最佳平方逼近算例
3_最佳平方逼近问题

( 0 , * f ) 0 * ( 1 , f ) 0 ( , * f ) 0 n
yfnie@
5
几何意义
平方逼近误差
f
*
* *
2 2
( f , f )
* *
*
( , ) 2 ( , f ) ( f , f )
yfnie@
8
基于正交基的最佳平方逼近(续)
( 0 , f ) ( 1 , f ) ( n , f ) * C , , , ( , ) ( , ) ( n , n ) 0 0 1 1
*
T
( 0 , f ) ( 0 , 0 )
)
3
0
平方误差计算
直接计算:
b a
* 2x a b sin x 2 ( ) dx ba
2 1
2
间接计算:
ab ba ba * 1 sin( 2 t 2 ) 2 ( t ) dt 2
yfnie@ 16
求 (x ) c 0 0 c 1 1 c n n , 使 得
* * * *
n n n n * * f c i i , f c i i min f c i i , f c i i . i0 i0 ci R i0 i0
c0 ( f , 0 ) c1 ( f ,1 ) cn ( f , n )
即 { i } i 0 是线性空间
的一组正交基。
T
最佳平方逼近算例

相应的正规方程组为
(ϕ 0 , ϕ 0 ) (ϕ 0 , ϕ1 ) (ϕ 0 , ϕ 2 ) a 0 ( f , ϕ 0 ) (ϕ1 , ϕ 0 ) (ϕ1 , ϕ1 ) (ϕ1 , ϕ 2 ) a1 = ( f , ϕ1 ) (ϕ , ϕ ) (ϕ , ϕ ) (ϕ , ϕ ) a ( f , ϕ ) 2 2 1 2 2 2 2 0
0
1
可解出 b = −1 , c = ,正规方程组为
* c0 (ϕ0 , ϕ0 )
1 6
c (ϕ1 , ϕ1 )
* 1
= (ϕ0 , f ) = (ϕ1 , f )
* c2 (ϕ 2 , ϕ 2 ) = (ϕ2 , f )
计算可得
1 1 , (ϕ 2 , ϕ 2 ) = 180 12 3−e 7e − 19 , ( f , ϕ2 ) = ( f , ϕ 0 ) = e − 1 , ( f , ϕ1 ) = 2 6 (ϕ 0 , ϕ 0 ) = 1 , (ϕ1 , ϕ1 ) =
ϕ * ( x) = a 0ϕ 0 ( x) + a1ϕ 1 ( x) + a 2ϕ 2 ( x) = 0.83918 x 2 + 0.85113x + 1.01299
平方逼近误差为 δ ( x) 2 = f − p2 2 = f 2 − ∑ ai ( f ,ϕi ) ≈ 2.783545 × 10− 5 .
例:求函数 f ( x) = e x 在[0,1]上的二次最佳平方逼近多项式,并估计平 ,小数点后保留 5 位. 方逼近误差 δ 2 2
解: (解法 1)
2
使用 Legendre 正交多项式
最佳平方逼近

正规方程组一般为病态方程组,当维数 较高时,病态严重,求解困难。 可以采取选择不同的基的方式,来改变 正规方程组的性态。 我们考虑最佳平方逼近多项式,采用正 交多项式做基函数。
2
b
a
函数f ( x)和g ( x)正交 ( f , g ) w( x) f ( x) g ( x)dx 0
a b
设次数不超过n的多项式空间为 n , 显然 是C[a, b]的一个子空间,
n的基为1, x,..., x n , 则,p( x) a0 a1 x ... an x n n 是f ( x)在 n的最佳逼近元的充分必要条件为
否则,就线性无关。 区间[a,b]上c11 ( x) .... cm m ( x) 0成立 就一定有c1 ... cm 0
假定1 ( x),....m ( x)是子空间S的基, 若函数g是最佳逼近元,则
( f g , 1 ( x)) 0,( f g , 2 ( x)) 0 ...., f g , m ( x)) 0 (
w( x) C[a, b],w( x) 0,x [a, b] 称w( x)为权函数。
连续函数空间C[a, b],给定权函数w( x) 对于f , g C[a, b]
最佳平方逼近多项式
给定函数f ( x) C[a, b], 求次数不超过n的 多项式p( x),使得
b
a
w( x)( f ( x) p( x)) dx min
简记为Ax=b
求解这个方程,就能得到a, ,am, .....
