(完整版)小学三年级奥数面积计算

合集下载

小学奥数教程:基本图形的面积计算_全国通用(含答案)

小学奥数教程:基本图形的面积计算_全国通用(含答案)

小学数学平面图形计算公式: 1 、正方形:周长=边长×4;面积=边长×边长 2 、正方体:表面积=棱长×棱长×6;体积=棱长×棱长×棱长 3 、长方形:周长=(长+宽)×2;面积=长×宽 4 、长方体:表面积(长×宽+长×高+宽×高)×2;体积=长×宽×高 5、 三角形:面积=底×高÷2 6 平行四边形:面积=底×高 7 梯形:面积=(上底+下底)×高÷2模块一、基本公式的应用【例 1】 如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。

则两个正方形的空白部分的面积相差多少平方厘米?【考点】基本图形的面积计算 【难度】2星 【题型】解答 【关键词】华杯赛,五年级,决赛,第9题,10分 【解析】 5×5-4×4=9(平方厘米),两个正方形的空白部分的面积相差9平方厘米。

【答案】9平方厘米【巩固】 如图12,边长为4cm 的正方形将边长为3cm 的正方形遮住了一部分,则空白部分的面积的差等于 2cm 。

【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,4年级,初赛,19题 【解析】 空白部分的面积差等于两个正方形的面积差,即⨯-⨯=44337(平方厘米)。

【答案】7平方厘米【例 2】 在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。

水池【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,4年级,初赛,19题 【解析】 四个边角的面积和为2×2×4=16,则水池的边长为:104÷2÷4=13,所以水池的面积是:13×13=169平方米。

三年级奥数举一反三 面积计算

三年级奥数举一反三 面积计算

三年级奥数举一反三面积计算三年级奥数举一反三:面积计算在三年级的奥数学习中,面积计算是一个重要的知识点。

它不仅在日常生活中有着广泛的应用,而且也是进一步学习几何学的基础。

在这篇文章中,我们将通过一些例题和解题技巧,探讨如何掌握和运用面积计算这一知识点。

我们需要理解什么是面积。

简单来说,面积是一个平面或曲面对角线乘积的二分之一。

在计算过程中,我们需要考虑不同的形状,如正方形、长方形、三角形和圆形等。

让我们来看一个例子。

假设我们有一个正方形,它的边长为a。

那么,它的面积可以计算为a×a=a^2。

接下来,我们来看一个长方形的例子。

假设长方形的长为l,宽为w。

那么,它的面积可以计算为l×w。

除了正方形和长方形,我们还会遇到三角形和圆形。

三角形的面积可以通过底边长度b和高h来计算,即(b×h)/2。

而对于圆形,它的面积可以计算为π×r^2,其中r是圆的半径。

在掌握了不同形状的面积计算方法后,我们还需要学会如何解决一些综合性的问题。

比如,我们需要计算一个由多个图形组成的复杂图形的总面积。

在这种情况下,我们需要先分解图形,将它们拆分成多个简单的形状,然后分别计算每个形状的面积,最后再将它们相加。

除了分解法,我们还会学到一些其他的解题技巧,比如平移法、旋转法等。

这些技巧可以帮助我们更灵活地解决面积计算问题。

面积计算是三年级奥数的一个重要知识点。

它不仅需要我们掌握不同形状的面积计算方法,还需要我们学会如何解决综合性的问题。

通过不断地练习和思考,我们可以提高自己的解题能力,从而更好地掌握这一知识点。

小学数学三年级奥数举一反三课件在小学数学的教学中,奥数举一反三课件的重要性不言而喻。

它不仅能帮助学生更好地理解数学概念,提高解题能力,还能激发学生对数学的兴趣和热情,培养他们的思维能力和创新能力。

一、奥数举一反三课件的特点1、内容丰富:小学数学三年级奥数举一反三课件的内容非常丰富,不仅包括课本上的基础知识,还引入了许多生活中的实际例子,让学生能够更好地理解数学概念,提高解决实际问题的能力。

三年级奥数第28讲-面积计算(教)

