微积分练习题及解析

合集下载

微积分试题及答案

微积分试题及答案

微积分试题及答案1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。

解析:首先,我们需要求函数f(x)的导数。

对于一个二次函数 f(x) = ax^2 + bx + c,它的导数等于2ax + b。

因此,对于f(x) = 3x^2 - 2x + 1,其导数即为 f'(x) = 6x - 2。

接下来,我们需要求在 x = 2 处的导数。

将 x = 2 代入导数公式,得到 f'(2) = 6(2) - 2 = 10。

答案:函数f(x)在x = 2处的导数为10。

2. 求函数g(x) = sin(x) + cos(x)的定积分∫[0, π] g(x)dx。

解析:我们需要求函数 g(x) = sin(x) + cos(x) 在[0, π] 区间上的定积分。

首先,我们可以分别求 sin(x) 和 cos(x) 在[0, π] 区间上的定积分,然后将结果相加即可。

根据积分的基本性质,∫sin(x)dx = -cos(x) 和∫cos(x)dx = sin(x),所以:∫[0, π]sin(x)dx = [-cos(x)]|[0, π] = -cos(π) - (-cos(0)) = -(-1) - (-1) = 2∫[0, π]cos(x)dx = [sin(x)]|[0, π] = sin(π) - sin(0) = 0 - 0 = 0将上述结果相加,得到定积分的结果:∫[0, π]g(x)dx = ∫[0, π]sin(x)dx + ∫[0, π]cos(x)dx = 2 + 0 = 2答案:函数g(x) = sin(x) + cos(x)在[0, π]区间上的定积分为2。

3. 求曲线y = x^3在点(1, 1)处的切线方程。

解析:要求曲线 y = x^3 在点 (1, 1) 处的切线方程,我们需要确定切线的斜率和过切点的直线方程。

首先,我们求出这个曲线在点(1, 1)处的导数来获得切线的斜率。

导数与微分练习题及解析

导数与微分练习题及解析

导数与微分练习题及解析在微积分学中,导数和微分是最基本的概念之一。

它们可以帮助我们研究函数的变化率和性质,广泛应用于物理、经济、工程等各个领域。

为了帮助你更好地理解导数和微分的概念,以下是一些练习题及其解析。

练习题1:求函数f(x) = x^2 + 3x + 2在x = 2处的导数和切线方程。

解析:首先,我们求函数f(x)的导数。

使用求导法则,对于多项式函数来说,可以将每一项的指数与系数相乘,并将指数减一,得到函数的导数。

f'(x) = 2x + 3接下来,我们计算x = 2处的导数值。

f'(2) = 2(2) + 3 = 7切线方程的一般形式为y = mx + b,其中m代表斜率,b代表截距。

根据导数的定义,导数即为切线的斜率。

所以切线的斜率为m = 7。

将切点的坐标代入切线方程,我们可以得到b的值。

2 = 7(2) + b2 = 14 + bb = -12最终的切线方程为y = 7x - 12。

练习题2:求函数f(x) = e^x * sin(x)的导数。

解析:考虑到函数f(x) = e^x * sin(x)是两个函数的乘积,我们可以使用乘积法则来求导。

乘积法则的公式为:(uv)' = u'v + uv'对于e^x和sin(x)两个函数,它们的导数分别为e^x和cos(x)。

根据乘积法则,我们可以将这两个导数与原函数进行组合,得到最终的导数为:f'(x) = (e^x * cos(x)) + (e^x * sin(x))练习题3:求函数f(x) = ln(x^2 + 1)的导数和微分。

解析:首先,我们求函数f(x)的导数。

根据链式法则,可以分别计算外函数和内函数的导数。

设内函数为u = x^2 + 1,则内函数的导数为du/dx = 2x。

外函数为f(u) = ln(u),则外函数的导数为df/du = 1/u。

根据链式法则,函数f(x)的导数为:f'(x) = df/du * du/dx= (1/u) * (2x)= 2x / (x^2 + 1)接下来,我们计算函数f(x)的微分。