从而得到f ( x)在子空间S中的最佳平方 逼近元g ( x) a11 ( x) ..... amm ( x)
第三章-2-最佳平方逼近

性质 5 设 k k 0是 [a, b] 上带权 (x) 的正交多项式
族,则n(x) (n>0) 有n个单重实根,且都位于 区间[a, b] 内。
几类重要的正交多项式 Legendre 多项式 Chebyshev 多项式
第二类 Chebyshev 多项式
Laguerre 多项式 Hermite 多项式
Chebyshev 多项式
切比雪夫多项式的性质:
(1) 递推公式: Tn1 ( x ) 2 xTn ( x ) Tn1 ( x )
cos(n+1) + cos(n-1) = 2cos cosn x = cos
mn 0, 1 T ( x )T ( x ) n m (Tn , Tm ) dx π / 2, m n 0 (2) 正交性: 2 1 1 x π, mn0 n T ( x ) ( 1) Tn ( x) (3) 奇偶性: n
性质1 性质2
n ( x)
为首一 n 次多项式。 [a, b] 上带权 (x) 的正交多
是 k k 0
项式族,且
H n span 0 ,1,...,n
性质 3 正交。
n ( x) 与所有次数不高于n-1次的多项式
正交多项式性质
性质 4
此 k k 0 满足如下三项递推公式:
数值分析及计算软件
第三章
函数逼近与计算
3.3 最 佳 平 方 逼 近 及正交多项式
最佳平方逼近问题:
若存在 Pn* ( x )H n , 使得
|| f ( x) Pn ( x) ||2 inf || f ( x) Pn ( x) ||2 ,
计算方法 最佳平方逼近-最小二乘法

只需证明 (s(x), s(x)) (s(x), f(x)) 即:
n
n
n
( akk (x), ajj(x)) ( akk (x), f(x))
k0
j0
k0
整理上式,得
n
n
n
ak[ aj(k(x), j(x))]
ak (k (x), f(x))
k0
j0
k0
根据之前S*(x)存在性证明过程中得到的(3.3)式,即:
10 27
88 x 135
平方误差 :|| δ(x) ||22
1xdx
1
( 10 27
7 12
31 80
) 88
135
4
1.02
p1* (x)
10 27
88 x. 135
1
f(x) x
平方误差 : || δ(x) ||22 0.0001082.
0.37
1/4
1
观察:在[1 , 1]上,f(x) 4
n
|| f(x) ||22 ak* (f, k ) (4.5) k0
逼近误差公式证明
|| δ(x) ||22 || f(x) - s(x) || (f(x) - s(x), f(x) - s(x)) (f(x), f(x)) (f(x), s(x)) - (s(x), f(x)) (s(x), s(x))
(x)dx
n
(k , j )aj (f, k ), k 0,1,...,n (3.3)
j0
展开成方程组形式:
(0 , 0 )a0 (0 , 1 )a1 (0 , n )an (f, 0 ) (1 , 0 )a0 (1 , 1 )a1 (1 , n )an (f, 1 )
最佳平方逼近原理

最佳平方逼近原理最佳平方逼近原理是数值分析中的一个经典原理,用于寻找函数在给定定义域上的最佳平方逼近曲线。
在实际应用中,我们经常需要通过已知的离散数据点来近似拟合一个函数,最佳平方逼近原理就是为了解决这个问题而提出的。
最佳平方逼近原理的核心思想是,通过最小化残差平方和来选择最佳的曲线拟合函数。
残差平方和是指每个数据点与拟合曲线之间的差值的平方和,通过最小化残差平方和,我们可以找到能够最好地拟合数据点的曲线。
为了更好地理解最佳平方逼近原理,我们可以通过一个简单的例子来说明。