三年级奥数第28讲-面积计算(教)

学科教师辅导讲义学员编号: 年 级:三年级 课 时 数:3 学员姓名:辅导科目:奥数学科教师:授课主题 第28讲-面积计算授课类型T 同步课堂 P 实战演练S 归纳总结教学目标① 熟悉掌握基本图形面积的求法。

② 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。

③ 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。

授课日期及时段T (Textbook-Based )——同步课堂解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

例1、人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?【解析】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米, 操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

例2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?【解析】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

知识梳理典例分析所以,这个长方形原来的面积是12×9=108平方米。

例3、下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

【解析】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。

而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。

三年级奥数第20讲长方形和正方形的面积

三年级奥数第20讲长方形和正方形的面积

第二十讲长方形和正方形的面积知识点:我们都知道长方形和正方形面积的公式是:长方形的面积=a×b(a为长,b为宽)正方形的面积=a×a(a为边长)在生活中,我们利用这两个公式可以求出各种直角多边形的面积。

例如对左下图,我们无法直接求出它的面积,但是可以将它分割成几块,其中每一块都是长方形或者正方形,分别计算各块的面积再求和,就得出整个图形的面积例1. 有一块长方形土地,长是宽的2倍,中间有一块花坛,花坛是一个正方形,周围是草坪,草坪的面积是多少平方米?.(小正方形边长1米)20米同步练习1.有一个长方形水池长10米,是宽的2倍,中间有一座正方形雕塑,边长为2米,求水池的面积。

2.用一根长36厘米的铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多?3.在一张长15厘米,宽10厘米的红纸上剪下一个最大的正方形,剩下的部分的面积是多少平方厘米?例2. 有一个长方形,如果它的长不变,宽较少2米,面积就减少24平方米;如果它的宽不变,长增加3米,面积就增加15平方米,求原长方形的面积.同步练习1.有一个长方形,如果宽不变,长增加4米,面积就增加24平方米;如果长不变,宽增加3米,面积就增加36平方米,求原长方形的面积。

2.有一个长方形,如果它的宽减少2米,或者长减少3米那么它的面积都减少24平方米,求原来的这个长方形的面积。

3.一个长方形,长16厘米,如果长减少6厘米,就变成了一个正方形,它的面积减少了多少平方厘米?例3. 有一个正方形水池,如下图的阴影部分,在他的周围修一个宽8米的花坛,花坛的面积是480平方米,求水池的边长。

同步精练1.街心花园中一个正方形花坛四周有一米宽的水泥路。

如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?2.下图是一个长50米,宽25米的标准游泳池。

它的周围铺设了宽2米的白瓷地砖(阴影部分)。

求游泳池面积和地砖的面积。

(完整版)三年级奥数面积计算

(完整版)三年级奥数面积计算

三年级奥数 巧求图形面积思维聚焦求正方形和长方形面积的公式是:正方形的面积二a x a (a 为边长), 长方形的面积=a x b (a 为长,b 为宽)。

利用这两个公式可以计算出各种各样的直角多边形的面积。

对一些图,我 们无法直接求出它的面积,但是通过将它分割或切补成几块,其中每一块都是 正方形或长方形,分别计算出各块面积再求和或差,就得出整个图形的面积。

形的面积等于多少平方米?n .5 _分析:我们不能直接求出它的面积,但是可以将此图形分割成若 -------------------- 习3 干个长方形。

下面两种较简单的方法,图形都被分割成三个长方 3 4形。

根据这两种不同的分割方法,都可以计算出图形的的面积。

__________________解: 5X 2+ (5 + 3) X 3+ (5 + 3 + 4) X 2=58(米 2);2或 5X (2 + 3+ 2) + 3X (2 + 3) + 4X 2 = 58(米)。

上面的方法是通过将图形分割成若干个长方形,然后求图形面积的。

实际上,我们也可以将图形“添补”成一个大长方形 (见下图),然 后利用大长方形与两个小长方形的面积之差,求出图形的面积 (5 + 3+ 4) X (2 + 3+ 2)-2 X 3-(2 + 3) X 4 = 58(米 2); 或(5 + 3+ 4) X (2 + 3 + 2)-2 X (3 + 4)-3 X 4= 58(米2)。