(完整)微积分练习题及解析

(完整)微积分练习题及解析

练习题1、质量为2kg 的某物体在平面直角坐标系中运动,已知其x 轴上的坐标为x=3+5cos2t,y 轴上的坐标为y=—4+5sin2t ,t 为时间物理量,问:⑴物体的速度是多少?()'10sin(2)x dx V x t t dt===- ()'10cos(2)y dy V y t t dt===10V ==⑵物体所受的合外力是多少?222(3)(4)5x y -+-=运动轨迹是圆,半径为5,所以是做匀速圆周运动 22*100405mv F N r === ⑶该物体做什么样的运动?匀速圆周运动⑷能否找出该物体运动的特征物理量吗?圆心(3,4),半径52、一质点在某水平力F 的作用下做直线运动,该力做功W 与位移x 的关系为W=3x-2x 2,试问当位移x 为多少时F 变为零. 34dW F x dx==- ,所以当x=3/4时,F=0 3、已知在距离点电荷Q 为r 处A点的场强大小为E=错误!,请验证A点处的电势公式为:U = 错误!.规定无穷远处电势为零,A 处的电势即为把单位正电荷缓慢的从无穷远处移到A 点所做的功我们认为在r 变化dr 时,库仑力F 是不变的, 则2kQq dW F dr dr r=-•=-• 所以20W r kQq dW dr r ∞=-⎰⎰ 即 21r q kQq dr rϕ∞=⎰ 所以1|r kQ kQ r rϕ∞=-=4、某复合材料制成的一细杆OP 长为L ,其质量分布不均匀。

在杆上距离O 端点为x 处取点A,令M 为细杆上OA 段的质量。

已知M 为x 的函数,函数关系为M=kx 2,现定义线密度ρ=错误!,问当x=错误!处B 点的线密度为何? 2dM kx dxρ== ,2L x kL ρ∴==5、某弹簧振子的总能量为2×10-5J ,当振动物体离开平衡位置错误!振幅处,其势能E P = ,动能E k = 。

首先推导弹簧的弹性势能公式,设弹簧劲度系数为k,伸长量为x 时的势能为E(x )弹簧所具有的弹性势能即为将弹簧从原长拉长x 时所做的功dW F dx kx dx =•=• 00W xdW kx dx ∴=•⎰⎰ 2()2kx E x ∴= 所以在距平衡位置错误!振幅处的弹性势能为总能量的14,即655*10, 1.5*10p k E J E J --== 6、取无穷远处电势为零。

