ln(-2a) ≤1 , 故当x ∈ (1, +∞) 时, 2时, f (x) < 0 ,所以f (x) 不存在两个零点.f '(x) > 0 , 因此f (x) 在(1, +∞) 上单调递增.又当x ≤ 1若a <-e,则ln(-2a) > 1 ,故当x ∈ (1, ln(-2a)) 时, f '(x) < 0 ;当x ∈(ln(-2a), +∞) 时, f '(x) > 0 .因此2f (x) 在(1, ln(-2a)) 单调递减,在(ln(-2a), +∞) 单调递增.又当x ≤ 1时, f (x) < 0 ,所以f (x) 不存在两个零点.综上, a 的取值范围为(0, +∞).考点:导数及其应用7.【2016 高考江苏卷】已知函数f (x) =a x +b x (a > 0, b > 0, a ≠ 1, b ≠ 1) .设a = 2,b =1 .2(1)求方程f (x) = 2 的根;(2)若对任意x ∈R ,不等式f (2x) ≥m f(x) - 6 恒成立,求实数m 的最大值;(3)若0 <a <1,b>1,函数g (x)=f (x)- 2 有且只有 1 个零点,求ab 的值. 【答案】(1)①0 ②4(2)1【解析】试题解析:(1)因为a=2,b=1,所以f(x)=2x+2-x. 2①方程f (x) = 2 ,即2x + 2-x = 2 ,亦即(2x )2 - 2 ⨯ 2x +1 = 0 ,所以(2x -1)2 = 0 ,于是2x = 1 ,解得x = 0 .②由条件知f (2x) = 22 x + 2-2 x = (2x + 2-x )2 - 2 = ( f (x))2 - 2 .(2)因为函数g(x) =f (x) - 2 只有1 个零点,而g(0) =f (0) - 2 =a 0 +b 0 - 2 = 0 ,所以0 是函数g(x) 的唯一零点.因为g ' (x) =a x ln a +b x ln b ,又由0 <a < 1, b > 1 知ln a < 0, ln b > 0 ,ln a a所以 g '(x ) = 0 有唯一解 x = log (-ln a) . 0b ln b令h (x ) = g '(x ) ,则 h '(x ) = (a xln a + b x ln b )' = a x (ln a )2 + b x (ln b )2,从而对任意 x ∈ R , h '(x ) > 0 ,所以 g '(x ) = h (x ) 是(-∞, +∞) 上的单调增函数,于是当 x ∈(-∞, x ) , g ' (x ) < g ' (x ) = 0 ;当 x ∈(x , +∞) 时, g ' (x ) > g '(x ) = 0 . 因而函数 g (x ) 在(-∞, x 0 ) 上是单调减函数,在(x 0 , +∞) 上是单调增函数.下证 x 0 = 0 .若 x < 0 ,则 x < x 0 < 0 ,于是 g ( x0 ) < g (0) = 0 ,2 2又 g (log 2) = alog a 2+ b log a 2 - 2 > a log a 2 - 2 = 0 ,且函数 g (x ) 在以 x0 和log 2 为端点的闭区间上的图象不a 2a间断,所以在 x 0 和log 2 之间存在 g (x ) 的零点,记为 x . 因为0 < a < 1,所以log 2 < 0 ,又 x0 < 0 ,2 a 1 a2所以 x 1 < 0 与“0 是函数 g (x ) 的唯一零点”矛盾.若 x > 0 ,同理可得,在 x0 和log 2 之间存在 g (x ) 的非 0 的零点,矛盾.2a因此, x 0 = 0 .于是-= 1,故ln a + ln b = 0 ,所以ab = 1 .ln b考点:指数函数、基本不等式、利用导数研究函数单调性及零点【名师点睛】对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数 范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象 的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利 用零点存在定理及函数单调性严格说明函数零点个数.8.【2016 年高考四川理数】设函数 f (x )=ax 2-a -ln x ,其中 a ∈R.学习界的007(Ⅰ)讨论 f (x )的单调性;(Ⅱ)确定 a 的所有可能取值,使得 f (x ) > 1- e1- x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底x数).