由例1看出,计算直角多边形面积,主要是利用“分割”和“添补”的方法,将图形演 变为多个长方形的和或差,然后计算出图形的面积。

其中“分割”是最基本、最常用的方法。

例1、下图中的每个数字分别表示所对应的线段的长度 (单位:米)。

这个图E_555+3+45+3M练习:1、右图是一幢楼房的平面图形,它的面积是_______________ 平方米.(单位:米)2、求下面图形的面积。

(单位:厘米)434 34'33、求下面图形的面积。

三年级奥数(40讲)《举一反三》第37讲 面积计算

三年级奥数(40讲)《举一反三》第37讲 面积计算

第37讲面积计算一、知识要点:我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。

利用这些知识我们能解决许多有关面积的问题。

在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。

因此,敏锐的观察力和灵活的思维在解题中十分重要。

二、精讲精练例1把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。

这个正方形木板的面积是多少平方米?练习一1、把一张长6厘米,宽4厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米?2、把一块长2米、宽6分米的长方形铁板切割成一个面积最大的正方形,这个正方形铁板的面积是多少?例2学校里有一个正方形花坛,四周种了一圈绿篱,绿篱总长20米。

花坛的面积是多少平方米?练习二1、一个正方形的周长为36厘米,那么这个正方形的面积是多少平方厘米?2、运动场有一个正方形的游泳池,在游泳池四周粘上瓷砖,瓷砖总长400米,求游泳池的面积是多少平方米。

例3求下面图形的面积。

(单位:厘米)14321、计算下面图形的面积。

(单位:厘米)(1)15203040(2)31122例4有两个相同的长方形,长是8厘米,宽是3厘米。

如果把它们按下图叠放,这个图形的面积是多少?1、两张边长8厘米的正方形纸,一部分叠在一起放在桌上(如下图),桌面被盖住的面积是多少?8884482、求下图中阴影部分的面积。

(单位:分米)例5一个长方形若长增加2厘米,面积就增加10平方厘米,若宽减少3厘米,面积就减少18平方厘米。

求原来长方形的面积。

1、一个长方形,若长减少5厘米,面积就减少50平方厘米,若宽增加7厘米,面积就增加28平方厘米。

原来长方形的面积是多少平方厘米?2、一个正方形若边长都增加4厘米,面积就增加56平方厘米。

原来正方形的面积是多少平方厘米?三、课后作业1、将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少?2、在公园里有两个花圃,它们的周长相等。

三年级奥数第20讲长方形和正方形的面积

三年级奥数第20讲长方形和正方形的面积

第二十讲长方形和正方形的面积知识点:我们都知道长方形和正方形面积的公式是:长方形的面积=a×b(a为长,b为宽)正方形的面积=a×a(a为边长)在生活中,我们利用这两个公式可以求出各种直角多边形的面积。

例如对左下图,我们无法直接求出它的面积,但是可以将它分割成几块,其中每一块都是长方形或者正方形,分别计算各块的面积再求和,就得出整个图形的面积例1. 有一块长方形土地,长是宽的2倍,中间有一块花坛,花坛是一个正方形,周围是草坪,草坪的面积是多少平方米?.(小正方形边长1米)20米同步练习1.有一个长方形水池长10米,是宽的2倍,中间有一座正方形雕塑,边长为2米,求水池的面积。

2.用一根长36厘米的铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多?3.在一张长15厘米,宽10厘米的红纸上剪下一个最大的正方形,剩下的部分的面积是多少平方厘米?例2. 有一个长方形,如果它的长不变,宽较少2米,面积就减少24平方米;如果它的宽不变,长增加3米,面积就增加15平方米,求原长方形的面积.同步练习1.有一个长方形,如果宽不变,长增加4米,面积就增加24平方米;如果长不变,宽增加3米,面积就增加36平方米,求原长方形的面积。