假设我们有一组包含有N个点的数据集{(x1,y1),(x2,y2),...,(xn,yn)},我们需要找到一条曲线y=f(x)来拟合这些数据点。
首先,我们可以假设拟合曲线为一条直线y=ax+b,其中a为斜率,b为截距。
我们的目标是找到最佳的斜率a和截距b,使得拟合曲线能够最好地拟合数据点。
为了评估拟合曲线的好坏,我们可以定义残差ei为数据点yi与拟合曲线f(xi)之间的差值,即ei=yi-f(xi)。
然后,可以定义残差平方和E为所有残差的平方和,即E=∑(yi-f(xi))^2。
根据最佳平方逼近原理,我们需要选择最优的斜率a和截距b,使得E达到最小值。
这可以通过对E分别对a和b求偏导数,并令偏导数等于零来实现。
∂E/∂a=0和∂E/∂b=0的解可以分别表示为a=(N∑(xiyi)-∑xi∑yi)/(N∑(xi^2)-(∑xi)^2)和b=(∑yi-∑(xi/n)a))/N 通过求解这两个方程,我们可以得到最佳的斜率a和截距b,从而得到最佳的拟合曲线。
上述例子只是最佳平方逼近原理的一个简单应用,实际上,最佳平方逼近原理可以应用于更复杂的拟合曲线,如多项式拟合、指数拟合等。
在实际应用中,最佳平方逼近原理广泛应用于数据分析、信号处理、图像处理等领域。
通过最佳平方逼近原理,我们可以从大量的离散数据中提取有效的信息,利用拟合曲线来进行预测、分类、回归等操作。
最佳平方逼近

(1,1) (2,1) L
A
(1,2
)
(2,2 )
L
L
LL
(1,m ) (2,m ) L
(m,1)
(m
,2
)
L
(m
,
m
)
称为函数1(x),.....,m (x)的Gram矩阵,
A显然是对称矩阵。
若1(x),.....,m (x)线性无关,则它们
0
3
(ex ,1) 2 ex 1dx e2 1 0
(ex , x) 2 ex xdx e2 1 0
法方程组为
2a0
2a0
2a1 8 3 a1
e2 1 e2 1
a0=0.1945 , a1=3.0000
最佳平方逼近一次多项式为 0.1945+3.0000x
8 7 6 5 4 3 2 1 0
b w(x) f (x) g(x)2 dx a
函数f (x)和g(x)正交
b
( f , g) a w(x) f (x)g(x)dx 0
设次数不超过n的多项式空间为n ,显然 是C[a, b]的一个子空间,
n的基为1, x,..., xn ,则,p(x) a0 a1x ... anxn n 是f (x)在n的最佳逼近元的充分必要条件为
a0 (1,1) a1(x,1) ... an (xn ,1) ( f ,1)
a0 (1, x) a1(x, x) ... an (xn , x) ( f , x)
a0 (1, xn ) a1(x, xn ) ... an (xn , xn ) ( f , xn )
求解法方程组,得到a0,a1,...,an
函数的一次最佳平方逼近

2013-2014(1)专业课程实践论文题目:函数的最佳平方逼近一、算法理论下面研究在区间[],a b 上一般的最佳平方逼近问题。
对于给定的函数()[,]f x C a b ∈,如果存在*01(){(),(),,()}n S x Span x x x ϕϕϕ∈使得[]22*()()()min ()()()bb a a a x b x f x S x dx x f x s x dx ρρ≤≤⎡⎤-=-⎣⎦⎰⎰则称*()s x 是()f x 在集合01{(),(),,()}n Span x x x ϕϕϕ 中的最佳平方逼近函数。
为了求*()s x ,由式可知,该为题等价于求多元函数。
若用H 表示行列式2(1,,,....,)n Gn G x x x =对应的矩阵,则*()s x , H 称为Hilbert 矩阵。
记01(,,....,)T n a a a a =,01(,,....,)T n d d d d =其中 (,)(0,1,.....,)k k d f x k n ==则方程 Ha d =的解*(0,1,.....)k k a a k n ==即为所求。