微积分变态题及答案

微积分变态题及答案

微积分变态题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

以下是导数练习题及答案,欢迎阅读。

一、选择题a.在该点的函数值的增量与自变量的增量的比b.一个函数c.一个常数,不是变数d.函数在这一点到它附近一点之间的平均变化率[答案] c[解析] 由定义,f′(x0)是当δx无限趋近于0时,δyδx无限趋近的常数,故应选c.[答案] b[解析] ∵s(t)=3t2,t0=3,∴δs=s(t0+δt)-s(t0)=3(3+δt)2-=18δt+3(δt)2∴δsδt=18+3δt.当δt→0时,δsδt→18,故高文瑞b.[答案] b[解析] ∵f(x)=x2,x=1,∴δy=f(1+δx)2-f(1)=(1+δx)2-1=2δx+(δx)2∴δyδx=2+δx当δx→0时,δyδx→2∴f′(1)=2,故高文瑞b.[答案] d[解析] ∵δsδt=4(5+δt)2-3-4×52+3δt=40+4δt,∴s′(5)=limδt→0 δsδt=limδt→0 (40+4δt)=40.故应选d.a.δy=f(x0+δx)-f(x0)叫作函数值的增量b.δyδx=f(x0+δx)-f(x0)δx叫做函数在x0到x0+δx之间的平均变化率 c.f(x)在x0处的导数记作y′d.f(x)在x0处的导数记为f′(x0)[答案] c[解析] 由导数的定义可知c错误.故应选c.a.f′(x0)=f(x0+δx)-f(x0)b.f′(x0)=limδx→0[f(x0+δx)-f(x0)]c.f′(x0)=f(x0+δx)-f(x0)δxd.f′(x0)=limδx→0 f(x0+δx)-f(x0)δx[答案] d[解析] 由导数的定义知d正确.故应选d.[答案] d[解析] ∵δyδx=a(2+δx)2+b(2+δx)+c-4a-2b-cδx=4a+b+aδx,∴y′|x=2=limδx→0 δyδx=limδx→0 (4a+b+aδx)=4a+b.故应选d. [答案] d[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选d.[答案] b[解析] ∵δsδt=3(0+δt)-(0+δt)2δt=3-δt,∴s′(0)=limδt→0 δsδt=3.故高文瑞b.[答案] c[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limδx→0f(x0-δx)-f(x0)δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-[解析] limδx→0 f(x0-δx)-f(x0)δx=-limδx→0 f(x0-δx)-f(x0)-δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limδx→0 f(x0+δx)-f(x0)δx=-12f′(x0)=-.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵δy=1+δx+11+δx-1+11=δx-1+1δx+1=(δx)2δx+1,∴δyδx=δxδx+1.∴y′|x=1=limδx→0 δxδx+1=0.13.未知函数f(x)=ax+4,若f′(2)=2,则a等同于______.[答案] 2[解析] ∵δyδx=a(2+δx)+4-2a-4δx=a,∴f′(1)=limδx→0 δyδx=a.∴a=2.14.