【答案】(Ⅰ)当 x ∈(0, 1) 时, f '(x ) <0, f (x ) 单调递减;当 x ∈( 2a 1,+∞) 时, f '(x ) >0, f (x ) 单 2a调递增;(Ⅱ) a Î [ 1,+ ¥ ) . 2【解析】1 2ax2 -1试题解析:(I ) f '(x ) = 2ax - = x x(x > 0).当a ≤ 0时 f '(x ) <0, f (x ) 在(0,+∞)内单调递减.当a > 0时 由 f '(x ) =0,有 x =1 .2a此时,当 x ∈(0,1) 时, f '(x ) <0, f (x ) 单调递减;2a学习界的007当 x ∈(1,+∞) 时, f '(x ) >0, f (x ) 单调递增.2a(II )令 g (x ) = 1- x 1 ex -1, s (x ) = e x -1 - x .则 s '(x ) = ex -1-1 .而当 x > 1时, s '(x ) >0,所以 s (x ) 在区间(1,+∞) 内单调递增.又由 s (1) =0,有 s (x ) >0, 从而当 x > 1 时, f (x ) >0.考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求f '(x) ,解方程f '(x) = 0 ,再通过f '(x) 的正负确定f (x) 的单调性;要证明函数不等式f (x) >g(x) ,一般证明f (x) -g(x) 的最小值大于0,为此要研究函数h(x) =f (x) -g(x) 的单调性.本题中注意由于函数h(x) 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.【反馈练习】1.【2020 届陕西省西安市西北工业大学附中高三第三次高考适应性考试】不等式x2 - 2x + 5 >a2 对x ∈ (1, +∞) 恒成立,则实数a 的取值范围是()A.[-2, 2]B.(-2, 2)C.(-∞, -2) (2, +∞) D.(-∞, -2] [2, +∞)【答案】A【分析】求得x > 1 时x2 - 2x + 5 的取值范围,由此求得a2 的取值范围,进而求得a 的取值范围.【详解】由于x = 1 是y =x2 - 2x + 5 的对称轴,所以当x > 1 时,x2 - 2 x + 5 > 12 - 2 + 5 = 4 .所以a2 ≤ 4 ,解得-2 ≤a ≤ 2 .故选:A2.【吉林省通榆县第一中学2020-2021学年高三上学期第二次月考】若命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,则实数a 的取值范围为()A.(-1, 3)B.[-1,3]C.(-∞, -1) (3, +∞)D.(-∞, -1]⋃[3, +∞)⎩【答案】B【分析】先求出命题的否定,利用其为真命题及二次函数的性质,列不等式求解.【详解】解:命题“∃x ∈R ,使 x 2+ (a -1)x +1 < 0 ”是假命题,则命题“ ∀ x ∈R ,使 x 2+ (a -1)x +1 ≥ 0 ”是真命题,∴∆= (a -1)2- 4 ≤ 0 ,解得-1 ≤ a ≤ 3 .故选:B3.【河北省邯郸市 2021 届高三上学期摸底】若命题 p : “ ∀x ∈ R , 2ax 2 - ax -1 ≤ 0 ”为真命题,则实数a 的取值范围是()A . (-∞,8]B .[-8, 0] C . (-∞, -8) D .(-8, 0)【答案】B【分析】对二次项系数进行讨论,分为 a = 0 和a ≠ 0 两种情形,结合判别式可得结果.【详解】由题意,当 a = 0 时,命题成立;⎧a < 0当a ≠ 0 时, ⎨∆ = a 2+ 8a ≤ 0 ,解得-8 ≤ a < 0 ,综上可得,实数a 的取值范围是[-8, 0] .故选:B.4. 【江西省上高二中 2021 届高三上学期第一次月考】已知函数 f (x ) = x 2 + ln(| x | +1) ,若对于 x ∈[-1, 2] ,f (x 2 + 2ax - 2a 2 ) < 9 + ln 4 恒成立,则实数 a 的取值范围是()A . -1 < a < 2 - 62B . -1 < a < 1C. a >2 + 6 或 a <2 - 6D.2 - 6 < a < 2 + 62 22 2【答案】A【分析】根据 f ( x ) 的解析式可得该函数是偶函数且在(0, +∞) 是增函数,据此求解不等式;将问题转化为一元二次不等式在区间上恒成立的问题,从而处理.