二、算法框图三、算法程序#include<stdio.h>#include<math.h>double function1(double x){ double s1;s1=1/sqrt(4+x*x);//替换函数return s1;}double function2(double x){ double s2;s2=x/sqrt(4+x*x);//替换函数return s2;}double ReiterationOfSimpson(double a,double b,double n,double f(double x)){ double h,fa,fb,xk,xj;h=(b-a)/n;fa=f(a);fb=f(b);double s1=0.0;double s2=0.0;for(int k=1;k<n;k++){ xk=a+k*h;s1=s1+f(xk);}for(int j=0;j<n;j++){ xj=a+(j+0.5)*h;s2=s2+f(xj);}double sn;sn=h/6*(fa+fb+2*s1+4*s2);return sn;}int main(){ double a=0.0,b=1.0,Result[2];int n=5;Result[0]=ReiterationOfSimpson(a,b,n,function1);Result[1]=ReiterationOfSimpson(a,b,n,function2);printf("d0=%f,d1=%f\n\n",Result[0],Result[1]);double x[2]={Result[0],Result[1]};double a0,a1;a0=4*Result[0]-6*Result[1];a1=12*Result[1]-4*Result[0];printf("a0=%5.7f,a1=%5.7f\n\n",a0,a1);}四、算法实现例1. 求()f x x =在[1,1]-上的一次最佳平方逼近解:运行程序,把替换函数分别改成s1=abs(x),s2=x*abs(x), 上机运行截图例2. 设()1/0,1上的一次最佳平方逼近多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
= ∫ (e
−1
1
t +1 2 2
) dt − [(e − 1) × (2e − 2) + (−3e + 9) × (−2e + 6) + (35e − 95) × (14e − 38)]
= 2 ∫ (e x ) 2 dx − 2[(e − 1) × (e − 1) + (−3e + 9) × (−e + 3) + (35e − 95) × (7e − 19)]
解得
* c0 =
( p0 , F ) 2(e − 1) = = e −1 ( p0 , p0 ) 2 ( p1 , F ) − 2e + 6 = = −3e + 9 ( p1 , p1 ) 2/3 ( p2 , F ) 14e − 38 = = 35e − 95 ( p2 , p2 ) 2/5
* c1 =
亦即
1 1 2 1 3 1 2 1 3 1 4 1 3 a 0 e − 1 1 a1 = 1 4 1 a 2 e − 2 5
解得 a0 = 1.01299, a1 = 0.85113, a 2 = 0.83918 ,所求最佳平方逼近多项式为
ϕ * ( x) = a 0ϕ 0 ( x) + a1ϕ 1 ( x) + a 2ϕ 2 ( x) = 0.83918 x 2 + 0.85113x + 1.01299
平方逼近误差为 δ ( x) 2 = f − p2 2 = f 2 − ∑ ai ( f ,ϕi ) ≈ 2.783545 × 10− 5 .