未知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值就是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可以化成limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、答疑题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义存有f′(x0)=limδx→0 f(x0+δx)-f(x0)δx=limδx→0 (x0+δx)2-x20δx=limδx→0 δx(2x0+δx)δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 加速度公式为s=12at2∵δs=12a(t0+δt)2-12at20=at0δt+12a(δt)2∴δsδt=at0+12aδt,∴limδt→0 δsδt=limδt→0 at0+12aδt=at0,未知a=5.0×m/s2,t0=1.6×10-3s,∴at0=m/s.所以枪弹箭出来枪口时的瞬时速度为m/s.17.在曲线y=f(x)=x2+3的图象上取一点p(1,4)及附近一点(1+δx,4+δy),求(1)δyδx (2)f′(1).[解析] (1)δyδx=f(1+δx)-f(1)δx=(1+δx)2+3-12-3δx=2+δx.(2)f′(1)=limδx→0 f(1+δx)-f(1)δx=limδx→0 (2+δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处为与否存有导数?若存有,谋出,若没,表明理由.δy=f(0+δx)-f(0)=f(δx)∴limx→0+δyδx=limδx→0+ (1+δx)=1,limδx→0-δyδx=limδx→0- (-1-δx)=-1,∵limδx→0-δyδx≠limδx→0+δyδx,∴δx→0时,δyδx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案第一题:求函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点和拐点。

解析:首先,我们需要找到函数的极值点。

极值点对应于函数的导数为零的点。

对函数 f(x) 求导得到 f'(x) = 3x^2 - 6x + 2。

令导数等于零,我们得到一个二次方程 3x^2 - 6x + 2 = 0。

使用求根公式,可以解得这个二次方程的解为x = 1 ± √(2/3)。

所以函数的极值点为x = 1 + √(2/3) 和 x = 1 - √(2/3)。

接下来,我们需要找到函数的拐点。

拐点对应于函数的二阶导数为零的点。

对函数 f(x) 求二阶导数得到 f''(x) = 6x - 6。

令二阶导数等于零,我们得到 x = 1,这是函数的一个拐点。

综上所述,函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点为x = 1 + √(2/3)和 x = 1 - √(2/3),拐点为 x = 1。

第二题:已知函数 f(x) = e^x,在点 x = 0 处的切线方程为 y = mx + b,求参数 m 和 b 的值。

解析:切线方程的斜率 m 等于函数在给定点的导数。

对函数 f(x) = e^x 求导得到 f'(x) = e^x。

根据题意,在 x = 0 处求切线,所以我们需要计算函数在 x = 0 处的导数。

将 x = 0 代入函数的导数表达式中,我们得到 f'(0) = e^0 = 1。

所以切线的斜率 m = 1。

切线方程的常数项 b 可以通过将给定点的坐标代入切线方程求解。

由题意知道切线过点 (0, f(0)),即 (0, e^0) = (0, 1)。

将点 (0, 1) 代入切线方程 y = mx + b,我们得到 1 = 0 + b,解得 b = 1。

综上所述,切线方程为 y = x + 1。

第三题:计算函数f(x) = ∫(0 to x) sin(t^2) dt。

大一微积分试题及答案详解

大一微积分试题及答案详解

大一微积分试题及答案详解一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A解析:函数f(x) = x^2的导数为f'(x) = 2x,当x > 0时,f'(x) > 0,说明函数在x > 0的区间内是增函数;当x < 0时,f'(x) < 0,说明函数在x < 0的区间内是减函数。