【详解】由题意,函数 f (x ) = x 2 + ln(| x | +1) 的定义域为 R ,且 f (-x ) = (-x )2+ ln(| -x | +1) = x 2+ ln(| x | +1) = f (x )所以函数 f ( x ) 是 R 上的偶函数,且在[0, +∞) 上单调递增,又由9 + ln 4 = 32+ ln(| x | +1) =f (3) ,所以不等式 f (x 2 + 2ax - 2a2) < 9 + ln 4 对于 x ∈[-1, 2] 恒成立,等价于 x 2 + 2ax - 2a 2< 3 对于 x ∈[-1, 2]恒成立,即 x 2 + 2ax - 2a 2 < 3 ① x 2 + 2ax - 2a 2 > -3 ②对于x ∈[-1, 2]恒成立.⎧g(-1) =-2a 2 - 2a - 2 < 0 令g(x) =x2 + 2ax - 2a2 -3 ,则⎨,⎩g(2) =-2a 2 + 4a +1 < 0解得a >2 +26或a <2 -26时①式恒成立;令h(x) =x2 + 2ax - 2a 2 + 3 ,令x2 + 2ax - 2a2 + 3 = 0 ,则当∆= 4a2 + 8a2 -12 < 0 时,即-1 <a < 1时②式恒成立;当∆= 4a2 + 8a2 -12 = 0 ,即a =±1时,不满足②式;当∆= 4a2 + 8a2 -12 > 0 ,即a <-1 或a > 1时,由h(-1) =1- 2a - 2a 2 + 3 > 0 ,h(2) = 4 + 4a - 2a 2 + 3 > 0 ,且-a <-1或-a > 2 ,知不存在a 使②式成立.综上所述,实数a 的取值范围是-1 <a <2 - 6.2故选:A.5.【天津市第七中学2020-2021 学年高三上学期第一次月考】若不等式ax2+2ax﹣1<0 对于一切实数x 都恒成立,则实数a 的取值范围是()A.(﹣∞,﹣1)B.(﹣1,0)C.(-1,0] D.[0, +∞)【答案】C【分析】⎧a < 0讨论二次项系数a = 0 或a ≠ 0 ,当a ≠ 0 时,只需满足⎨∆< 0 ,解不等式即可.⎩⎩ ⎩【详解】当 a = 0 时,不等式-1 < 0 对于一切实数 x 恒成立,满足题意;⎧a < 0 当a ≠ 0 时,则⎨∆ < 0 ⎧a < 0,即⎨4a 2+ 4a < 0,解得-1 < a < 0 ,综上所述,实数 a 的取值范围是(-1, 0] . 故选:C6.【海南省临高中学 2021 届高三上学期第一次月考】若不等式 x 2 + ax - 2 > 0 在区间[1, 5] 上有解,则a 的取值范围是()A . ⎛ -23 , +∞⎫B . ⎡-23 ,1⎤C .(1, +∞) D . ⎛-∞, -23 ⎫5 ⎪ ⎢ 5 ⎥ 5 ⎪ ⎝ ⎭⎣ ⎦⎝ ⎭【答案】A【分析】由题意可得a >⎛ 2 - x ⎫ ,求得函数 y = 2- x 在区间[1, 5] 上的最小值,由此可求得实数 a 的取值范围. x ⎪x ⎝ ⎭min【详解】当 x ∈[1, 5] 时,由 x 2 + ax - 2 > 0 可得a > 2- x ,由题意可得 a > ⎛ 2 - x ⎫. xx ⎪ ⎝ ⎭min函数 y =2 - x 在区间[1, 5] 上单调递减,则 y= 2 - 5 = - 23 ,∴a > - 23. x因此,实数a 的取值范围是⎛ -23 , +∞⎫.min5 5 55 ⎪ ⎝ ⎭故选:A.7.(多选题)【江苏省南京市玄武高级中学 2020-2021 学年高三上学期学情检测】已知 m ∈ N * ,若对任意的2 m x ∈[1, 2] , x +m ≤ 4 恒成立,则实数m 的值可以为( )xA .1B .2C .3D .4【答案】ABC【分析】将不等式转化为m ≤ 4x - x 2 在 x ∈[1, 2] 恒成立,求出 y = 4x - x 2 在区间[1, 2] 的最小值即可求解.【详解】若对任意的 x ∈[1, 2] , x +m≤ 4 恒成立,x即m ≤ 4x - x 2 在 x ∈[1, 2] 恒成立, 令 y = 4x - x 2 , x ∈[1, 2],y = 4x - x 2 = - (x - 2 )2+ 4 ∈ [3, 4 ],所以 m ≤ 3 ,又m ∈ N * ,所以 m = 1, 2, 3 .故选:ABC8. 