因此,对 f(x)的平方逼近误差为
δ 2 = f ( x) − ϕ * ( x) 2 =
2 2 2 1 F (t ) − ϕ * (t ) ≈ 2.783545 × 10− 5 . 2 2
(解法 2) 构造[0,1]上首项系数为 1 的正交多项式的前三项. 设
ϕ 0 ( x) = 1 , ϕ1 ( x) = x + a , ϕ 2 ( x) = x 2 + bx + c
相应的正规方程组为
(ϕ 0 , ϕ 0 ) (ϕ 0 , ϕ1 ) (ϕ 0 , ϕ 2 ) a 0 ( f , ϕ 0 ) (ϕ1 , ϕ 0 ) (ϕ1 , ϕ1 ) (ϕ1 , ϕ 2 ) a1 = ( f , ϕ1 ) (ϕ , ϕ ) (ϕ , ϕ ) (ϕ , ϕ ) a ( f , ϕ ) 2 2 1 2 2 2 2 0
1 * c 2 (3(2 x − 1) 2 − 1) 2 2 = (210e − 570) x + (−216e + 588) x + 39e − 105 = 0.83918 x 2 + 0.85113 x + 1.01299
对 F(t)的平方逼近误差为
δ
2 2
= F (t ) − ϕ * (t ) = F 2 − ∑ ci* ( F , pi )
例:求函数 f ( x) = e x 在[0,1]上的二次最佳平方逼近多项式,并估计平 ,小数点后保留 5 位. 方逼近误差 δ 2 2
解: (解法 1)
2
使用 Legendre 正交多项式
2 2
作变换 x = a + b + t b − a = 1 (1 + t ) ,则
f ( x) = e , x ∈ [0,1]
2 2 2 i =0
2
平方逼近误差为
δ ( x) 2 = f − ϕ * 2 = f
2 2
− ∑ ci* ( f , ϕi ) 2
2 i =0
2
= −248.5e 2 + 1350e − 1833.5 ≈ 2.783545 × 10−5
(解法 3)
使用线性无关函数族 ϕ0 ( x) = 1, ϕ1 ( x) = x, ϕ2 ( x) = x 2 ,
* * * 于是解得 c0 = e − 1, c1 = 18 − 6e, c2 = 210e − 570 .
f ( x) = e x ( 0 ≤ x ≤ 1) 的最佳二次平方逼近多项式为
* * ϕ * ( x) = c 0 ϕ 0 ( x) + c1*ϕ1 ( x) + c 2 ϕ 2 ( x)
= (210e − 570) x 2 + (−216e + 588) x + 39e − 105 = 0.83918 x 2 + 0.85113x + 1.01299
Байду номын сангаас
由正交性 (ϕ 0 , ϕ1 ) = ∫0 1 ⋅ ( x + a)dx = 0 可解出 a = − . 又由正交性
(ϕ 0 , ϕ 2 ) = ∫ 1 ⋅ ( x 2 + bx + c)dx = 0
0 1
1
1 2
(ϕ1 , ϕ 2 ) = ∫ ( x + a ) ⋅ ( x 2 + bx + c)dx = 0
0
1
= −497e 2 + 2700e − 3667 ≈ 5.56709 × 10−5
注意作变换 x = a + b + t b − a = 1 (1 + t ) 后,有
2 2 2
∫ [ f ( x) − ϕ ( x)] dx =
* 2 0
1
b−a 1 [ F (t ) − ϕ * (t )]2 dt ∫ − 1 2
x
⇔
F (t ) = e
t +1 2
, t ∈ [−1,1]
已知 Legendre 多项式
p 0 (t ) = 1, p1 (t ) = t , p 2 (t ) = 1 2 (3t − 1) 2
在[−1,1]上关于权函数 ρ ( x) = 1 两两正交,于是相应的正规方程组为
* ( p0 , p0 ) c0 ( p 0 , F ) * ( p1 , p1 ) c1 = ( p1 , F ) * ( p2 , p2 ) c 2 ( p 2 , F )
* c2 =
故 F (t ) = e
t +1 2
( − 1 ≤ t ≤ 1) 的最佳二次平方逼近多项式为
* * * ϕ * (t ) = c0 p0 (t ) + c1 p1 (t ) + c2 p2 (t )
f ( x) = e x ( 0 ≤ x ≤ 1) 的最佳二次平方逼近多项式为
* * (2 x − 1) + ϕ * ( x) = c0 + c1
0
1
可解出 b = −1 , c = ,正规方程组为
* c0 (ϕ0 , ϕ0 )
1 6
c (ϕ1 , ϕ1 )
* 1
= (ϕ0 , f ) = (ϕ1 , f )
* c2 (ϕ 2 , ϕ 2 ) = (ϕ2 , f )
计算可得
1 1 , (ϕ 2 , ϕ 2 ) = 180 12 3−e 7e − 19 , ( f , ϕ2 ) = ( f , ϕ 0 ) = e − 1 , ( f , ϕ1 ) = 2 6 (ϕ 0 , ϕ 0 ) = 1 , (ϕ1 , ϕ1 ) =