由于整个定义域内没有区间使得函数单调递减,所以函数在整个定义域上是增函数。

2. 下列函数中,满足f(-x) = -f(x)的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = sin(x)答案:A解析:选项A中的函数f(x) = x^3是奇函数,因为对于所有x,都有f(-x) = (-x)^3 = -x^3 = -f(x)。

选项B是偶函数,选项C和D不满足奇函数的性质。

3-10. (类似上述格式,继续编写选择题及答案详解)二、填空题(每题4分,共20分)1. 极限lim (x→0) [sin(x)/x] 的值是 _______。

答案:1解析:根据极限的性质,我们知道sin(x)/x在x趋近于0时的极限是1,这是著名的极限lim (x→0) [sin(x)/x] = 1。

2. 函数f(x) = 2x^3 - 6x^2 + 9x + 1在x = 2处的导数是 _______。

答案:23解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 12x + 9,然后将x = 2代入得到f'(2) = 6(2)^2 - 12(2) + 9 = 24 - 24 + 9 = 9。

3-5. (类似上述格式,继续编写填空题及答案详解)三、解答题(共50分)1. (15分)求曲线y = x^3 - 3x + 2在点(1, 0)处的切线方程。

微积分综合练习试题和参考答案与解析

微积分综合练习试题和参考答案与解析

(1)函数 f(X)=•1 In(x - 2) 的定义域是(2)函数 f(x)=1 ln( x 2)的定义域是 ____________ •答案:(—2, —1)^(—1,2](4)若函数f(x T xs 「x 0在X 二0处连续,则k =x _ 0•答案:k = 1(1)设函数y 二-xe,则该函数是().A.奇函数B.偶函数C.非奇非偶函数 D .既奇又偶函数综合练习题1 (函数、极限与连续部分)1 •填空题(3)函数 f (x 2^ x 2 4x 7,贝U f(x)二 _______________________ •答案:f(x^ x 2 3(5) 函数 f(x-1) =x 2 -2x ,则 f(x)二 __________________ .答案:f(x) =x 2 -1x 2 _2x _3(6)函数y _________________________ 的间断点是.答案:x- -1x +1 1(7)lim xsin .答案:1X护 x sin 4x(8)若 lim _______________ 2,则 k = .答案:k = 2―0 sin kx2.单项选择题答案:B(2)下列函数中为奇函数是( ).答案:CA. xsin xln (x . 1 x 2) D . x x 2).D . x 卞 一5 且 x = -4x(3)函数y ln(x • 5)的定义域为(x +4A. x 占-5 B . x -4 C . x 占 一5 且 x = 0答案:D2(4)设 f(X * 1) = X 「1 ,则 f(X)二( )A. x(x 1)C. x=1,x=2, x=3D x 2 -3x 2(1)(2)解: limX —3x 2 -3x 2x 2 -4-9(x-2)(x-1) (x-2)(x 2)lim x =3 x-9(x-3)(x 3)-2x -3xB (x -3)(x 1)= lim 』^X —3 X 14 2答案:A3.计算题-4C. x(x _2)D . (x +2)(x —1)答案: Ce^2,x 式0亠 (5) 当k =()时,函数f f(x) =在x=0处连续..k,x = 0A. 0B. 1C .2D . 3答案:Dx +1,x 式0 (6) 当k =()时,函数f f(x)—w,在X = 0处连续、k,x = 0 A. 0 B. 1C .2D .-1答案:B(7) 函数f (x)x —3— 2 的间断点是()X 2 _3x +2A. x =1,x = 2B.x =3.无间断点解:WORD 格式整理版综合练习题2 (导数与微分部分)(3)解:lim "卫二 lim HX T x 2 -5x 4x —4 & -4)(x -1)二lim x j4x -2x —11 •填空题(1)曲线f(x) __________________________________ ・1在(1,2)点的切斜率是11答案:2(2)_______________________________________________________ 曲线f(x) =e x在(0,1)点的切线方程是 __________________________________________ •答案:y = x • 1(3)已知f (x^ x3 3x,则f (3) =答案: f (x) =3x23x ln3f (3) =27 (1 ln 3)(4)已知f(x) = In x ,贝U f (x) = _____________________ •1 1答案:f (x) , f (x) = 2x x(5)若f (x) _______________________________ ,贝y f (0)二答案:f (x)二「2e» xe」f (0) =「22.单项选择题(1)若f (x) = e^ cosx,贝U f (0)= ( ) •A. 2B. 1C. -1D. -2因f (x) = (e“ cosx) = (e“)cosx e^(cosx)-x X x=-e cosx -e sin x = -e (cosx sinx)所以f (0) - -e-0 (cos0 sin0) - -1答案:C(2)设y = lg2 x,则dy 二(1 1A. dx B dx2x xln 10答案:B(3)设y二f (x)是可微函数,则)•ln 10 1 C •dx D • 一dxx x df(cos2x)二( )•A • 2f (cos2x)dxB f (cos2x)sin 2xd2x(4)若 f(X) . 丄3=si nx a,其中a 是常数,则f (x) =().A2.cosx 3a B. sin x 6ac.-sin xD.cosx答案 :C3.计算题1e ,求八(1 )设 y = x 211 2 1 .1C . 2f (cos2x)sin 2xdxD . - f (cos2x)sin2xd2xx(2 )设 y = sin 4x cos 3 x ,求 y .2解: y = 4cos4x 3cos x(-sinx)2= 4cos4x 「3sinxcos x(3 )设 y = e % 12,求讨.x答案:D21 解: / = 2xe x x 2e x (-p)二 e x (2x-1)A.单调增加 B .单调减少C.先增后减 D •先减后增答案:D(2)满足方程f (x) =0的点一定是函数y二f (x)的( ).A极值点 B.最值点 C .驻点 D.间断点答案:C(3)下列结论中( )不正确.A . f (x)在X=X0处连续,则一定在X0处可微.B . f(X)在X = X0处不连续,则一定在X0处不可导•C •可导函数的极值点一定发生在其驻点上•D.函数的极值点一定发生在不可导点上•答案:B(4)下列函数在指定区间(-::,•::)上单调增加的是( ).A . sinxB . e XC . X10D . 3「x答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m i的长方体开口容器,怎样做法用料最省?解:设底边的边长为xm,高为h m容器的表面积为y m l。