【天津市南开中学 2020-2021 学年高三上学期统练】设函数 f (x ) = x 2 -1,对任意x ∈ 3⎛ x ⎫2[ , +∞), f ⎪ - 4m f (x ) ≤ f (x - 1) + 4 f (m ) 恒成立,则实数 m 的取值范围是 . ⎝ ⎭【答案】(-∞, -3] ⋃[ 3, +∞) 2 2【分析】根据 f (x ) 的解析式及题干条件,整理可得 1m2- 4m 2≤ - 3x2- 2 + 1在 x ∈[ 3, x2+∞) 上恒成立,利用二次函3 数的性质可求得-3t 2 - 2t + 1 的最小值为- 5 ,则只需求 13m 2- 4m 2≤ - 5即可,化简整理,即可得答案.3【详解】x 22222x ∈ 3由题意得 m 2 -1- 4m (x -1) ≤ (x -1) -1+ 4(m -1) 在 [ , +∞) 上恒成立,21整理得 m 2- 4m 2 ≤ - 3 x 2- 2 + 1在 x ∈[ 3 , x 2+∞) 上恒成立, 令 1 = t ,则t ∈(0, 2] ,x 3则- - 2 +1 = -3t 2- 2t +1,x 2x因为t ∈(0, 2] ,则-3t 2 - 2t + 1 的最小值为- 5,3 3所以 1- 4m 2≤ - 5 ,整理可得(3m 2 +1)(4m 2 - 3) ≥ 0 ,m 23所以 m 2≥ 3,即 m ≥43 或m ≤ -3 ,22故答案为: (-∞, -3] ⋃[ 3, +∞) . 2 29. 【2020 年浙江省新高考考前原创冲刺卷】已知不等式cos 2 x - a sin x + a 2 1-sin x 对任意的实数 x 均成立,则实数 a 的取值范围为 .【答案】(-∞, -2] [1, +∞) 【分析】即sin 2x + (a -1) sin x - a20 恒成立,设t = sin x ,则t ∈[-1,1] ,令 f (t ) = t 2 + (a -1)t - a 2 ,即 f (t ) ≤ 0在t ∈[-1,1] 时恒成立,即 f (t )max ≤ 0 ,根据二次函数在闭区间上的最值的特点可得, f (t ) 的最大值一定( ) ( )⎩⎧ f (-1) = 1- (a -1) - a 2 ≤ 0 为 f 1 或 f -1 ,所以只需⎨ ⎩ f (1) = 1+ (a -1) - a 2≤ 0,从而得出答案.【详解】由cos 2 x - a sin x + a 2 1-sin x 可得sin 2 x + (a -1) sin x - a 2 0 .令t = sin x ,则t ∈[-1,1] ,令 f (t ) = t 2 + (a -1)t - a 2 , t ∈[-1,1] ,即 f (t ) ≤ 0 在t ∈[-1,1] 时恒成立,即 f (t )max ≤ 0 .由开口向上的二次函数的图象和性质知,当t ∈[-1,1] 时, f (t ) 的最大值一定为 f (1) 或 f (-1).⎧ f (-1) = 1- (a -1) - a 2 ≤ 0 所以⎨ f (1) = 1+ (a -1) - a 2≤ 0故答案为: (-∞, -2] [1, +∞),解得 a ≤ -2 或 a ≥ 1 .10. 【2020 届浙江省金华十校高三下学期 4 月模拟考试】设 a ,b ∈R ,若函数 f (x ) = 2 ax 3+ 1bx 2+ (1- a ) x 3 2在区间[﹣1,1]上单调递增,则 a +b 的最大值为 .【答案】2【分析】求导得 f '(x ) = 2ax 2 + bx +1 - a ,依题意2ax 2 + bx +1- a ≥ 0 在 x ∈[-1,1]上恒成立,先根据系数比例,令2x 2 - 1 = x ,可得 a + b ≤ 2 ,即 a +b 的最大值为 2,再证明充分性,即当 a + b = 2 时,2ax 2 + bx +1- a ≥ 0 在 x ∈[-1,1]上恒成立,综合即可得出结论.【详解】求导得 f '(x ) = 2ax 2+ bx +1 - a ,( ) -2x , x ≤ 0 ∵函数 f (x ) 在区间[-1,1] 上单调递增,∴ 2ax 2 + bx +1- a ≥ 0 在 x ∈[-1,1]上恒成立, 令2x 2 - 1 = x 解得 x = 1 或 x = - 1,2将 x = - 1代入可得- 1 a - 1 b +1 ≥ 0 ,即 a + b ≤ 2 ,则a +b 的最大值为 2,2 2 2下面证明 a + b = 2 可以取到,令 g ( x ) = f '(x ) = 2ax 2+ bx +1- a ,则 g '( x ) = 4ax + b ,且 g ( x ) ≥ 0 , g ⎛ - 1 ⎫= 0 ,2 ⎪ ⎝ ⎭则 g '⎛ - 1 ⎫= -2a + b = 0 ,解得 a = 2, b = 4, 2 ⎪ 3 3⎝⎭当a = 2 , b = 4时,3 3g ( x ) = f '( x ) = 4 x 2 + 4 x + 1 = 1(2x +1)2 ≥ 0 在 x ∈[-1,1]上恒成立,3 3 3 3故a + b = 2 可以取到,综上, a +b 的最大值为 2. 