2.有一个长方形,如果它的宽减少2米,或者长减少3米那么它的面积都减少24平方米,求原来的这个长方形的面积。

3.一个长方形,长16厘米,如果长减少6厘米,就变成了一个正方形,它的面积减少了多少平方厘米?例3. 有一个正方形水池,如下图的阴影部分,在他的周围修一个宽8米的花坛,花坛的面积是480平方米,求水池的边长。

同步精练1.街心花园中一个正方形花坛四周有一米宽的水泥路。

如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?2.下图是一个长50米,宽25米的标准游泳池。

它的周围铺设了宽2米的白瓷地砖(阴影部分)。

求游泳池面积和地砖的面积。

三年级奥数第15讲 - 面积计算

三年级奥数第15讲 - 面积计算

【例3】求下面图形的面积。

(单位:厘米)解:这个图形无法直接求出它的面积,我们可以画一条辅助线,将这个图形分割成两个长方形。

如下图:从图上可以看出,左边长方形的长为4厘米,宽为2厘米,面积为4×2=8平方厘米;右边长方形的长为3厘米,宽为1厘米,面积为3×1=3平方厘米。

所以,这个图形的面积为:8+3=11平方厘米。

【变式3-1】计算下面图形的面积。

【变式3-2】计算下面图形的面积。

【例4】有两个相同的长方形,长是8厘米,宽是3厘米。

如果把它们按下图叠放,这个图形的面积是多少?解:如果两个长方形没有叠放,那么它们的面积就是8×3×2=48平方厘米,现在两个长方形重叠了一部分,重叠部分是个边长3厘米的正方形,面积是3×3=9平方厘米,因此,这个图形的面积是48-9=39平方厘米。

【变式4-1】两张边长8厘米的正方形纸,一部分叠在一起放在桌上(如下图),桌面被盖住的面积是多少?【变式4-2】求下图中阴影部分的面积。

(单位:分米)【例5】一个长方形若长增加2厘米,面积就增加10平方厘米,若宽减少3厘米,面积就减少18平方厘米。

求原来长方形的面积。

解:从图上可以看出,长增加2厘米,面积就增加10平方厘米,说明原来长方形的宽是10÷2=5厘为;宽减少3厘米,面积就减少18平方厘米,说明原来长方形的长是18÷3=6厘米。

所以,原来长方形的面积是:6×5=30平方厘米。

【变式5-1】一个长方形,若长减少5厘米,面积就减少50平方厘米,若宽增加7厘米,面积就增加28平方厘米。

原来长方形的面积是多少平方厘米?【变式5-2】一个正方形若边长都增加4厘米,面积就增加56平方厘米。

原来正方形的面积是多少平方厘米?8884481、将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少?2、在公园里有两个花圃,它们的周长相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数数练习(面积计算)
1、一张长方形纸,长15厘米,宽11厘米,剪下一个最大的正方形,求剩下的长方形的面积是多少?
2、学校里有一个正方形花坛,四周种了一圈绿篱,绿篱总长24米。

花坛的面积是多少平方米?
3、实验小学有一个正方形花坛和一个长方形花坛,它们的周长相等。

其中正方形花坛边长15米,长方形花坛长20米,面积是多少平方米?
4、求下列各图形面积(单位:厘米)
15
6
2
18
8 10
2
6
5、一个长方形,如果长增加5厘米,面积就会增40平方厘米,如果宽减少3厘米,面积就减少18平方厘米,求长方形面积。

6、如左下图,用四个完全一样的长方形拼成一个面积为100平方厘米的正方形,如果每个长方形的宽是3厘米,求每个长方形的面积。

7、如右上图,大正方形的面积是128平方厘米,求三个阴影小正方形面积的和。

8、如左下图,4个完全一样的长方形和一个小正方形拼成了一个大正方形,求长方形的周长是多少?
7厘米
9、右上图是一个工厂新建的“工”字形厂房,求厂房的周长和面积。

10、正方形花坛周围有一圈宽2米的小路,小路的面积是136平方米,求花坛的面积。

附加题:一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形,求原来长方形面积。

相关文档
最新文档