高考数学微积分(附答案解析

高考数学微积分(附答案解析

定积分与微积分基本定理【考点导读】1. 了解定积分的实际背景,初步掌握定积分的相关概念,体会定积分的基本方法。

2. 了解微积分基本定理的含义,能利用微积分基本定理计算简单的定积分,解决一些简单的几何和物理问题。

【基础练习】1.下列等于1的积分是 (3) 。

(1)dx x ⎰10 (2)dx x ⎰+10)1( (3)dx ⎰101 (4)dx ⎰10212.曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是 52。

3.已知自由落体运动的速率v gt =,则落体运动从0t =到0t t =所走的路程为 220gt。

4.如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧拉长6cm ,则力所做的功为 0.18J 。

5.220(3)10,x k dx k +==⎰则1 , 8-=⎰__454 。

【范例导析】例1.计算下列定积分的值: (1)⎰--312)4(dx x x ;(2)⎰-215)1(dx x ;(3)dx x x ⎰+20)sin (π;(4)dx x ⎰-222cos ππ;分析:求函数()f x 在某一区间上的定积分,常用的方法有两种:一是利用定积分的几何意义,转化为曲边梯形的面积来处理;二是应用微积分基本定理,关键在于找到()F x ,使()()F x f x '=。

解:(1)3223311120(4)(2)|33x x dx x x ---=-=⎰ (2)因为56)1(])1(61[-='-x x ,所以61|)1(61)1(216215=-=-⎰x dx x ;(3)222200(sin )(cos )|128x x x dx x πππ+=-=+⎰ (4)22222221cos 2sin 2cos |2242x x x xdx dx πππππππ---+==+=⎰⎰dx x ⎰-222cos ππ点评:除了题目有明确要求之外,在求定积分的两种方法中我们基本上选用微积分基本定理解决问题,避免每次都要进行“分割、以直代曲、作和、逼近”的操作,不过有时候我们不容易找到比较()F x ,这时候用定义或者其几何意义就显得方便了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习题
1、质量为2kg 的某物体在平面直角坐标系中运动,已知其x 轴上的坐标为x=3+5cos2t ,y 轴上的坐标为y=-4+5sin2t ,t 为时间物理量,问:
⑴物体的速度是多少? ()'10sin(2)x dx V x t t dt
=
==- ()'10cos(2)y dy V y t t dt === 22
10x y V V V =+=
⑵物体所受的合外力是多少?
222(3)(4)5x y -+-=
运动轨迹是圆,半径为5,所以是做匀速圆周运动 22*100405
mv F N r === ⑶该物体做什么样的运动?
匀速圆周运动
⑷能否找出该物体运动的特征物理量吗?
圆心(3,4),半径5
2、一质点在某水平力F 的作用下做直线运动,该力做功W 与位移x 的关系为W=3x-2x 2,试问当位移x 为多少时F 变
为零。

34dW F x dx
=
=- ,所以当x=3/4时,F=0
3、已知在距离点电荷Q 为r 处A点的场强大小为E=
KQ r 2 , 请验证A点处的电势公式为:U = KQ r。

规定无穷远处电势为零,A 处的电势即为把单位正电荷缓慢的从无穷远处移到A 点所做的功
我们认为在r 变化dr 时,库仑力F 是不变的, 则2
kQq dW F dr dr r =-•=-
• 所以2
0W r kQq dW dr r ∞=-⎰⎰ 即 21r q kQq dr r
ϕ∞=⎰ 所以1|r kQ kQ r r ϕ∞=-=
4、某复合材料制成的一细杆OP 长为L ,其质量分布不均匀。

在杆上距离O 端点为x 处取点A ,令M 为细杆上OA 段
的质量。

已知M 为x 的函数,函数关系为M=kx 2,现定义线密度ρ=dM dx ,问当x=L 2
处B 点的线密度为何? 2dM kx dx
ρ=
= ,2L x kL ρ∴==
5、某弹簧振子的总能量为2×10-5J ,当振动物体离开平衡位置12
振幅处,其势能E P = ,动能E k = 。

首先推导弹簧的弹性势能公式,设弹簧劲度系数为k ,伸长量为x 时的势能为E (x )
弹簧所具有的弹性势能即为将弹簧从原长拉长x 时所做的功
dW F dx kx dx =•=•
00W x
dW kx dx ∴=•⎰⎰ 2
()2
kx E x ∴= 所以在距平衡位置12 振幅处的弹性势能为总能量的14
,即655*10, 1.5*10p k E J E J --==
6、取无穷远处电势为零。

若将对电容器充电等效成把电荷从无穷远处移到电容器极板上,试问,用电压U 对电容为C 的电容器充电,电容器存储的电能为何?开始时电容器存放的电荷量为零。

0022
1122q
q E Q q q dE dQ U
Q dE dQ C Q E CU C =•∴=∴==⎰⎰
7、在光滑的平行导轨的右端连接一阻值为R 的电阻,导轨宽度为L ,整个导轨水平放置在方向竖直向下的磁场中,磁场的磁感应强度为B 。

有一导体棒ab 垂直轨杆并停放在导轨上,导体棒与导轨有良好的接触。

在t=0时刻,给导体棒一水平向左的初速度V 0,若其他电阻不计,则
⑴求导体棒的速度v 随时间t 的函数表达式; 022*********
2200,1ln v t v B L t
mR
B L v F B L v F a R m mR
B L v dv a dt dt mR
B L dv dt v mR v B L t v mR
v v e -====-•=-=-∴=-∴=⎰⎰
⑵求导体棒从开始运动到停下为止,其滑行的总位移S ; 22222200000022022|
B L t mR B L t s mR B L t mR ds v dt v e
dt ds v e dt mR s v e B L
mR s v B L --∞-∞=•=•∴=∴=-∴=⎰⎰ ⑶求导体棒在运动过程中产生的感应电流I 随时间t 的函数关系; 22
0B
L t mR BLv BLv I e R R -== ⑷求全过程中流过导体棒的总电荷Q 。

00
Q BL dQ I dt vdt R BL dQ vdt R mv BL Q s R BL
∞=•=
∴=∴==⎰⎰ 从这里可以看出安培力的冲量特点
dI BL dQ =•。

相关文档
最新文档