故答案为:2.⎧ax 2 + x , x > 0 1. 【广西防城港市防城中学 2021 届高三 10 月月考】已知 f x = ⎨ ⎩,若不等式f ( x - 2) ≥ f (x ) 对一切 x ∈ R 恒成立,则a 的最大值为 .【答案】 - 12【分析】⎝ ⎪根据分段函数的表达式,分别讨论x 的取值范围,利用参数分离法求出a 的范围即可得到结论.【详解】∵不等式f (x - 2)≥f (x )对一切x ∈R 恒成立,∴若x ≤ 0 ,则x - 2 ≤-2 .则不等f (x- 2)≥f (x )等价为,-2 (x- 2)≥-2x ,即4 ≥ 0 ,此时不等式恒成立,若0 <x ≤ 2 ,则x - 2≤0 ,则不等式f (x- 2)≥f (x )等价为,-2 (x - 2)≥ax 2 +x ,即ax2 ≤ 4 - 3x ,则a ≤4 - 3x=x24-3,x2 x4 3 ⎛1 3 ⎫2 9设h (x)=x2 -x= 4x- -,⎭16∵0 <x ≤ 2 ,∴1≥1,x 2则h (x)≥-1,∴此时a ≤-1,2 2若x > 2 ,则x - 2 > 0 ,则f(x-2)≥f(x)等价为,a(x-2)2+(x-2)≥ax2+x,即4a (1 -x )≥ 2 ,∵x > 2 ,∴-x <-2 ,1-x <-1 ,8⎨则不等式等价, 4a ≤ 2 = - 2即2a ≤ -1 x -11- x x -1则 g (x ) = - 1 x -1在 x > 2 时,为增函数,∴g ( x ) > g (2) = -1 ,即2a ≤ -1,则 a ≤ - 1,2故 a 的最大值为- 1,2故答案为: - 1.212.【上海市行知中学 2021 届高三上学期 10 月月考】若对任意实数 x ∈[-1,1],不等式 m 2-1 > x (m +1) 恒成立,则实数m 的取值范围是.【答案】(-∞, -1)(2, +∞)【分析】根据题意将问题转化为(m +1) x - (m 2-1)< 0 对任意实数x ∈[-1,1]恒成立,进而得 ⎧⎪(m +1)⨯1-(m 2 -1) < 0 ⎪⎩(m +1)⨯(-1) -(m 2-1) < 0,解不等式即可得答案.【详解】解:因为对任意实数 x ∈[-1,1],不等式 m 2-1 > x (m +1) 恒成立,故(m +1) x - (m 2-1)< 0 对任意实数x ∈[-1,1]恒成立,故只需满足⎨ ⎩⎧⎪(m +1)⨯1-(m 2 -1) < 0 ⎪⎩(m +1)⨯(-1) -(m 2 -1) < 0,解得: m < -1或 m > 2 所以实数 m 的取值范围是(-∞, -1) (2, +∞) .故答案为: (-∞, -1) (2, +∞)13. 【天津市和平区 2020-2021 学年高三上学期期中】∀x ∈ R ,ax 2 + ax - 2 < 0 都成立.则 a 的取值范围是.【答案】(-8, 0]【分析】分类讨论, a = 0 , a ≠ 0 时结合二次函数性质得解.【详解】a = 0 时,不等式为-2 < 0 ,恒成立,⎧a < 0a ≠ 0 时,则⎨∆ = a 2 + 8a < 0 ,解得-8 < a < 0 ,综上有-8 < a ≤ 0 . 故答案为: (-8,0].14.【湖北省鄂西北五校(宜城一中、枣阳一中、襄州一中、曾都一中、南漳一中)2020-2021 学年高三上学期期中】已知函数 f (x ) = x 2 + ax - 2(a ∈ R ) ,若∃x ∈(1, 4) ,使得 f (x ) ≤ 0 ,则a 的取值范围是 .【答案】 a < 1【分析】转化为a ≤ 2 - x 在 x ∈(1, 4) 时能成立,利用 y = 2 - x 在(1, 4) 上为递减函数,求出 2 - x ∈ (- 7 ,1) 后可得x x x 2解.【详解】∃x ∈(1, 4) ,使得f (x) ≤ 0 ,等价于x2 +ax - 2 ≤ 0 ,即a ≤2-x 在x ∈(1, 4) 时能成立,x因为y =2-x 在(1, 4) 上为递减函数,所以2-x ∈ (-7,1) ,x x 2所以a < 1 .故答案为:a < 1 .15.【辽宁省营口第五中学2020-2021 学年高三上学期第二次月考】已知函数f (x) =| 3x -1| + | 3x +a | ,g(x) =x ⋅f (x) ,h(x) =x 2 - 5x - 3 .(1)若f (x)≥ 3 恒成立,求实数a 的取值范围;(2)是否存在这样的实数a (其中a >-1 ),使得∀x∈⎡-a,1⎤,都有不等式g(x) ≥h(x) 恒成立?若存⎣⎢33⎥⎦在,求出实数 a 的取值范围;若不存在,请说明理由.【答案】(1)(-∞, -4] [2, +∞) ;(2)存在,⎛-1,-9+321⎤. 4 ⎥ ⎝⎦【分析】(1)利用绝对值三角不等式求得f (x )的最小值,进而根据不等式恒成立的意义得到关于a 的含绝对值的不等式,求解即得;(2)根据a 和x 的范围化简得到含有参数a 的关于x 的一元二次不等式,利用二次函数的图象和性质,并根据不等式恒成立的意义得到关于实数a 的有关不等式(组),求解即得.【详解】解:(1)∵f(x)=|3x-1|+|3x+a|,∴f ( x) ≥| (3x -1) - (3x +a) |=| a +1 |,3 当且仅当(3x -1)(3x + a ) ≤ 0 时,取等号.∴原不等式等价于 a +1 ≥ 3 ,解得 a ≥ 2 或 a ≤ -4 .故a 的取值范围是(-∞, -4] [2, +∞) .(2)∵ a > -1 ,∴ - a < 1, 3 3∵ x ∈ ⎡- a , 1 ⎤ ,∴ f ( x ) =| 3x -1 | + | 3x + a |= a + 1,g (x ) = (a +1) x , ⎣⎢ 3 3⎥⎦∴原不等式恒成立⇔ (a +1)x ≥ x 2 - 5x - 3 ⇔ x 2 - (a + 6)x - 3 ≤ 0在 x ∈ ⎡- a ,1 ⎤ 上恒成立,⎣⎢ 3 3⎥⎦令u (x ) = x 2 - (a + 6)x - 3 , u ⎛ - a ⎫ = 4 a 2 + 2a - 3 ≤ 03 ⎪ 9 ⎝ ⎭得-9 + 3 21 ≤ a ≤ -9 + 3 21 , 4 4且u ⎛ 1 ⎫ = - 44 - 1 a ≤ 0 ,得 a ≥ - 44 ,⎪ ⎝ ⎭ 又 a > -1 ,得-1 < a ≤ -9 + 3 21 .4故实数a 的取值范围是⎛ -1, -9 + 3 21 ⎤ . 4 ⎥ ⎝⎦ 16. 【江苏省苏州市相城区 2020-2021 学年高三上学期阶段性诊断】已知二次函数 f (x ) = ax 2+ bx ,满足f (-2) = 0 且方程 f ( x ) = x 有两个相等实根.9 3 32t 2t 2t (1) 求函数 f ( x ) 的解析式;(2) 解不等式 f ( x ) <3 2(3) 当且仅当 x ∈[4,m ]时,不等式 f ( x - t ) ≤ x 恒成立,试求 t ,m 的值.【答案】(1) f (x ) = 1x 2 + x ;(2){x | -3 < x < 1} ;(3)t = 8, m = 12 . 2【分析】(1)由 f (-2) = 0 可得b = 2a ,再由方程 f (x ) = x 有两个相等实根,可得∆ = (2a - 1)2 - 4 ⨯ a ⨯ 0 = 0 , 从而可求出a , b 的值,进而可求出 f (x ) 的解析式; (2) 直接解一元二次不等式可得结果;(3) 不等式(x - t )2 ≤ 2t 的解集为{x | t - ≤ x ≤ t + 2t } ,由于当且仅当 x ∈[4, m ] 时, f (x - t ) ≤ x 恒成立,即不等式 f (x - t ) ≤ x 的解集为{x | 4 ≤ x ≤ m } ,从而得t - = 4 且t + = m ,进而可求得结果【详解】解:(1)由于函数 f (x ) = ax 2 + bx 是二次函数,所以 a ≠ 0 ,又 f (-2) = a ⨯(-2)2 + b ⨯(-2) = 0 ,所以b = 2a ,所以 f ( x ) = ax 2 + 2ax ,又 f (x ) = x 有两个相等实根,即ax 2 + (2a - 1)x = 0(a ≠ 0) 有两个相等实根,所以∆ = (2a - 1)2 - 4 ⨯ a ⨯ 0 = 0 ,所以 a = 1 2从而 f (x ) = 1x 2 + x . 2(2)由(1)知, f (x ) = 1 x 2 + x ,所以不等式 f ( x ) < 3 即为 1 x 2 + x < 3,解得-3 < x < 1. 2 2 2 22t 2t 2t 所以不等式的解集为{x | -3 < x < 1}(3)由(1)知, f (x ) = 1 x 2 + x ,所以不等式 f (x - t ) ≤ x 即为 1 ( x - t )2 + ( x - t ) ≤ x , 22化简得( x - t )2 ≤ 2t ,又由于( x - t )2 ≥ 0 ,所以2t ≥ 0 ,从而不等式( x - t )2 ≤ 2t 的解集为{x | t - ≤ x ≤ t + 2t }又由于当且仅当x ∈[4, m ] 时, f (x - t ) ≤ x 恒成立,即不等式 f (x - t ) ≤ x 的解集为{x | 4 ≤ x ≤ m }, 所以t - = 4 且t + = m ,从而解得t = 8, m = 12 .17. 【西藏山南市第二高级中学 2021 届高三上学期第一次月考】已知二次函数 f (x ) 的最小值为 1,且 f (0) = f (2) = 3 .(1) 求 f ( x ) 的解析式,并写出单调区间;(2) 当 x ∈[-1 ,1] 时, f (x ) > 2x + 2m +1恒成立,试确定实数m 的取值范围.【答案】(1) f ( x ) = 2x 2- 4x + 3,增区间为(1, +∞) ,减区间为(-∞ ,1] ;(2) (-∞, -1].【分析】(1) 根据二次函数顶点式求得 f ( x ) ,进而求得 f ( x ) 的单调区间.(2) 利用分离常数法,结合二次函数的性质求得 m 的取值范围.【详解】(1).∵ f (x ) 是二次函数,且 f (0) = f (2) = 3 ,∴其图像对称轴为直线 x = 1 . 又最小值为1,∴可设 f ( x ) = a ( x -1)2 +1, 又 f (0) = 3, ∴a = 2 .a + ≥∴ f (x ) = 2(x -1)2 +1 = 2x 2- 4x + 3 .∴ f (x ) 的单调递增区间为(1, +∞) ,单调递减区间为(-∞ ,1] .(2)由已知得 2x 2 - 4x + 3 > 2x + 2m +1在[-1,1] 上恒成立,化简得 m < x 2 - 3x +1.设 g (x ) = x 2- 3x +1 ,则 g ( x ) 在区间[-1,1] 上单调递减.∴在区间[-1,1] 上的最小值为 g (1) = -1,∴ m < -1.∴满足条件的实数 m 的取值范围为(-∞, -1) .18. 【重庆市西南大学附属中学 2021 届高三上学期第一次月考】已知命题 p : 存在实数 x ∈[1, 2] , x 2 - 4ax + 1 ≤ 0 成立(1) 若命题 p 为真命题,求实数 a 的取值范围;(2) 命题q : 函数 f ( x ) = log (ax 2 - x ) 在区间 x ∈(2, 4) 内单调递增,如果 p ∧ q 是假命题,求实数 a 的取值范围.【答案】(1) a ≥ 1;(2) 0 < a < 1. 2【分析】(1) 由题得1 1 a [ 4 (x x)]min ,利用基本不等式求函数的最小值即得解; (2) 先求出命题q 为真时, a > 1,再根据 p ∧ q 是假命题求实数 a 的取值范围.【详解】(1)由题得存在实数 x ∈[1, 2], a ≥ 1 (x + 1 ) 成立,所以 a ≥ [ 1 (x + 1)] , 4 x 4 x mina因为 1 (x + 1 ) ≥ 1 ⋅ 1,(当且仅当 x = 1 时取等), 4 x4 2所以 a ≥ 1 . 2(2)函数 f ( x ) = log (ax 2 - x )在区间 x ∈(2, 4) 内单调递增,当 a > 1时,二次函数 y = ax 2 - x 的对称轴为 x = 1 2a< 2 ,所以二次函数 y = ax 2- x 在区间 x ∈(2, 4) 内单调递增, 因为 ax 2 - x > 0 在区间 x ∈(2, 4) 内恒成立,所以 4a - 2 ≥ 0,∴ a ≥ 1.所以 a > 1. 2当0 < a < 1时,二次函数 y = ax 2 - x 在区间 x ∈(2, 4) 内单调递减,所以 x = 1 2a≥ 4,∴ a ≤ 1 . 8因为 ax 2 - x > 0 在区间 x ∈(2, 4) 内恒成立,所以16a - 4 ≥ 0,∴ a ≥ 1 .所以 a ∈∅ . 4综上所述, a > 1.如果 p ∧ q 是真命题,则 a ≥ 1 且 a > 1,即 a > 1. 2如果 p ∧ q 是假命题,所以0 < a < 1.。

2021年全国高考乙卷数学(理)试题(解析版)

【答案】B
【解析】
【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.
【详解】由题意可得 ,
对于A, 不是奇函数;
对于B, 是奇函数;
对于C, ,定义域不关于原点对称,不是奇函数;
对于D, ,定义域不关于原点对称,不是奇函数.
故选:B
5.在正方体 中,P为 的中点,则直线 与 所成的角为()
A. B. C. D.
故答案为:4.
【点睛】本题为基础题,考查由渐近线求解双曲线中参数,焦距,正确计算并联立关系式求解是关键.
14.已知向量 ,若 ,则 __________.
【答案】
【解析】
【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.
【详解】因为 ,所以由 可得,
,解得 .
故答案为: .
【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设 ,
二、填空题:本题共4小题,每小题5分,共20分.
13.已知双曲线 的一条渐近线为 ,则C的焦距为_________.
【答案】4
【解析】
【分析】将渐近线方程化成斜截式,得出 的关系,再结合双曲线中 对应关系,联立求解 ,再由关系式求得 ,即可求解.
【详解】由渐近线方程 化简得 ,即 ,同时平方得 ,又双曲线中 ,故 ,解得 (舍去), ,故焦距 .
18.如图,四棱锥 的底面是矩形, 底面 , , 为 的中点,且 .
(1)求 ;
(2)求二面角 的正弦值.
【答案】(1) ;(2)
【解析】
【分析】(1)以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系,设 ,由已知条件得出 ,求出 的值,即可得出 的长;
(2)求出平面 、 法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三次函数的性质及在高考中的应用一、三次函数的常用性质性质1:函数y ax bx cx d a =+++320()≠,若a >0,当∆≤0时,y =f(x)是增函数;当∆>0时,其单调递增区间是(][)-∞+∞,,x x 12,单调递增区间是[]x x 12,;若a <0,当∆≤0时,y f x =()是减函数;当∆>0时,其单调递减区间是(]-∞,x 2,[)x 1,+∞,单调递增区间是[]x x 21,。

推论:函数y ax bx cx d a =+++320()≠,当∆≤0时,不存在极大值和极小值;当∆>0时,有极大值f x ()1、极小值f x ()2。

根据a 和∆的不同情况,其图象特征分别为:性质2:函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a33,())。

二、三次函数的性质在高考中的应用高考试题对三次函数主要考查:函数图象的切线方程,函数的单调性,函数的极值,函数的最值,证明不等式,函数零点的个数等。

1.(2004重庆卷)设函数()(1)(),(1)f x x x x a a =--> (1)求导数/()f x ; 并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤恒成立,求a 的取值范围。

2. (2008福建卷)已知函数321()23f x x x =+-. (1)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n ,S n )也在y =f ′(x )的图象上; (2)求函数f (x )在区间(a -1,a )内的极值.3.(2006天津卷)已知函数()θθcos 163cos 3423+-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤. (1)当时0cos =θ,判断函数()x f 是否有极值;(2)要使函数()x f 的极小值大于零,求参数θ的取值范围; (3)若对(2)中所求的取值范围内的任意参数θ,函数()x f 在区间()a a ,12-内都是增函数,求实数a 的取值范围.4.(2007全国二理)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.5. (2007湖南文)已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值;(2)当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.6.(2009福建卷理)已知函数321()3f x x ax bx =++,且'(1)0f -= (1)试用含a 的代数式表示b,并求()f x 的单调区间;(2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x ,1()f x ),N(2x ,2()f x ),P(,()m f m ),12x m x <?,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势,并解答以下问题:(I )若对任意的m ∈(t, x 2],线段MP 与曲线f(x)均有异于M ,P 的公共点,试确定t 的最小值,并证明你的结论; (II )若存在点Q(n ,f(n)), 1x nm ?,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出m 的取值范围(不必给出求解过程)例题解答1.解:(I ).)1(23)(2a x a x x f ++-=')(,;0)(,;0)(,:)())((3)(,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(II )因故得不等式,0)()(21≤+x f x f.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x 代入前面不等式,两边除以(1+a ),并化简得.0)()(,2,)(212.0252212成立不等式时当因此舍去或解不等式得≤+≥≤≥≥+-x f x f a a a a a2. (Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x , 由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上,又0(N ),n a n +>∈所以11()(2)0,n n n n a a a a -+---= 所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=, 故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+, 由()0,f x '=得02x x ==-或.当x 变化时,()f x '﹑()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值; ②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当210a a a f x ≤--≤≤≥或或时既无极大值又无极小值.3.(2006年天津卷)无极值;311(,)(,)6226ππππ;(,0]-∞ 4.(2007全国二理 本小题满分12分)解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根; 当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根; 当()0b f a -=时,解方程()0g t =得2at t a =-=,,即方程()0g t =只有两个相异的实数根. 综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.5.(2007湖南文 本小题满分13分)解:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=,且2104x x <-≤.于是04,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是 (1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.6.(Ⅰ)依题意,得2'()2f x x ax b =++ 由'(1)12021f a b b a -=-+==-得.从而321()(21),'()(1)(21).3f x x ax a x f x x x a =++-=++-故令'()0,112.f x x x a ==-=-得或 ①当a>1时, 121a -<-当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --。

相关文档
最新文档